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Abstract
Bone-resorbing osteoclasts are formed from a mono-
cyte/macrophage lineage under the strict control of 
bone-forming osteoblasts. So far, macrophage colony-
stimulating factor (M-CSF), receptor activator of 
nuclear factor-κB ligand (RANKL), and osteoprotegerin 
(OPG) produced by osteoblasts play major roles in the 
regulation of osteoclast differentiation. Recent studies 
have shown that osteoblasts regulate osteoclasto-
genesis through several mechanisms independent of 
M-CSF, RANKL, and OPG production. Identification of 
osteoclast-committed precursors in  vivo  demonstrated 
that osteoblasts are involved in the distribution of 
osteoclast precursors in bone. Interleukin 34 (IL-34), 
a novel ligand for c-Fms, plays a pivotal role in main-
taining the splenic reservoir of osteoclast-committed 
precursors in M-CSF deficient mice. IL-34 is also able 
to act as a substitute for osteoblast-producing M-CSF 
in osteoclastogenesis. Wnt5a, produced by osteo-
blasts, enhances osteoclast differentiation by upregu-
lating RANK expression through activation of the non-
canonical Wnt pathway. Semaphorin 3A produced by 
osteoblasts inhibits RANKL-induced osteoclast differ-
entiation through the suppression of immunoreceptor 

tyrosine-based activation motif signals. Thus, recent 
findings show that osteoclast differentiation is tightly 
regulated by osteoblasts through several different 
mechanisms. These newly identified molecules are ex-
pected to be promising targets of therapeutic agents 
in bone-related diseases.
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INTRODUCTION
Bone is continuously destroyed and reformed in verte-
brates to maintain bone volume and calcium homeos-
tasis. Osteoblasts and osteoclasts are specialized cells 
responsible for bone formation and bone resorption, re-
spectively. Osteoblasts produce bone matrix proteins and 
take charge of  mineralization of  the tissue. Osteoclasts 
are multinucleated cells responsible for bone resorption. 
It has been well established that osteoclasts are formed 
from monocyte/macrophage lineage precursors under 
the strict regulation of  osteoblasts, osteocytes, and bone 
marrow stromal cells (referred to as “osteoblasts” in this 
review).

Osteoblasts express two cytokines essential for os-
teoclast differentiation, macrophage colony-stimulating 
factor (M-CSF) and receptor activator of  nuclear factor-
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κB ligand (RANKL)[1,2] (Figure 1). Experiments using 
an osteopetrotic op/op mouse model have established 
that the osteoblast product M-CSF is crucial for os-
teoclast differentiation[3]. The M-CSF gene in op/op 
mice cannot code functionally active M-CSF protein[4]. 
Administration of  recombinant M-CSF to op/op mice 
restores impaired bone resorption[5]. RANKL is a mem-
ber of  the tumor necrosis factor (TNF) family (TNF 
superfamily member 11)[6,7]. The expression of  RANKL 
by osteoblasts is inducible. Osteoblasts express RANKL 
as a membrane-associated form in response to stimuli 
of  bone resorption-stimulating factors such as 1α,25-
dihydroxyvitamin D3 [1α,25(OH)2D3], parathyroid 
hormone, prostaglandin E2, and interleukin (IL)-11[2]. 
Osteoclast precursors express c-Fms (M-CSF receptor) 
and RANK (RANKL receptor) and differentiate into 
osteoclasts in the presence of  M-CSF and RANKL. 
RANKL stimulation strongly induced the expression 
of  nuclear factor of  activated T-cells, cytoplasmic 1 
(NFATc1), a pivotal transcription factor for osteoclast 
development, in osteoclast precursors[8]. Osteoblasts 
also produce osteoprotegerin (OPG, TNFRSF11B), a 
soluble decoy receptor for RANKL[9,10]. OPG inhibits 
osteoclastogenesis by blocking the RANKL-RANK 
interaction[1,2]. Both RANKL-deficient mice[11] and 
RANK-deficient mice[12] develop severe osteopetrosis 
with no osteoclasts in bone. In contrast, OPG-deficient 
mice[13,14] exhibit severe trabecular and cortical bone po-
rosity with enhanced osteoclastic bone resorption.

