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Abstract
There is a critical need for improving the level of chemistry awareness in systems biology. The
data and information related to modulation of genes and proteins by small molecules continue to
accumulate at the same time as simulation tools in systems biology and whole body
physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area
at the interface between chemical biology and systems biology systems chemical biology, SCB
(Oprea et al., 2007).

The overarching goal of computational SCB is to develop tools for integrated chemical-
biological data acquisition, filtering and processing, by taking into account relevant information
related to interactions between proteins and small molecules, possible metabolic transformations
of small molecules, as well as associated information related to genes, networks, small molecules
and, where applicable, mutants and variants of those proteins. There is yet an unmet need to
develop an integrated in silico pharmacology / systems biology continuum that embeds drug-
target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology,
pharmacology and systems biology. Through the development of the SCB approach, scientists will
be able to start addressing, in an integrated simulation environment, questions that make the best
use of our ever-growing chemical and biological data repositories at the system-wide level. This
chapter reviews some of the major research concepts and describes key components that constitute
the emerging area of computational systems chemical biology.
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1. Introduction
Regarded as a departure from the “reductionist approach”, where investigators dedicate their
efforts to the study of a single gene/protein, systems biology (SB) is considered a
“comprehensive approach”. In SB, large networks describing the regulation of entire
genomes, metabolic/transporter or signal transduction pathways are analyzed in their totality
at different levels of biological organization (Voit et al., 2006). SB blends theory,
computational modeling, and high-throughput experimentation (Kell, 2006), and has already
led to advances in cell signaling (Blinov et al., 2006), developmental biology (Ochi and
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Westerfield, 2007), cell physiology (Brandman et al., 2005), and to the understanding of
metabolic networks (Covert et al., 2004). Recently, we coined the term systems chemical
biology, which integrates bioinformatic and cheminformatic databases and cheminformatic
tools with biological network simulations (Oprea et al., 2007). We argued that chemistry
awareness is required in order to achieve a systematic understanding of the way small
molecules affect biological systems. This concept had a positive impact in the chemistry
community, as reflected by the fourteen papers presented at the SCB symposium organized
at the American Chemical Society national meeting in Philadelphia1 one year later.

Other attempts of utilization of SB technologies include in silico polypharmacology
(Mestres et al., 2006,Paolini et al., 2006), and are deployed in industrial drug discovery
(Morphy and Rankovic, 2007,Loging et al., 2007). Furthermore, the chemical biology
agenda, as embodied by the NIH Roadmap Molecular Libraries Initiative (MLI) (Austin et
al., 2004), enables SCB by extending the study of chemical effects on biological targets
towards the entire array of macromolecules and macromolecular networks. These can be
further mapped using additional genomic and proteomic tools, in order to gain
comprehensive insight into, e.g., phenotypic screening. Via the MLI and its successor, the
Molecular Libraries Program (MLP), the effects of hundreds of thousands of small
molecules are being investigated on biological systems of varied complexity, from
individually screened targets to multiplex screens, phenotypic screens, and other cellular and
whole organism assays. Indeed, this unprecedented public effort creates new challenges for
advancing chemocentric approaches to systems biology, as increasing amounts of disparate
data are being deposited in publicly available databases (see Table 1). As of November 13,
2009, PubChem (PubChem, 2009) features 328,392 MLP-related Compounds, of which,
296070 are Ro5-compliant and 152,778 are “active”, all tested on 869-MLP related
(including 515 “confirmatory”) assays, from the high-throughput screening centers network.

This plethora of small molecule data, in addition to those present in other annotated
chemical libraries (e.g., WOMBAT) (see Table 2) has yet to reach the fields of
computational biology and systems biology. As cross-system data related to genes, proteins
and their modulation via diverse libraries of small molecules becomes available, an unmet
critical need – chemistry cognizance – is required in order to advance the development of a
systems biology, which we believe is vital to the understanding of human health. It is indeed
surprising that with the possible exception of in silico pharmacology (Mestres et al., 2006),
none of the computational biology approaches available to date offers any resolution from a
cheminformatics perspective. Cheminformatics, an independent research discipline
concerned with the application of information retrieval methods to chemical databases that
emerged just over a decade ago (Brown, 2005), has become an integral part in the drug
discovery decision-making system (Olsson and Oprea, 2001), and is today the main resource
for computer-based studies of chemistry-modulated biological systems (Willett, 2008). In
parallel to the evolution of molecular pharmacology into polypharmacology,
cheminformatics is increasingly applied to in silico profile small molecule bioactivities for
arrays of targets (Mestres et al., 2006,Paolini et al., 2006,Fliri et al., 2005), although it has
yet to be fully utilized in chemical biology, an emerging discipline that aims at modulating
all proteins via small molecules (Schreiber, 2005). Indeed, without chemistry cognizance,
one cannot port cheminformatics predictive tools (Olsson and Oprea, 2001), e.g., virtual
screening (Varnek and Tropsha, 2008), to systems biology.

1The symposium “Systems chemical biology: Integrating chemistry and biology for network models” was organized at the 236th ACS
National Meeting in Philadelphia, August 17-21, 2008; it was sponsored by CINF and co-sponsored by four other ACS divisions
(COMP, MEDI, HEALTH, and BIOT).
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The increasing availability of data related to genes, proteins and their modulation by small
molecules creates a critical need to develop systems chemical biology. There is an unmet
requirement to develop a cheminformatics interface, which we believe is vital to the future
of systems biology and that will enable the prediction of the effects of chemical structures in
the context of biological systems. Fig. 1 illustrates the complexity of this problem and our
vision for the contribution of in silico modeling of chemical structures towards modulation
of biological pathways

Computational systems chemical biology aims to create a computational infrastructure and a
platform to predict systemic effects (ultimately including clinical outcome) of an organic
compound entering the body via any of the standard routes of administration (oral/i.v./i.m.
etc). To achieve this goal, one should seek to build rigorous PD/PK models to predict such
observables as tissue partitioning, half-life, distribution and clearance, ligand-target
interaction and drug efficacy, while taking into account the relevant metabolites of a
chemical. In addition, one should seek to predict the specificity of compound interaction
with biological targets and simulate the outcome of drug-target interaction at the molecular,
cellular and organ level. The latter objective entails the development of network simulators
that explicitly take into account the chemical nature of the small molecules (or their
combinations) perturbing the network. This endeavor requires the integration of several
complimentary efforts in various fields contributing to the functional SCB workflow
incorporating the following tasks: 1) Develop PK/PD models to predict the potential of
exogenous small molecules to reach cellular components hosting specific pathways, estimate
their concentrations in vivo, and their relationship to specific, understood clinical outcomes;
2) Integrate available data on chemical-target interactions and develop target-specific
predictive models of chemical bioactivity using advanced cheminformatics approaches such
as Quantitative Structure Activity Modeling (QSAR). These models will enable to predict
plausible targets for exogenous compounds from their chemical structure as well as to
identify compounds in virtual chemical libraries that are predicted to interact with target
proteins and pathways; 3) Investigate, using kinetic network simulation technologies, how
small molecules perturb a particular pathway, or perhaps several networked pathways, and
predict how these perturbations result in (novel) clinical outcomes. Whereas the
comprehensive exploration of SCB requires the consideration of all of the above three major
components of the field we will limit our discussion here to the latter two areas. Several
recent reviews provide a lot of detailed information concerning PK/PD modeling [e.g.,
(Danhof et al., 2008,Schmidt et al., 2008)]; however, in this review we shall consider and
illustrate the elements of in silico (multi)target screening and systems biology simulations
contributing to the field of SCB.

