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Introduction
Heart disease is both common and deadly. Cardiovascular disease is a global epidemic as it
is the number one cause of death worldwide and it is estimated that one in three adults in the
United States have cardiovascular disease1. While a number of pioneering initiatives have
transformed our treatment of cardiovascular disease, new therapies are required to further
address the growing incidence of this deadly disease. Intense interest has focused on
regenerative medicine as an emerging strategy for chronic diseases such as cardiovascular
disease.

A number of human tissues including skin2, gut, liver3–6 and skeletal muscle3, 7 have a
tremendous regenerative capacity. For example, skeletal muscle is able to completely restore
its cellular architecture and function following an injury that destroys more than 80% of the
muscle7, 8. This regenerative response lacks a fibroproliferative response (i.e. formation of
scar) and is associated with restoration of the vasculature, myofibers and extracellular
matrix. Unlike skeletal muscle, the regenerative capacity of the adult heart is more limited.

Recent studies suggest that the adult heart is capable of cellular turnover and limited
regeneration following injury although the networks that govern this process are ill defined.
The use of genetic mouse models and molecular biological techniques are unveiling cell
populations, pathways and extracellular cues that may direct cardiac regeneration and
provide a platform for further investigation. The goal of this review is to examine the
endogenous regenerative capacity of the adult heart and highlight new experimental
regenerative therapies aimed at restoring myocardial architecture and function.

Endogenous repair and regeneration of the metazoan heart
Previous studies have demonstrated that metazoans such as the newt and zebrafish are
capable of cardiac regeneration in response to a significant injury9–12. This myocardial
regenerative response is complex and occurs over a two month period. In response to a
myocardial injury (amputation of 30–40% of the ventricular chamber), there is formation of
a fibrin clot, subsequent dedifferentiation of cardiomyocytes and recruitment of specialized
cell populations including epicardial and ventricular myocardial cell populations11–13.
Importantly, the regenerative response observed in both the newt and zebrafish lacks the
formation of scar13. These results support the notion that there is an inverse relationship
between scar formation and myocardial regeneration (Figure 1). Moreover, the studies in
these regenerative models have defined the role of Notch14, 15, fibroblast growth
factor215, 16 and retinoic acid17 signaling pathways in myocardial regeneration. Examination
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of these regenerative organisms as well as mammalian tissues that have an enhanced
regenerative capacity are instructive regarding the mechanisms and pathways that govern
this repair process in response to injury.

Endogenous repair and regeneration of mammalian tissues
Every tissue is a product of stem cells and evidence suggests that essentially every adult
mammalian tissue harbors a stem cell or progenitor cell population that participates in the
maintenance or regeneration of their host tissue(s) in response to injury (Table 1)30. For
example, the satellite cell population occupies a niche (satellite cells are sandwiched
between the basal lamina and the plasmalemma in close association with the myofiber) and
resides within adult skeletal muscle7, 31. The satellite cells represent the myogenic stem cell
population that is quiescent in unperturbed muscle. In response to a severe injury, the
quiescent satellite cells become activated (reenter the cell cycle), they proliferate and in
response to cellular and extracellular cues they differentiate to form centronucleated
myofibers (the hallmark of regenerated skeletal myofibers) thus restoring the cellular
architecture of the injured tissue31. Importantly, the satellite cells are capable of self-renewal
and reestablish their quiescent pool of myogenic stem cells32, 33. These studies emphasize
the dynamic capacity of adult mammalian skeletal muscle to completely regenerate in
response to injury. All striated muscle does not respond in a similar fashion to an injury.

Endogenous repair and regeneration of the mammalian heart
The neonatal mammalian heart is associated with considerable growth and cellular
proliferation of myocardiocytes (Figure 2A). During the first week of life, the neonatal heart
continues to proliferate and grow as measured by proliferative assays (BrdU pulse assays34

and tritiated thymidine assays35). This postnatal stage is also marked by increased apoptosis
in the developing heart, which suggests an active modeling or sculpting process that is
associated with growth and modulation by hemodynamic challenges, hormonal surges and
changes occurring in extracardiac tissues. Following this postnatal period, the mammalian
heart is associated with modest cellular turnover.