Discovery of  the RANKL-RANK signal in osteocla
stogenesis has clarified the cause of  some bone diseases 
in humans. Loss-of-function mutations in the OPG gene 
cause Juvenile Paget’s disease and idiopathic hyperphos-
phatasia[15-17]. Gain-of-function mutations in the RANK 
gene induce familial expansile osteolysis, familial Paget’
s disease of  bone, and expansile skeletal hyperphospha-
tasia[18]. Osteopetrosis due to few osteoclasts is caused 
by loss-of-function mutations in the RANK gene[19] 
and RANKL gene[20]. The phenotypes of  these bone 
diseases in humans support the concept that RANKL 
expressed by osteoblasts stimulates osteoclast differenti-
ation of  precursors through the receptor RANK. Thus, 
the RANKL-RANK axis is the central pathway for os-
teoclastogenesis. Recent in vivo studies have also shown 
that osteoblasts regulate osteoclastogenesis through sev-
eral mechanisms independent of  M-CSF, RANKL and 
OPG production.

In this review article, we focus on the new roles of  
osteoblasts in osteoclast differentiation. First, osteo-
blasts are involved in the distribution of  osteoclast pre-
cursors in bone. Second, osteoblast-producing M-CSF 
can be replaced by IL-34 in osteoclastogenesis. Third, 
osteoblasts produce Wnt5a, which enhances osteoclast 
differentiation through the upregulation of  RANK ex-
pression. Lastly, osteoblast-producing semaphorins reg-
ulate osteoclast formation in the presence of  RANKL 
signaling. Overall, these findings remind us of  the im-
portance of  osteoblasts in osteoclast development.

CHARACTERISTICS OF OSTEOCLAST 
PRECURSORS IN VIVO
Recent attempts to identify osteoclast precursors in vivo 
established a new role of  osteoblasts in osteoclast dif-
ferentiation. Mizoguchi et al[21] showed that cells express-
ing both RANK and c-Fms detected near osteoblasts in 
bone directly differentiated into osteoclasts without cell 
cycle progression (Figure 2). To clarify the relationship 
between differentiation and proliferation of  osteoclast 
precursors, BrdU and M-CSF were simultaneously ad-
ministrated to op/op mice. M-CSF administration in-
duced many osteoclasts in bone in op/op mice. Most of  
the nuclei of  osteoclasts induced by M-CSF were BrdU 
negative. Similarly, when BrdU and RANKL were ad-
ministrated to RANKL-deficient mice, osteoclasts were 
also induced in bone. Most nuclei of  RANKL-induced 
osteoclasts were BrdU negative. These results suggest 
that both M-CSF and RANKL induce the differentia-
tion of  osteoclast precursors into osteoclasts without 
cell cycle progression. In these experiments, M-CSF and 
RANKL were intraperitoneally injected into op/op mice 
and RANKL-deficient mice, respectively. Nevertheless, 
osteoclasts were observed only on the surface of  calcified 
bone, not in the surrounding soft tissues. These results 
also suggest that neither RANKL nor M-CSF expressed 
by osteoblasts is involved in the determination of  the 
correct site for osteoclast formation. Using immuno-
histochemistry, RANK and c-Fms double-positive cells 
as osteoclast precursors were detected along the bone 
surface in RANKL-deficient mice. RANK and c-Fms 
double-positive cells were always observed near osteo-
blasts, did not express Ki67, a marker of  cell prolifera-
tion, and possessed a relatively long life span. Therefore, 
RANK and c-Fms double-positive cells were named “cell 
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Figure 1  Regulation of osteoclast differentiation by osteoblasts through 
macrophage colony-stimulating factor, receptor activator of nuclear 
factor-κB ligand, and osteoprotegerin production. Osteoblasts express two 
cytokines essential for osteoclast differentiation, macrophage colony-stimulating 
factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). Os-
teoblasts constitutively express M-CSF. On the other hand, osteoblasts express 
RANKL as a membrane-associated form in response to bone resorption-stimu-
lating factors such as 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], parathyroid 
hormone (PTH), prostaglandin E2 (PGE2), and interleukin 11 (IL-11). Osteoclast 
precursors express c-Fms (M-CSF receptor) and RANK (RANKL receptor) and 
differentiate into osteoclasts in the presence of M-CSF and RANKL. Osteo-
blasts also produce osteoprotegerin (OPG), which inhibits osteoclastogenesis 
by blocking the RANKL-RANK interaction.
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cycle-arrested quiescent osteoclast progenitors (QOPs)” 
(Figure 2). QOPs were also isolated from bone marrow 
and peripheral blood[22]. Bone marrow-derived QOPs 
failed to express macrophage-associated markers such as 
F4/80 and CD11b. Bone marrow-derived QOPs showed 
no phagocytic activity and did not proliferate in response 
to M-CSF. They differentiated into osteoclasts, but not 
into dendritic cells. Therefore, it has been concluded that 
QOPs are committed osteoclast precursors[22]. 