2. Methods
2.1. SCB databases: availability, compilation, and curation

Research related to systems biology, chemical probe and drug discovery produces large
amounts of data in seemingly unrelated fields, such as molecular and cellular biology,
chemical biology, combinatorial and medicinal chemistry, genetics and toxicology. This
information needs to be organized, queried and structured to guide the scientific process, and
to transform data into information and knowledge. Three major components of this process
have been identified and discussed elsewhere (Oprea and Tropsha, 2006):

• Chemical and bioactivity information: combines chemical structures with
experimental or calculated chemical and physical properties. This type of
information relates to the storage of chemical structures and associated molecular
data in machine readable format. Key to storing chemical structures is the atomic
connectivity, expressed in connection tables that store two-and/or three-
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dimensional atomic coordinates. Bioactivity information should capture activity
data – primarily activity type and value – with unique indexes identifying the
chemical compound, the biological target, cell or organism, with the experimental
protocol and bibliographic references. Additional bioactivity fields include
experimental observations and errors, images (e.g., Schild plots (de Jong et al.,
2005)), as well as keywords such as ‘partial’, ‘inverse’, ‘competitive’, ‘agonist’,
‘antagonist’, and ‘inhibitor’.

• Target and protocol information: biological target and experimental protocol data.
This type of information relates to the storage of target and gene information, as
well as associated bioassay data in machine readable format. Many bioinformatics
databases are freely available on the internet. Proper unique identifiers (the
equivalent of chemical names), such as those from NCIB/Entrez or Swiss-Prot
enable the end-user to navigate across these databases using uniform resource
locators (URL) hyperlinks. Extended target names and functions, as well as
information related to their classification and species, will be stored. For example,
using functional criteria, a target may be an enzyme (Enzyme Codebook E.C.
numbers are stored), a G-protein coupled receptor (GPCR), a nuclear hormone
receptor (NHR), an ion-channel, a transporter, or perhaps ‘other’ (unspecified)
protein, as well as nucleic acid (DNA or RNA). The use of a controlled vocabulary
should enable data capture and curation of protocol information via pre-defined
keywords, which stores information related to specific/non-specific (radio)ligands,
substrates, etc.

• Reference information: bibliographic information for all units in the database.
References contain bibliographic information, such as authors or inventors, title,
source (e.g., journal name or patent), as well as other pertinent information
(volume, page numbers, patent number etc.). Using unique identifiers, e.g.,
PubMed or digital object identifiers (DOIs) entries can be hyperlinked to the
appropriate abstract or full-text publication via MEDLINE or other databases.
Publisher-provided or MeSH (Medline subject headings) keywords can provide
further content to the target and protocol fields. In-house reports, as well as internet
references should also be indexed, as they provide valuable content.

Computer-based systems for information capture, storage and retrieval are of critical
importance in understanding and mining the systems chemical biology interface. Such
information is pertinent to target discovery, to understanding disease models, as well as to
the study of bioactive chemotypes, promiscuous scaffolds and privileged structures.
Although the principles for designing the ideal (or desired) SCB databases have been
defined as discussed above and primary data is available to a large extent the comprehensive
SCB databases are yet to be established creating a formidable challenge to the field of SCB.
The integration process itself requires hierarchical classification schemes, since the
knowledge related to chemical libraries, biological target families and biological pathways
needs to be mined simultaneously. A variety of chemical, e.g., SciFinder (, 2009d) or
medicinal chemistry related databases, e.g., MDDR (MDDR.SYMYX technologies, 2009)
or drug-related databases such as PDR (MDDR.SYMYX technologies, 2009) are available.
However, these for-fee databases do not capture critical biological endpoints in numerical
form, i.e., there is no searchable field to identify, in a quantitative manner, what is the target-
or property- related activity of a particular chemical. This information is important if one
considers that (a) not all chemicals indexed in chemical databases are active – some are
merely patent claims with no factual basis; and that (b) not all chemicals disclosed as active
are equally potent for the target of choice.
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To curate SCB data at the appropriate quality level for, e.g., the purpose of understanding
PK/PD models at the molecular levels, it is more appropriate to develop and curate large
bioactivity databases. Indeed, all biological research produces large amounts of data that
need to be organized, queried and reduced to scientific information and knowledge. Thus,
management of biological data involves acquisition, modeling, storage, integration, analysis
and interpretation of diverse data types. For the purpose of this discussion, biological
activity refers to experimentally measured data for a set of chemical compounds on a given
biological target (as well as cell, organ, and organism), using predefined experimental
protocols. After curation and standardization, these measured values together with related
information can be indexed in a bioactivity database. In the largest context, databases need
to handle data in a structured and organized way. Consequently, the key task when
designing an effective bioactivity database is to properly structure the information. Fig. 2
provides an example of the data curation and organization workflow that can be used to
design integrated SCB databases.

This model, depicted in Fig. 2, has a two-level structural design [Olah and Oprea 2006]. The
internal level corresponds to the database itself, while the external level provides cross-
referencing support (stored identifiers) for accessing external records from other databases.
This database model provides a set of unique and stable identifiers for linking to external
levels of other databases. Those databases will perceive this one as external; hence the
interconnection through external levels is bidirectional.

The creation of specialized SCB databases represents a challenge to be addressed in the near
future. Nevertheless, it is of value to discuss at this point several examples of existing
databases that would contribute to the desired comprehensive SCB databases.