Recent studies utilizing labeling strategies and genetic mouse models suggest that the adult
heart is capable of cellular replacement of cardiomyocytes, repair and limited regeneration
in response to an ischemic or nonischemic injury. One study utilized radiocarbon cellular
dating to examine cardiomyocyte turnover. Bergmann and colleagues relied upon the
integration of carbon-14 into DNA as a measure of cardiomyocyte turnover in the adult
heart36. The DNA of all organisms incorporated high concentrations of carbon-14 that were
generated from nuclear bomb testing (which persisted until the 1963 Limited Nuclear Test
Ban Treaty) into DNA as a measure of cardiomyocyte cellular kinetics or turnover in the
adult heart. Therefore, the nuclear bomb testing and subsequent increase in atmospheric
carbon-14 provided a pulse such that postnatal cellular turnover could be estimated by
comparing the age of the DNA of the cardiomyocytes to the patients’ chronological age.
This cellular dating technique and mathematical modeling support the notion that the adult
heart is capable of cellular turnover (representing cardiomyocyte renewal) at the rate of 1%
per year (although this rate decreased to 0.4% at age 75)36. The results further suggested that
approximately 45% of the cardiomyocytes were generated or renewed in the 50 year old
heart since birth. These studies provide an innovative strategy to examine the cardiomyocyte
turnover of the adult human heart. Issues of polyploidy and origin of the cardiomyocytes
remain active issues of investigation and further studies using similar strategies to examine
the cardiomyocyte turnover in distinct populations are warranted. Nevertheless, these results
provide further support that the adult human heart has ongoing turnover of the
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cardiomyocytes and support the notion that strategies to enhance this turnover may prevent
the genesis of heart failure36.

A second study utilized genetic mouse models to evaluate cellular kinetics in the
unperturbed and post-injured heart. Utilizing an inducible cardiomyocyte-specific transgenic
fate mapping (MerCreMer) strategy in the mouse, cardiomyocytes were irreversibly labeled
with the GFP reporter following the pulse of tamoxifen37. In contrast, cardiac stem cells or
progenitors were not genetically labeled in response to tamoxifen as they did not express the
cardiomyocyte specific marker (myosin heavy chain 6)37. This fate mapping strategy
allowed for the measure of cardiomyocyte turnover in the adult mouse heart. While little to
no cardiomyocyte turnover was observed in the unperturbed heart, the genetic labeling
strategy following myocardial injury was associated with approximately 15% of unlabeled
cardiomyocytes within the border region of injured myocardium suggesting that these
cardiomyocytes had undergone cellular turnover (presumably from a progenitor or stem cell
population). These genetic studies are further supported by BrdU incorporation studies,
which further support the hypothesis that cardiomyocyte renewal occurs following
myocardial injury (Figure 2B)38.

Collectively, these and other studies support the notion that the postnatal mammalian heart
is associated with cardiomyocyte renewal (cellular turnover) which is increased following
injury. These results further suggest that the amplification of resident or recruited stem cells
or progenitors and regenerative myocardial pathways could increase endogenous myocardial
repair of the acutely injured heart.

Resident cardiac stem and progenitor cell populations
Previous studies have identified the contribution of stem cell and progenitor cell populations
that are resident in the postnatal heart that are capable of generating cardiomyocytes (Figure
339–50). While a hierarchy of stem and progenitor cell populations have not been defined, a
clonal c-kit+ cell population has been shown to generate all lineages of the heart, increases
in number following myocardial injury, undergoes self renewal and generates
cardiomyocytes in a number of mammalian models (rat, mouse, dog, etc.) including
human42, 43. These c-kit expressing cells have been shown to occupy a niche within the
adult heart. Using immunohistochemical studies, subpopulations of c-kit expressing cells
have been identified and include those that express c-kit only versus those that coexpress c-
kit with cardiac transcription factors and sarcomeric proteins. This continuum of c-kit
expressing cells (with and without cardiac specific markers) has been proposed to represent
a progression of cell stages from cardiac progenitor cell (CPC) to the committed progenitor
cell to the immature cardiomyocyte43.

An additional cell population includes the cardiac side population (SP) cells that express
multidrug resistance proteins (members of the ATP-binding cassette transporter family) and
are isolated by FACS analysis based on their ability to efflux Hoechst 33342 dye46–48.
These SP cells populate the heart early during development, are resident in the adult heart
and increase in number within three days of cardiac injury. Using immunohistochemical
techniques, these cardiac SP cells, following injury, have been shown to coexpress
cardiomyocyte specific sarcomeric proteins (suggesting that the cardiac SP cells are capable
of differentiating to fetal cardiomyocytes)47. Previous studies have defined that members of
the ABC transporter family serve not only to mark the SP cells but also play an important
cytoprotective role for these stem/progenitor cells in response to oxidative stress46.
Transcriptome analysis has been useful in defining the molecular signature of cardiac SP
cells that are isolated from the adult heart compared to other embryonic and somatic stem
cell populations46, 47.
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Studies have shown that Sca1+ cells can differentiate into cardiomyocytes44. Resident
Sca1+/CD31− cardiac progenitors have been reported to increase in number and more than
double fourteen days following acute myocardial infarction. These cardiac Sca1+/CD31−

cells were capable of differentiation to endothelial and cardiomyocyte lineages in vitro and
in vivo following the delivery into the post-injured heart. The transdifferentiation of the
engrafted Sca1+/CD31−cells were accompanied by a significant improvement of left
ventricular systolic function compared to controls45.