ROLE OF IL-34 IN OSTEOCLASTOGENESIS
Recently, Lin et al[23] discovered IL-34 as a new ligand 
for c-Fms. The amino acid sequence of  IL-34 was quite 
different from that of  M-CSF, but IL-34 promoted mac-
rophage colony formation similar to M-CSF. Chihara 
et al[24] reported that M-CSF and IL-34 used different 
signaling to induce the expression of  several chemokines 
and suggested that they differentially regulated macro-
phage function. However, IL-34 as well as M-CSF, in 
combination with RANKL, induced osteoclast forma-
tion in mouse and human cell culture systems[25]. IL-34 
was specifically expressed in splenic tissues, predomi-
nantly in the red pulp region. Recently, Nakamichi et al[26] 
showed that RANK and c-Fms double-positive QOPs 
did not exist in bone, but existed in the spleen of  op/op 
mice (Figure 2). IL-34 was highly expressed in vascular 
endothelial cells in the spleen. Vascular endothelial cells 
in bone also expressed IL-34, but its expression level 
was much lower than that in the spleen, suggesting a 
role of  IL-34 in the splenic maintenance of  QOPs. In-
deed, removal of  the spleen (splenectomy) completely 
blocked M-CSF-induced osteoclast formation in op/op 
mice. Osteoclasts appeared in aged op/op mice with up-
regulation of  IL-34 expression in the spleen and bone. 
Splenectomy also blocked the age-associated appear-
ance of  osteoclasts[26]. These results suggest that IL-34 
plays a pivotal role in maintaining the splenic reservoir 
of  QOPs, which are transferred to bone in response to 
M-CSF administration in op/op mice (Figure 2). Recent-
ly, sphingosine-1-phosphate, a lipid mediator regulating 
immune cell trafficking, was shown to regulate the mi-
gration of  osteoclast precursors[22,27]. Osteoblasts appear 
to help homing of  QOPs to bone. Thus, osteoblasts 

determine the distribution of  QOPs, which decide the 
correct sites of  osteoclast formation. 

WNT5A-RECEPTOR TYROSINE KINASE-
LIKE ORPHAN RECEPTOR 2 SIGNALING 
AND OSTEOCLASTOGENESIS
Immunohistochemical analysis revealed that RANK 
expression in osteoclast precursors was much stronger 
than that in bone marrow and the spleen[21,28]. Recently, 
Maeda et al[29] reported that Wnt5a produced by osteo-
blasts promoted RANK expression in osteoclast precur-
sors (Figure 3).

Wnt binds to two distinct receptor complexes: a 
complex of  Frizzled and low density lipoprotein recep-
tor-related protein 5/6 (LRP5/6) and another complex 
of  Frizzled and receptor tyrosine kinase-like orphan 
receptors (Rors)[30]. The binding of  Wnts to these Wnt 
receptors activates two classes of  signaling pathways: a 
β-catenin-dependent (canonical) pathway and β-catenin-
independent (non-canonical) pathway. The importance 
of  the canonical pathway in bone metabolism has been 
emphasized by the identification of  a link between bone 
mass and mutations in the LRP5 gene. Loss-of-function 
mutations in LRP5 reduced the number of  osteoblasts 
and caused osteoporosis[31]. Glass et al[32] developed mice 
expressing a stabilized form of  β-catenin in osteoblasts 
(β-catenin mutant mice) and reported that β-catenin 
mutant mice developed severe osteopetrosis due to the 
up-regulation of  OPG expression. Thus, Wnt/β-catenin 
signaling is crucial in osteoblastogenesis and osteoclas-
togenesis. However, the role of  the non-canonical Wnt 
pathway in bone resorption remains largely unknown.

Maeda et al[29] showed that Wnt5a-receptor tyrosine 
kinase-like orphan receptor 2 (Ror2) signaling between 
osteoblasts and osteoclast precursors enhanced osteo-
clastogenesis. Ror2-deficient mice exhibited impaired 
osteoclastogenesis. A deficiency in Wnt5a, a ligand of  
Ror2, caused a similar defect in mice. Osteoblasts ex-
pressed Wnt5a, while osteoclast precursors expressed 
Ror2, a co-receptor of  Wnt5a. Wnt5a enhanced RANK 
expression in osteoclast precursors through co-receptor 
Ror2 signaling. RANK promoter-driven luciferase activi-
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Figure 2  In vivo dynamics of osteoclast precursors. Cells 
expressing both receptor activator of nuclear factor-κB (RANK) 
and c-Fms are cell cycle-arrested quiescent osteoclast pre-
cursors (QOPs) in vivo. QOPs are detected in hematopoietic 
organs such as the spleen and bone. macrophage colony-
stimulating factor (M-CSF) and/or interleukin 34 (IL-34) appear 
to be involved in the differentiation of hematopoietic progenitor 
cells into QOPs. Some QOPs circulate to find bone. Osteo-
blasts play a role in the homing of QOPs to bone. QOPs in 
bone differentiate into osteoclasts without cell cycle progression 
in response to M-CSF/IL-34 and RANK ligand.
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ty was upregulated by Wnt5a-Ror2 signaling via the c-Jun 
N-terminal kinase pathway (Figure 3). Wnt5a-induced 
recruitment of  c-Jun to Sp1 sites up-regulated RANK 
expression in osteoclast precursors[29].