2.1.1. Complex bioactivity databases—To illustrate the complexity and challenges
associated with the task of creating chemical biological databases, we could refer to our past
experience that includes two databases, namely WOMBAT and WOMBAT-PK (Olah et al.,
2007). WOMBAT 2009.1 contains 295,435 entries (242,485 unique SMILES), representing
1,966 unique targets, captured from 14,367 papers published in medicinal chemistry journals
between 1975 and 2008. Approximately 61% of these papers are from the ACS journal, J.
Med. Chem.; another 30.3% of the papers are from the Elsevier journal, Bioorg. Med.
Chem. Lett. Each bioactive molecule has indexed target and bioassay protocol information,
with links to the original publication as well as computed chemical descriptors. To date,
according to scholar.google.com, WOMBAT has been used as a reference database in over
30 publications related to chemogenomics and medicinal chemistry. WOMBAT-PK 2009
contains 1230 entries (1230 unique SMILES), totaling over 13,000 clinical PK
measurements. WOMBAT-PK 2009 drugs are indexed from multiple literature sources
(Brunton et al., 2005,, 2009c); FDA Approved Drug Products (, 2009a); peer-reviewed
literature, etc.); 1085 drugs and 36 active metabolites have drug target annotations on 618
targets; an additional 231 drugs are annotated for antitargets (Vaz and Klabunde, 2008).
Several physico-chemical property measurements (e.g., water solubility at neutral pH,
LogD7.4; octanol-water distribution coefficient, LogP; pKa; water solubility) are also
included.

WOMBAT and WOMBAT-PK (Olah et al., 2007) present examples of databases that we
regard as complex. Generally speaking, we distinguish two types of complex databases:
those that include collections of many cases when a large number of molecules were tested
against a single target and those that contain data on a series of compounds tested
concurrently in multiple assays. The first type is typically represented by the activity (e.g.,
Wombat) or “property” datasets (e.g., Wombat-PK, or solubility or toxicity daatabases)
when the property is naturally measured across many molecules. Arguably the largest single
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collection of such toxicity datasets is DSSTox (http://www.epa.gov/nheerl/dsstox/
About.html),which includes data such as (i) tumor target site incidence and TD50 potencies
for 1354 chemical substances tested in rats and mouse, 80 chemical substances tested in
hamsters, 5 chemicals tested in dogs, and 27 chemical substances tested in non-human
primates; data reviewed and compiled from literature and NTP studies; (ii) EPAFHM: EPA
Fathead Minnow Aquatic Toxicity Database includes Acute toxicities of 617 chemicals
tested in common assay, with mode-of-action assessment and confirmatory measures. In
addition a large collection of single target property datasets is available from http://
www.cheminformatics.org/datasets/.

The databases of the second type are rapidly accumulating. The NIH’s Molecular Libraries
Roadmap Initiative (Austin et al., 2004) laid out a strategy plan to house information on the
biological activities of small molecules (in PubChem (PubChem, 2009)) and transform them
into chemical probes to perturb specific biological pathways. Currently, PubChem contains
more than 25.5 million unique structures for Compound database (of which over 18.3
million are Ro5-compliant) derived from over 60.7 million records in the PubChem
Substance database, with links to bioassay description, literature, references, and assay data
for each entry. BioAssay Database provides searchable descriptions of nearly 1918
bioassays, including descriptions of the conditions and readouts specific to a screening
protocol. It integrated the vast array of resources, including the 60 Human Tumor Cell lines
data from Molecular Targets databases of DTP/NCI and 1478 MLPCN (Molecular Libraries
Probe Production Centers Network) related assays. It is especially useful when chemical
information is needed for specific targets, cell lines or diseases. It should be pointed out that
the Substance database sourced data information from a multitude of major databases, e.g.
Binding Database, ChemBank, NCI/DTP, KEGG, SMID and ZINC. The Binding Database
is a public database of measured binding affinities for biomolecules, containing
experimental data of 21143 binders to 244 biological targets (Chen et al., 2001). ChemBank
is a suite of informatics tools and databases created by the Broad Institute, aimed at
promoting the development of chemical genetics (Strausberg and Schreiber, 2003). The
Developmental Therapeutics Program (DTP) of the NCI has collected 127,000 compounds
in both 2D and 3D formats that are freely available. They were generally screened for
evidence of the ability to inhibit the growth of 60 human tumor cell lines over the past forty
years. KEGG (Kyoto Encyclopedia of Genes and Genomes)2 is an informatics resource for
biological systems (Kanehisa et al., 2006). It includes four constituent databases, categorized
as building blocks in the genomic space (KEGG GENES, 1,720,795 genes), the chemical
space (KEGG LIGAND, 14,238 compounds), wiring diagrams of interaction networks and
reaction networks (KEGG PATHWAY, 42,314 pathways) and KEGG BRITE, 5,642
hierarchical classifications. The Small Molecule Interaction Database (SMID)(Snyder et al.,
2006) is a database of protein domain-small molecule interactions by using structural data
from the Protein Data Bank (PDB). SMID is essentially a “listing” of all small molecules
(5117 records) that have been shown to bind to any given conserved protein domain (3508
records), including total 274917 interactions.

As part of the NIMH Psychoactive Drug Screening Program, PDSP Ki Database (http://
pdsp.med.unc.edu/indexR.html) contains 47,458 Ki values, embracing 749 types of
receptors and 6935 test ligands. The majority of the receptors are GPCRs (549 types), along
with various enzymes, ion channel and transporters, thus the largest database of its kind in
the public domain. As the common observations in GPCRs-ligands interactions, small
molecules can bind to multiple set of GPCRs with high affinities. The online data mining

2KEGG (http://www.genome.jp/kegg/) has the following entry points: PATHWAY, the KEGG pathway maps for biological
processes; BRITE, the KEGG functional hierarchies of biological systems; GENES: the KEGG gene catalogs and ortholog relations in
complete genomes; and LIGAND, the KEGG chemical compounds, drugs, glycans, and reactions.
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tools make it easy to gather the binding profile of ligands and construct the two-dimensional
matrix of GPCRs and ligands. An interactive search in iPHACE (Integrative Navigation in
Pharmacological Space;http://cgl.imim.es/iphace/ ), an interactive query system that
combines PDSP with the IUPHAR database (http://www.iuphar-db.org/index.jsp), retrieves
25 activities for Ketanserin, a strong binder of 5HT2A receptor: Ki values are available for
11 other 5HT receptors, 5 alpha-adrenoceptors, 4 dopamine receptors, the histamine H1
receptor, the dopamine active transporter and the serotonin-gated ion channel (Garcia-Serna
et al., 2010).

In order to be capable to build mathematical models for this complex interaction matrix of
multiple targets and ligands, a sophisticated algorithm like multiple objective optimization,
is indispensable. In summary, this large data warehouse makes possible the mapping of the
multidimensional space of GPCRs receptorome and will potentially assist the rational design
of these ‘magic shotgun’ ligands. Another GPCR-Ligand Database (GLIDA) is a unique
database tailored for GPCR-related chemical genomic research (Okuno et al., 2006). To
date, 3738 entries of GPCRs are searchable together with 649 ligand entries and 1989
GPCR-ligand pair entries.

Finally, there are interesting examples of chemogenomics databases that capture the effects
of chemicals on gene expression. CEBS Microarray Database, available from the National
Center for Toxicogenomics at NIEHS (http://www.niehs.nih.gov/cebs-df/incebs.cfm),
provides an integrated solution for searching, analyzing and interpreting data from several
microarray platforms. This is the largest publicly available collection of toxicogenomic data
for diverse chemicals including data on toxicogenomic profiles for over 100 chemicals
provided by Johnson & Johnson.

2.1.2 Pathway-specific databases—Biologically relevant pathways are increasingly
available via initiatives such as KEGG, which provides a “complete computer representation
of the cell, the organism and the biosphere which will enable computational prediction of
higher-level complexity of cellular processes and organism behaviors from genomic and
molecular information”(, 2009b). KEGG, and other online systems, e.g., BioCyc3,
BioCarta4 and Reactome (www.reactome.org), summarize vast arrays of data, integrating
metabolic, transporter and signal transduction pathways across a variety of organisms,
including humans. These clickable objects lead to additional information related to reactions
and pathways, to gene and protein data, e.g., Protein Data Bank (Berman et al., 2000) for
proteins; or to structure names, chemical structures, and other online chemical information,
e.g. PubChem (PubChem, 2009) and ChemSpider (ChemSpider, 2009) for small molecules,
respectively. These network representations of static objects lack dynamic integration. Such
dynamic aspects can be incorporated by including temporal components, e.g., kinetics such
as the Michaelis-Menten constant (KM), dissociation rates (KD) for substrates, or
stoichiometric information. Network simulators, based on ordinary differential equations
(ODEs) or stochastic methods, are required to make assumptions regarding enzyme/
transporter concentrations and reaction velocity, diffusion rates for the appropriate
endogenous ligand, as well as the stoichiometry with respect to various partners involved in
any given step of the pathway. Fig. 3 illustrates a simplified representation of the glyoxylate
pathway extracted from KEGG the chemical structures, added for clarity, as well as other
object information, are one click away. With BioXyce (see below), such metabolic pathways

3BioCyc includes MetaCyc, a database of nonredundant, experimentally elucidated metabolic pathways, that can be queried by
Pathway, Reaction and Compound, http://metacyc.org/, and the Open Chemical Database, a collection of associated metabolites,
http://biocyc.org/open-compounds.shtml
4Biocarta is a commercially-sponsored “open source” forum that integrates emerging proteomic information from the scientific
community and depicts inter-molecular interactions via dynamic graphical models.http://www.biocarta.com/genes/index.asp
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can be simulated by ensuring that appropriate stoichiometry and metabolic changes (i.e.,
mass flux) are accounted for.

2.1.3. Bioavailability databases—The work of Amidon and colleagues (Amidon et al.,
1995) was incorporated into the FDA guidance for waiver of in vivo bioavailability and
bioequivalence testing of immediate-release solid dosage forms for drugs that are
Biopharmaceutics Classification System Class 1 (high-solubility, high-permeability), when
such drug products also exhibit rapid dissolution. This guidance reflects the interest of the
FDA in decreasing the regulatory burden utilizing a science-led approach. In 2005, Wu and
Benet (Wu and Benet, 2005) proposed that a Biopharmaceutics Drug Disposition
Classification System (BDDCS) could provide a very simple surrogate for permeability:
BDDCS Classes 1 and 3 are highly soluble, whereas Classes 2 and 4 are poorly soluble;
Classes 1 and 2 are extensively metabolized, whereas Classes 3 and 4 are poorly
metabolized. Wu and Benet suggested that if the major route of elimination for a drug was
metabolism, then the drug exhibited high permeability, while if the major route of
elimination was renal and biliary excretion of unchanged drug, then that drug should be
classified as low permeability. They further proposed that BDDCS may result in a
classification system that yields predictability of in vivo disposition for all four classes, as
well as increasing the number of Class 1 drugs eligible for bioequivalence study waivers.
This was followed by a recent recommendation (Benet et al., 2008) that regulatory agencies
add the extent of drug metabolism (i.e., ≥ 90% metabolized) as a method to identify Class 1
drugs suitable for a waiver of in vivo studies of bioequivalence: Following a single oral dose
to humans, administered at the highest dose strength, mass balance of the Phase 1 oxidative
and Phase 2 conjugative drug metabolites in the urine and feces, measured either as
unlabeled, radioactive labeled or nonradioactive labeled substances, account for ≥90% of the
drug dosed. This is the strictest definition for a waiver based on metabolism. For an orally
administered drug to be ≥90% metabolized by Phase 1 oxidative and Phase 2 conjugative
processes, it is obvious that the drug must be absorbed (Benet et al., 2008). Even 70%
metabolism may be appropriate, as suggested in earlier work (Wu and Benet, 2005).

Benet and Oprea curated metabolism and solubility information (required for BDDCS
classification) for 818 approved drugs and 24 active metabolites, for which human data was
available. As metabolites can be excreted in the bile, it is not possible to only use urinary
excretion values to validate the extent of metabolism. Given the values for percent excreted
unchanged (%Urine) obtained from our curated dataset, many BDDCS Class 1 and Class 2
drugs are shown to be ≥70% metabolized: For 277 Class 1 drugs, the median %Urine ± S.D.
was 2.0±9.8%, and for 197 Class 2 drugs the values were 1.0±8.8%. By contrast, for 219
Class 3 drugs, the median %Urine ± S.D. was 65±23.6%, and for 39 Class 4 drugs the
values were 50±27.1%. Simple cheminformatic analyses based on ClogP (the calculated
octanol water partition coefficient) and PSA (the polar surface area) indicate that it is
possible to separate BDDCS class 2 and class 3 drugs (in red and green, Fig 4, left) using
ClogP, and BDDCS classes 1 and 3 using PSA (in blue and green, Fig 4, right) using PSA.
These results indicate that filtering tools based on descriptors computed from chemical
structures (such as ClogP and PSA) may be used as probability schemes during PK/PD
simulations, in particular for Classes 2 and 3, respectively. Although Class 1 drugs do not
appear to be influenced by these properties, it should be recalled that efflux transporters do
not play a significant effect for these drugs. Furthermore, it is anticipated that building
successful in silico models for BDDCS classes 2 and 3 will assist in giving higher (Class 2)
or lower (Class 3) priority for virtual screening for transporters.