As described above, QOPs detected on bone sur-
faces strongly express RANK. Wnt5a secreted by os-
teoblasts appears to be involved in the up-regulation 
of  RANK expression in QOPs through Ror2. The up-
regulation of  RANK by Wnt5a-Ror2 signals in osteo-
clast precursors must lower the threshold for RANKL-
induced osteoclastogenesis. Atkins et al[33] reported that 
human peripheral blood monocytes expressing high 
surface levels of  RANK were capable of  responding 
rapidly to RANKL stimulation. Under physiological 
conditions, the up-regulation of  RANK expression in 
osteoclast precursors must be an important requirement 
for RANKL-induced osteoclastogenesis.

IMMUNORECEPTOR TYROSINE-BASED 
ACTIVATION MOTIF SIGNALS AND 
SEMAPHORIN 3A
Koga et al[34] showed for the first time that osteoclasto-
genesis induced by RANKL also requires co-stimulatory 
receptor signaling through adaptors containing immu-
noreceptor tyrosine-based activation motifs (ITAMs), 
such as Fc receptor common γ (FcRγ) and DNAX-acti-
vating protein of  12 kDa (DAP12). RANK and ITAM 
signaling cooperated to induce NFATc1, the master 
transcription factor for osteoclastogenesis. FcRγ and 

DAP12 are adaptor molecules that associate with immu-
noglobulin-like receptors such as osteoclast-associated 
receptor (OSCAR) and triggering receptor expressed 
on myeloid cells 2 (TREM-2). OSCAR uses FcRγ, 
while TREM-2 associates with DAP12. Koga et al[34]  
showed that deficiencies in both FcRγ and DAP12 
caused osteopetrotic phenotypes in mice. Because this 
pathway is crucial for the robust induction of  NFATc1 
that leads to osteoclastogenesis, these signals are called 
co-stimulatory signals for RANK in osteoclastogenesis. 
Recently, Barrow et al[35] reported that OSCAR bound to 
a specific motif  of  collagen and stimulated osteoclasto-
genesis. These series of  experiments have established a 
new research area called “osteoimmunology”[36].

Recently, Hayashi et al[37] reported that semaphorin 
3A (Sema3A) produced by osteoblasts suppressed osteo-
clast differentiation (Figure 4). Sema3A, a secreted axon 
guidance molecule, is highly expressed by osteoblasts. 
Neurophilin-1 (Nrp1), the receptor of  Sema3A, is ex-
pressed by osteoclast precursors. Nrp1 usually forms 
a receptor complex with Plexin-A1 in bone marrow 
macrophages of  osteoclast precursors. Using Plexin-
A1-deficient mice, Takegahara et al[38] previously showed 
that Plexin-A1 interacted with TREM-2 and DAP12 to 
form the receptor complex for Sema6D, a transmem-
brane semaphorin. Sema6D stimulated osteoclast dif-
ferentiation through the receptor complex Pleixn-A1/
TREM-2/DAP12 in osteoclast precursors through 
ITAM signaling (Figure 4). These findings suggest that 
the Sema3A-Nrp1 axis inhibits osteoclast differentiation 
by sequestering Plexin-A1 from TREM-2 so as to sup-
press ITAM signaling. RANK-mediated signals rapidly 
down-regulated Nrp1 expression in osteoclast precur-
sors. In the absence of  Nrp1, Plexin-A1 easily forms 
the receptor complex for Sema6D or Sema6C. Thus, 
Sema3A produced by osteoblasts inhibits osteoclast dif-
ferentiation (Figure 4). Hayashi et al[37] also showed that 
Sema3A and Nrp1 binding stimulated osteoblast dif-
ferentiation through the canonical Wnt/β-catenin path-
way. Administration of  Sema3A to mice increased bone 
volume and expedited bone regeneration through the 
suppression of  bone resorption and enhancement of  
bone formation[37]. These results suggest that Sema3A is 
a new therapeutic agent in bone and joint diseases.