2.1.4. Databases linking drugs, targets, and clinical outcomes(DTCO)—Current
small molecule drugs appear to interact with a rather small number of molecular drug
targets: The earlier estimate of 483 targets (Drews and Ryser, 1997) was recently revised to

Oprea et al. Page 8

Methods Mol Biol. Author manuscript; available in PMC 2013 January 17.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



218 (Imming et al., 2006) and 324 (Overington et al., 2006) targets, respectively. The fact
that the number of therapeutic targets is under 500 is surprising considering the size of the
“druggable genome” (Hopkins and Groom, 2002), or indeed the size of the human genome
itself. More optimistic estimates can be found in, e.g., DrugBank (Wishart et al., 2006), an
on-line resource that indexes 1,678 (of which 1,486 human) targets for 1,485 approved
drugs. By definition (Imming et al., 2006), a drug target is a macro-molecular structure (as
defined by molecular mass) that undergoes a specific interaction with therapeutics (i.e.,
chemicals that are administered to treat or diagnose a disease); the target-drug interaction
then results in clinical effect(s). This definition is not always amenable to precision, as
exemplified by the following: Hydroxyapatite, a mineral targeted by bisphosphonate drugs
such as etidronic acid; Fe and Al, two metals targeted by chelating agents such as
deferoxamine; and ammonia, for which intravenous infusion of the amino-acid, arginine,
can be used as detoxifying agent.

Earlier attempts at DTCO informatics placed emphasis on the intended drug targets (Imming
et al., 2006), i.e., those targets claimed as being associated with relevant clinical effects by
their respective discovery teams, or in the approved drug labels. These targets were
considered as “validated” if clinical outcomes correlated in knock-out models, or in vivo
observations correlated with in vitro results, e.g., receptor (ant)agonism or enzyme inhibition
assays. This minimalistic approach is valid when considering each drug in the context of the
intended therapy area. Another study (Overington et al., 2006) focused on FDA-approved
drugs and their targets by including “non-intended” drug targets for, e.g., ritonavir, an HIV-
protease inhibitor given in combination with other such inhibitors like lopinavir because it
slows down their metabolism via cytochrome P450 3A4 (CYP3A4); ritonavir slows
lopinavir breakdown via CYP3A4 inhibition. Thus, CYP3A4 is de facto an intended drug
target for ritonavir in the formulation by Abbott, Kaletra™.

Drug side-effects extracted from public sources and processed via the COSTART (Concepts
of the Coding Symbols for Thesaurus of Adverse Reaction Terms) ontology were recently
used to evaluate the probability of two drugs sharing the same drug target given their side
effects similarity, for a dataset of 502 drugs and 4,857 known drug-target relations
(Campillos et al., 2008). Of the 13 unexpected drug-target pairs described here8, 11 were
found to bind to class A aminergic GPCRs, and one to the serotonin re-uptake pump
(5HTT). By examining a dataset (CEREP Bioprint™) of 2211 drugs experimentally tested
on 188 targets from the same experimental source (CEREP), those 5 class A GPCR amines
and 5HTT, i.e., the targets disclosed for 12 of these 13 “unexpected” findings (Campillos et
al., 2008), were found to bind, on average, to over 440 (out of 2211) small molecules. This
renders these drug targets “promiscuous” (i.e., ~20% probability of binding to small
molecule drugs). Furthermore, we were unable to confirm five of these 13 activities in the
same CEREP dataset (2007 release). While we do not question the methodology of this
paper (Campillos et al., 2008), we illustrate that such discrepancies make it difficult to
collect reliable information (e.g., CEREP Bioprint™ may have incorrect data). Key to the
DTCO triplet annotation is our own prior work, i.e., the annotation of small molecules to
targets as indexed in WOMBAT and WOMBAT-PK, two manually curated databases (Olah
et al., 2007). For example, WOMBAT-PK annotates 1136 drugs on 618 unique drug targets
and antitargets. These elements are pre-requisite for successful DTCO triplet identification.
Using WOMBAT-PK, we found 3053 potential DTCO triplets; however, these are not
unique. Furthermore, “antitarget” refers to a drug target that is associated with a significant
side-effect (e.g., anti-cancer drugs are substrates for the ATP-binding cassette transporters,
such as ABCB1, which cause multidrug resistance in tumor cells).

2.2. Computational approaches for modeling SCB data to predict drug-target
associations—As discussed in the introductory part of this chapter, the SCB investigation
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of a compound entails answering three major questions: whether it would interact with
specific target(s); whether it will reach the target(s); and what pathway (network) will be
perturbed when a compound will interact with its targets. Cheminformatics approaches are
most useful in addressing the first issue; thus, models that link structure and activity of
molecules against specific targets using historic data can be used prospectively to make
plausible assertions about specific target activity for new molecules.

There are several computational approaches that can be employed to predict novel
compound-target associations. Structure based virtual screening has become a fundamental
part of modern computer aided drug design (Brooijmans and Kuntz, 2003,Kitchen et al.,
2004). It entails docking and scoring libraries of small molecules to find compounds that fit
into the binding site and bind tightly to the receptor. Since the first seminal publication by
the Kuntz group in 1982 (Kuntz et al., 1982), this approach has been used successfully in
numerous studies resulting in many cases (such as HIV protease inhibitors) in the design of
approved drugs (Wlodawer and Vondrasek, 1998). Numerous algorithms and programs have
been introduced (for reviews see (Wong and McCammon, 2003,Taylor et al., 2002,Muegge,
2003)). The examples of widely used docking programs include Dock(Cho et al., 1998),
FlexE, and Gold (Jones et al., 1997).

Traditional docking protocols and scoring functions rely on explicitly defined three
dimensional coordinates and standard definitions of atom types of both receptors and
ligands. Albeit reasonably accurate in some cases, structure-based virtual screening
approaches are for the most part computationally inefficient, which limits the size of
computationally tractable screening compound collections. Furthermore, recent extensive
studies into the comparative accuracy of multiple available scoring functions suggest that
accurate prediction of binding orientations and affinities of receptor ligands remains a
formidable challenge (e.g., (Warren et al., 2006)). Finally, the number of targets with well-
characterized crystal structure that could be used for virtual screening is relatively small
compared to the number of targets and assays that have been annotated in ligand databases
discussed in section 3.1. Structure based approaches could and should be considered as a
means of predicting chemical-target associations in the context of SCB when feasible.
However, since this book focuses on cheminformatics methodologies in general we will not
discuss the structure based virtual screening methods in detail here; good description of
these approaches could be found in the literature includes several publications cited above.

Cheminformatics approaches based on concepts of chemical similarity, pharmacophore or
QSAR modeling are finding growing applications as virtual screening tools. Many of these
approaches have been reviewed in a recent specialized monograph (Varnek and Tropsha,
2008). Typical methods rely on representing compounds by multiple chemical descriptors
and using chemical similarity algorithms of varying complexity to assert the association
between a molecule and a target based on the argument that this molecule is similar to
known ligands of the target. Perhaps one of the most interesting approaches in this category
was developed recently in B. Shoichet group at UCSF. The method called the Similarity
Ensemble Approach (SEA) (Keiser et al., 2007) is based on the estimation of the relative
similarity between a new compound and precomputed clusters of molecules with known
pharmacology. The association with a target is predicted based on the pharmacological
annotation of a cluster with the highest similarity to a query molecule. This approach was
recent reported to lead to several significant experimentally confirmed predictions (Keiser et
al., 2009).

The similarity or pharmacophore based approaches predict target-ligand association at the
qualitative level. However, in SCB application, it is desirable to predict the ligand-target
binding affinity quantitatively because the predicted binding affinity value could be used in
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SCB network simulations discussed below. Such predictions can be afforded by QSAR
models that we shall consider in more detail here.

Modern QSAR modeling is a very complex and complicated field requiring deep
understanding and thorough practicing to develop robust models. Multiple types of chemical
descriptors and numerous statistical model development approaches can be found in
specialized literature and so need not be discussed in this chapter. Instead, we shall present
several unifying concepts that underlie practically any QSAR methodology especially in the
context of prospective use of models for virtual screening. Modern QSAR approaches are
characterized by the use of multiple descriptors of chemical structure combined with the
application of both linear and non-linear optimization approaches, and a strong emphasis on
rigorous model validation to afford robust and predictive models. The most important recent
developments in the field concur with a substantial increase in the size of experimental
datasets available for the analysis and an increased application of QSAR models as virtual
screening tools to discover biologically active molecules in chemical databases and/or
virtual chemical libraries (Tropsha, 2005,Tropsha and Golbraikh, 2007). The latter focus
differs substantially from the traditional emphasis on developing so called explanatory
QSAR models characterized by high statistical significance but only as applied to training
sets of molecules with known chemical structure and biological activity.

Our experience suggests that QSAR is a highly experimental area of statistical data
modeling where it is impossible to decide a priori as to which particular QSAR modeling
method will prove most successful. To achieve QSAR models of the highest internal, and
most importantly, external accuracy, the combi-QSAR approach explores all possible binary
combinations of various descriptor types and optimization methods along with external
model validation. Each combination of descriptor sets and optimization techniques is likely
to capture certain unique aspects of the structure-activity relationship. Since our ultimate
goal is to use the resulting models as reliable activity (property) predictors, application of
different combinations of modeling techniques and descriptor sets will increase our chances
for success.

In our critical publications (Golbraikh and Tropsha, 2002,Tropsha et al., 2003) we have
recommended a set of statistical criteria which must be satisfied by a predictive model. For
continuous QSAR, criteria that we will follow in developing activity/property predictors are
as follows: (i) correlation coefficient R between the predicted and observed activities; (ii)
coefficients of determination (Sachs, 1984) (predicted versus observed activities R2

0, and
observed versus predicted activities R’2

0 for regressions through the origin); (iii) slopes k
and k’ of regression lines through the origin. We consider a QSAR model predictive, if the
following conditions are satisfied:

(i)

(ii)

(iii)

(iv)
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where q2 is the cross-validated correlation coefficient calculated for the training set, but all
other criteria are calculated for the test set.

Fig. 5 summarizes our overall QSAR modeling strategy that is focused on delivering
validated predictive models and ultimately, identification of computational hits predicted to
interact with specific targets. We start by randomly selecting a fraction of compounds
(typically, 10-15%) as an external evaluation set. The remaining compounds are then
divided rationally (using the Sphere Exclusion protocol developed in our laboratory
(Golbraikh et al., 2003) into multiple training and test sets that are used for model
development and validation, respectively using criteria discussed in more detail below. We
employ multiple QSAR techniques based on combinatorial exploration of all possible pairs
of descriptor sets coupled with various statistical data mining techniques and select models
characterized by high accuracy in predicting both training and test sets data. Validated
models are finally tested using the evaluation set. The critical step of the external validation
is the use of applicability domains. If external validation demonstrates significant predictive
power of the models, we use all such models for virtual screening of available chemical
databases (e.g., ZINC (Irwin and Shoichet, 2005) to identify putative active compounds and
seek collaborators who could validate such hits experimentally. The entire approach is
described in detail in several recent papers and reviews (e.g., (Tropsha and Golbraikh,
2007)).

We shall note that our approach shifts the emphasis on ensuring good (best) statistics for the
model that fits known experimental data towards generating testable hypothesis about
purported bioactive compounds. Thus, the output of the modeling has exactly same format
as the input, i.e., chemical structures and (predicted) activities making model interpretation
and utilization completely seamless for medicinal chemists. Note that since we cannot
generally guarantee that every prediction resulting from our modeling effort will be
validated experimentally we cannot include the experimental validation step as a mandatory
part of the workflow on Fig. 2, which is why we used the dotted line for this component.
Nevertheless, in several recent collaborative studies we have reported on the discovery of
experimentally confirmed compounds active against a variety of enzymes and receptors
(e.g., (Medina-Franco et al., 2005,Oloff et al., 2005,Shen et al., 2004,Zhang et al.,
2007,Tang et al., 2009)). These recent successes indicate the power of the predictive QSAR
modeling workflow (Fig. 5) as a reliable tool for accurate quantitative prediction of novel
ligand-target associations and respective binding constants. Thus, the progressive modeling
of all available target bioactivity databases such as those considered in section 3.1 and
summarized in our review (Oprea and Tropsha, 2006), which is ongoing in our laboratory,
will result in a library of models covering the currently characterized SCB space. Profiling
any new compound against this library would result in assigning this compound to one (or
may be few) of the target classes (provided that the compound is within the applicability
domains of respective target specific models) and predicting its binding affinity that can be
used as a parameter in network simulation models considered in the next section.