THERAPEUTIC TARGETS IN THE 
OSTEOBLAST-OSTEOCLAST 
INTERACTION
Secreted OPG acts as a decoy receptor of  RANKL to 
compete with RANK on the surface of  osteoclast lin-
eage cells. OPG is expressed in osteoblasts and inhibits 
both osteoclast formation and function. Therefore, bio-
logical agents such as an antibody against RANKL have 
been developed and successfully suppress bone loss. 
Denosumab, an anti-RANKL antibody, has achieved the 
most success in the treatment of  osteoporosis, tumor-
related bone disorders, and arthritis[39-41]. 
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Figure 3  Role of Wnt5a-receptor tyrosine kinase-like orphan receptor 2 
signaling in osteoclast precursors. Receptor activator of nuclear factor-κB 
(RANK) expression in osteoclast precursors is much stronger than that in bone 
marrow and the spleen. Osteoblasts express Wnt5a, while osteoclast precur-
sors express receptor tyrosine kinase-like orphan receptor 2 (Ror2), a co-
receptor of Wnt5a. Wnt5a produced by osteoblasts enhances RANK expression 
in osteoclast precursors through Ror2. Wnt5a up-regulates RANK expression 
through the recruitment of c-Jun to Sp1 sites of the RANK promoter. The up-
regulation of RANK expression in osteoclast precursors increases their sensitiv-
ity to RANK ligand. JNK: c-Jun N-terminal kinase.
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Expression levels of  Wnt5a and frizzled 5 are higher 
in the synovial tissue of  rheumatoid arthritis (RA) pa-
tients than in those of  osteoarthritis[42]. Wnt5a stimulated 
the production of  pro-inflammatory cytokines such as 
IL-6 and IL-8 in synoviocytes. Treatment of  RA patient-
derived synoviocytes with antibodies against frizzled 5, 
one of  the receptors for Wnt5a, diminished the produc-
tion of  RANKL[43]. These findings suggest that Wnt5a 
promotes pro-inflammatory cytokine production and 
enhances bone resorption through the production of  
RANKL in the pathogenesis of  RA. In addition, Ror2, 
another receptor for Wnt5a, is expressed in osteoclast 
progenitors and co-stimulated non-canonical Wnt signal-
ing[29]. Wnt5a enhanced osteoclast formation in mouse 
bone marrow macrophage cultures. Administration of  
glutathione-S-transferase-fused soluble Ror2 restored 
bone destruction caused by collagen-induced arthritis 
in mice[29]. These results suggest that Wnt5a is involved 
in bone destruction in chronic inflammatory diseases. 
Molecules involved in non-canonical Wnt signaling may 
be therapeutic targets for the treatment of  patients suf-
fering from RA and periodontitis.

The finding of  Sema3A has invented a new concept 
that osteoblasts themselves express a bifunctional factor 
that induces osteoblastogenesis and inhibits osteoclasto-
genesis. Sema3A may inhibit bone loss without affecting 
the coupling system between osteoblasts and osteoclasts. 
Takayanagi and his colleagues[37] have demonstrated that 
administration of  recombinant Sema3A increases bone 
volume and expedites bone regeneration in osteoporotic 
mice established by ovariectomy. Thus, Sema3A is a 
promising anabolic factor possessing an inhibitory activ-
ity on bone resorption. 

In conclusion, the discovery of  the RANKL-RANK 
interaction opened a new area in bone biology focusing 
on the molecular mechanisms of  osteoclast develop-
ment and function. This series of  experiments concern-
ing the RANKL-RANK interaction have established 
the concept that osteoblasts, through the expression of  
RANKL and M-CSF, tightly regulate the development 
of  osteoclasts. Recent in vivo studies also indicate other 
aspects of  osteoblasts in the regulation of  osteoclasto-

genesis. Osteoblasts are involved in the decision of  the 
place for osteoclast formation through taking care of  
osteoclast precursors. Osteoblasts produce some ligands 
for immunoglobulin-like receptors to induce ITAM-me-
diated co-stimulatory signals. Osteoblasts also produce 
Wnt5a, which stimulates RANK expression in osteoclast 
precursors though co-receptor Ror2 signaling. The up-
regulation of  RANK by Wnt5a-Ror2 signals in osteo-
clast precursors must enhance the sensitivity of  QOPs 
to RANKL. Osteoblasts also produce Sema3A, which 
inhibits ITAM signals in osteoclast precursors. These 
findings provide a new concept that osteoblasts play sev-
eral roles as an omnipotent conductor in osteoclastogen-
esis. In conformity with the new concept, we must come 
back to the osteoblast, which may be a promising target 
for therapeutic agents in the regulation of  bone resorp-
tion in the near future.
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