2.3.Biological network simulations
Due to a growing interest of research community to system wide understanding and
simulations of biological effects, several approaches have been reported (Hoops et al.,
2006,Loew and Schaff, 2001,Slepoy et al., 2008,Salis et al., 2006,Tomita et al., 1999,Yang
et al., 2005,May and Schiek, 2009). To illustrate the capability of a network simulator, we
shall briefly describe BioXyce (Schiek and May, 2006,May and Schiek, 2009), a biological
network modeling tool based on Xyce, a massively parallel circuit modeling tool used
within Sandia and DOE (Deparment of Energy). At cellular level, biological networks are
modeled as electrical circuits where signals are produced, propagated and sensed. BioXyce
uses the following equivalents: chemical mass as charge, mass flux as electric current,
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concentration as voltage, stoichiometric conservation as Kirchhoff’s voltage law, and mass
conservation as Kirchhoff’s current law. With BioXyce, one can simulate large networks
consisting of entire cells, homogeneous cell cultures, or heterogenous interacting host-
pathogen systems in order to understand the dynamics and stability of such systems. To
address the challenge of ambiguous rate parameters, BioXyce input parameters, collected
from literature, are optimized using empirical data and the DAKOTA (Design Analysis Kit
for Optimization and Terascale Applications) UQ (uncertainty quantification) tooklit (http://
www.cs.sandia.gov/DAKOTA/index.html). We can further augment the BioXyce/DAKOTA
framework using computational reachability techniques to set initial value conditions and
provide tighter parameter bounds [Oishi and May, 2007]. This results in bionetwork models
able to replicate behaviors consistent with known experimental data, as shown in Fig. 6
[Oishi and May, 2007]. BioXyce can be used to model and simulate relevant metabolic,
transporter and signal transduction pathways. Such simulations gain in accuracy by
incorporating reaction kinetics data such as KM and Kcat, (the turnover rate), both available
from the Comprehensive Enzyme Information System BRENDA (Chang et al.,
2009,Schomburg et al., 2004)]. As an illustration let us consider an SCB analysis of a
latency-dependent pathway of Mycobacterium tuberculosis (Mtb).

2.3.1 Data collection—M. tuberculosis is able to persist in host tissues in a non-
replicating persistent (NRP), or latent state. This presents a challenge in the treatment of TB
(tuberculosis). Latent TB can reactivate in ~10% of individuals with normal immune
systems, higher for those with compromised immune systems. To develop an effective
treatment against latent TB, we need to understand how potential anti-microbial agents may
affect NRP Mtb. We investigated the hypoxic model and virulence associated pathways. In
the hypoxic model of NRP, the tubercle bacilli can circumvent the shortage of oxygen by
developing alternative energy generation mechanisms. It has been observed that during
anaerobic growth conditions isocitrate lyase (ICL) increases five-fold (Wayne and
Sohaskey, 2001). ICL is the first enzyme in the glyoxylate bypass pathway (see also Fig. 6).
Since a comparable increase in the second enzyme in the pathway, malate synthase, is not
observed, it was hypothesized that ICL increase with the subsequent glyoxylate increase
may serve to replenish NAD by way of the glyoxylate-to-glycine (GtG) shunt (Wayne and
Sohaskey, 2001,Wayne and Lin, 1982). Thus, the interruption of reactions involved in the
GtG shunt may prove a means to combat latent Mtb. To demonstrate the feasibility of using
SCB to analyze virulence-relevant pathways, we investigate malate synthase inhibition:
Although ICL is the critical enzyme, ICL inhibitors are not readily identifiable.

2.3.2 Pathway Simulation—Using data from BioCyc and averaged reaction rates derived
from BRENDA we simulated the glyoxylate cycle pathway (Fig. 6), involved in the GtG
shunt. Reaction rates for each enzyme in the pathway are estimated based on values from the
BRENDA database. Stoichiometric relations and enzyme rates were used to construct a
biological netlist using BioXyce. BioXyce enables simulations and analyses of whole cell
and multicellular systems; this is likely to facilitate the exploration of potential side effects
of pathway specific perturbations on non-target pathways. However, introducing perturbing
ligands on any systems biology network can only be simulated by a break in the circuit that
does not take into account any specifics related to the small molecule per se. This lack of
chemistry awareness can be addressed by integrating cheminformatics tools, as outlined
below.

2.3.3 SCB-related virtual screening studies—To enable chemistry cognizance in the
Mtb pathway simulations, we applied virtual screening to support SCB simulations in the
identification of small molecule bioactives – a process that could be used to support PK/PD
and FS. We took advantage of the presence of 3D structures (from X-ray crystallography)
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for two of the enzymes in the Mtb glyoxylate shunt, namely malate synthase and ICL. The
substrate binding site in each enzymes was evaluated using GRID (Goodford, 1985): ICL
has a very polar binding site that accommodates 3 carboxylate moieties (data not shown);
this makes it unsuitable for small molecule drugs, in particular since drugs require a certain
degree of permeability (i.e., non-polar) in order to pass not only the intestinal and/or cellular
membranes, but also the Mtb walls as well. Malate synthase (PDB entry 2GQ3) has an
active site that accommodates the substrate (glyoxylate) and the co-factor, acetyl-CoA, in
order to release malate and CoA (Fig. 7 a, b). This site, already subjected to investigation
(Mdluli and Spigelman, 2006), features a relatively small number of hydrophobic
interactions (Fig. 7, c), which suggests that classical inhibitor design methods may prove
unsuccessful. Howeer, we detected another cavity in the vicinity of the catalytic site (Fig. 7,
d, magenta), which may function as an allosteric site and is more hydrophobic. Preliminary
docking studies (with FRED from OpenEye) correctly placed malate in the malate synthase
binding site using 2GQ3 and keeping Mg2+ and four water molecules. Itaconate, a weak
inhibitor, appears to bind like malate, and did not dock in the allosteric site. Although we did
not find potent ligands targeting the allosteric site, we expect this to become an interesting
site for small molecules. No allosteric modulators of malate synthase have been described to
date.

2.3.4 SCB Simulation Results—Simulations in the absence of inhibitory molecules
were conducted and compared to simulations in the presence of inhibitory molecules
identified through the use of cheminformatics analysis tools, as previously described. The
current simulation uses a simple competitive inhibition model, where the KM is increased by
[I]/Ki ([I] is the concentration of the inhibitor and Ki is the inhibition constant). The
simulation framework allows the incorporation of more complex inhibition models.
Incorporation of inhibitors of malate synthase should directly affect the accumulation of
glyoxylate and malate. Fig. 8 shows these two metabolites in the presence and absence of
various inhibitors. Simulation results for the noninhibited system verified that as glyoxylate
accumulates, malate is produced and eventually consumed to produce downstream
metabolites. In the presence of various inhibitory molecules (Table 3), glyoxylate
accumulates at a much higher level than the uninhibited state; malate is consumed and not
produced at the same rate as in the uninhibited pathway. Combining the simulation platform
with the SCB analysis, we observed differences between weak and strong inhibitors and
differences in dosage for 1 mM vs.10mM of Bromopyruvate, thus demonstrating the
possibility for an SCB-based approach to probing virulence-relevant pathways.

2.3.5. Integration of network simulations and cheminformatics—Future
development of SCB will inevitably include the integration of biological network
simulations and results of cheminformatics investigation of ligand-target databases. We shall
illustrate possible scenarios using studies planned by our group of co-authors around the
BioXyce simulator (Fig. 9). Stoichiometric equations can be derived using publicly available
databases (Table 1). Reaction rates for each protein in the pathway can be compared, and
curated, using BRENDA and SABIORK for enzymes, and other on-line resources for signal
transduction pathways (e.g., from IUPHAR). The stoichiometric relation and enzyme rates
can be used to generate biological netlists (native format input for Xyce, the simulation
engine of BioXyce). Simulations in the absence of inhibitory molecules can be conducted
and verified for internal consistency. A challenge in the development of accurate biological
network simulations for SCB is the availability of accurate rate data. To this end, we can
couple the BioXyce netlist pathways to the DAKOTA optimization environment to find the
optimal rate constants that increase the phenotypic accuracy of our simulation. Based on an
error analysis, DAKOTA generates new values for the rate constants, which are
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incorporated into a parameter file included in the BioXyce netlist. Iterative cycles of the
BioXyce-DAKOTA coupling help determine unknown rates for pathways of interest.

Whenever perturbing ligand data becomes available, we can compare validated models with
simulations in the presence of perturbing molecules. For example, in the case of enzyme
inhibitors, we can assume simple competitive inhibition models, where the KM will increase
by [I]/Ki (where [I] is the concentration of the inhibitor and Ki is the inhibition constant).
For receptor-based models, we can assume the equivalent of the Michaelis-Menten kinetics
and models, such as the Ariens, Simonis & de Groot (Ariens et al., 1955) models for
intrinsic activity. If needed, we can further take into effect transducer kinetics (such as G-
protein coupling), as well as the observed pharmacological effects (agonism, antagonism,
inverse agonism).

In addition, we could think of several extensions of the BioXyce/DAKOTA model. Given
empirical data, BioXyce/DAKOTA models are developed in the absence of small molecule
perturbants, and the production of metabolites is typically compared to known (observed)
outcomes. Models can then be extended to incorporate knowledge related to small
molecules, and their influence on the model system. We can then simulate the system
assuming the presence of ligands that interfere with key enzymes in the pathway. It is
anticipated that interference with critical enzyme(s) will reduce the concentration of key
metabolites compared to normal. At this stage, the model will have the ability to incorporate
output from cheminformatics.

3. Conclusions
The development of an integrated systems chemical biology interface could dramatically
alter our way of thinking about complex biological networks and unlock the true potential of
in silico chemical biology studies of cellular and organism functions. By gaining access to
the ‘known’ as well as the ‘predictive’ aspects of small molecule–biological network
interactions, scientists could be guided to understand, for example, the potential therapeutic
impact of a small-molecule blockade of a critical step in a pathway. This may ultimately
allow an understanding of why some but not all proteins within a pathway make good drug
targets, and it may encourage an early focus on those targets that are the most likely to be
clinically useful. We anticipate that the emerging field of computational systems chemical
biology will see many important advances and discoveries in near future.
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Fig. 1.
Contribution of Cheminformatics to Systems Biology. It is expected that computational
modeling will afford the prediction of chemical structures active against individual (or
multiple) targets while PBPK approaches will afford the estimates of compound distribution
and accumulation in target tissues. Yet the knowledge of pathways will enable to predict the
effect of chemicals on the entire system in the context of steering the disease-affected
network towards a normal state
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Fig. 2.
Data curation workflow.
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Fig. 3.
Glyoxylate pathway (schematic)
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Fig. 4.
Property distribution for BDDCS classes 0-4 for ClogP (left) and PSA (right).
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Fig. 5.
Flowchart of predictive QSAR modeling workflow implementing combinatorial QSAR
modeling and extensive model validation procedures.
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Fig. 6.
BioXyce simulation of tryptophan biosynthesis; comparison to experimental data.
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Fig. 7.
The Malate Synthase Cavities.
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Fig. 8.
Glyoxylate and Malate in the presence and absence of inhibitory molecules
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Fig. 9.
BioXyce workflow: Information from various data sources is integrated and transferred to
Xyce input for biological network simulation. The Mtb glyoxylate pathway is depicted
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Table 1

Public Resources for SCB (*):

Genes

Entrez Gene:

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

Proteins

SwissProt: http://expasy.org/sprot/

Structures of biological macromolecules

PDB: http://www.rcsb.org/pdb/home/home.do

Structural Genomics Consortium:

http://www.sgc.utoronto.ca/

Pathways

KEGG: http://www.genome.jp/kegg/

MetaCyc: http://metacyc.org/

BioCarta: http://www.biocarta.com/genes/index.asp

Reactome: http://www.reactome.org/

Receptors

GPCRdb: http://www.gpcr.org/7tm/

NHRs: http://www.nursa.org/

Ion Channels: http://www.iuphar-db.org/iupharic/

index.html

Biochemical pathway reaction kinetics:

SABIORK: http://sabio.villa-bosch.de/SABIORK/

BRENDA: http://www.brenda.uni-koeln.de/

Annotated Biological Models:

http://www.ebi.ac.uk/biomodels/

Other MLI Initiatives:

NIH Roadmap: http://nihroadmap.nih.gov/

*
() Non-exhaustive list.
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Table 2

Sources of Bioactivity Data for SCB (*):

Small Molecules:

PubChem: http://pubchem.ncbi.nlm.nih.gov/

NCI : http://dtp.nci.nih.gov/docs/dtp_search.html

WOMBAT: http://sunsetmolecular.com/

BINDING DB: http://www.bindingdb.org/bind/index.jsp

Metabolites: http://www.hmdb.ca/

Drugs and Clinical Candidates:

NLM’s Dailymed: http://dailymed.nlm.nih.gov/

DrugBank: http://drugbank.ca/

FDA:

http://www.accessdata.fda.gov/scripts/cder/drugsatfda/

WHO Essential Drugs:

http://www.who.int/medicines/publications/essentialmedicines/en/

Toxicology Data:

NIEHS: http://ntp.niehs.nih.gov/ntpweb/

EPA DSS-Tox:

http://www.epa.gov/ncct/dsstox/index.html

*
() Non-exhaustive list
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Table 3

Malate Synthase Ligands.

Compound Structure
Ki

(μM)

Bromopyruv
ate

(inhibitor)
60

Phosphoeno
l-pyruvate

(weak
inhibitor)

200

Oxalate
(weak

inhibitor)
400

Glycolate
(very weak
inhibitor)

900
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