Further studies are warranted using a genetic labeling strategy (Cre-loxP technology) to fate
map the c-kit, SP and Sca-1 expressing cell population during development, aging and
following perturbations (including coronary artery ligation and pressure overload) using
conventional and inducible genetic technologies. These fate mapping techniques will
enhance our understanding of the degree to which these cell populations contribute to the
renewal of cardiomyocytes and the vasculature following injury or aging.

Further cell populations that may represent a cardiac stem cell pool, progenitors (such as
transit amplifying cells) or other stem cell populations that are capable of generating
cardiomyocytes include EPC (endothelial progenitors)51, 52, MSC (mesenchymal stem
cells)53, 54, CD34+ cells55, 56, myofibroblasts and others that have been reported to
participate in cardiomyocyte renewal and regeneration. Studies support the notion that these
cell populations form cardiomyocytes under permissive conditions.

Cardiac progenitors that are obtained from adult hearts (following an endomyocardial
biopsy) coalesce in culture to form a three dimensional spherical structure termed a
cardiosphere. Two independent laboratories have generated cardiospheres from both mouse
and human biopsy specimens of adult hearts. These cardiospheres (up to 150 microns in
size) have a tremendous proliferative capacity (generating more than one million
cardiospheres in a one month period) and are capable of forming differentiated, contractile
cardiomyocytes39, 40. Cardiospheres also represent a heterogeneous cell population with a
cortex of c-kit expressing, proliferating cells and a mantle of differentiated
cardiomyocytes39,40. Delivery of cardiospheres as a graft following myocardial injury
resulted in improved cardiac function in rodent models and limited clinical trials are in
progress to evaluate these autologous cell preparations in patients. It is unclear whether
cardiospheres are derivatives of a resident cardiac stem/progenitor cell population or
whether they represent reprogramming of cardiomyocytes (dedifferentiation) or progenitor
cell populations. Moreover, a recent study demonstrated that transplantation of cardiosphere
derived cells into the post-injured pig model further induced repair and regeneration by
endogenous cardiac progenitors41.

A complementary cell population to the resident cardiac stem/progenitor cell population is
the reprogrammed, induced pluripotent stem cell population (iPSC). These iPSCs have been
derived from somatic cells such as skin fibroblasts through forced expression of gene
expression (Oct3/4, Sox2, c-Myc and Klf4 vs. OCT4, SOX2, NANOG and LIN28) in mouse
(2006)57, 58 and human (2008)59, 60. These iPSCs have been shown to mirror embryonic
stem cells with regards to their proliferative capacity, pluripotency, chimera formation,
teratoma formation and capacity to differentiate to all germ layer derivatives. Recent studies
suggest that reprogramming is possible without genetic alteration of the somatic cell. In
addition to these initiatives, the use of chemical genetics and exposure of cells to small
molecules may be sufficient to direct somatic or stem cells to a cardiovascular fate61, 62. An
alternative reprogramming strategy is to decipher the pathways or factors that will directly
convert somatic cells (fibroblasts) to cardiomyocytes, therefore, bypassing the pluripotent
state. An example of this strategy included the forced expression of three developmental
transcription factors (Tbx5, Gata4 and Mef2c) to reprogram murine cardiac fibroblasts into
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cardiomyocyte-like cells that were similar to neonatal cardiomyocytes63. These results
provide a proof of concept and rationale for future studies aimed at reprogramming human
cardiac fibroblasts to a cardiomyocyte fate. This field is rapidly evolving and will provide a
platform for disease specific stem cell populations, personalized stem cell populations and
provide cell sources for pharmacogenetics studies.

Cell therapy for chronic diseases
The delivery of allogeneic or autologous cellular populations for the treatment of chronic
diseases has been utilized for more than forty years. Since the world’s first and second
successful bone marrow transplantation in 1968 at the University of Minnesota, this cellular
therapy has been used to treat an array of diseases including solid tumors,
mucopolysacharidoses, and hematological cancers64. In total more than 50,000 patients
worldwide receive this life-saving therapy each year65. Bone marrow transplantation
provides the rationale and the feasibility for using cellular therapeutic strategies for the
treatment of terminal diseases such as cardiovascular disease and heart failure.

Cell therapy for cardiovascular disease
While bone marrow transplantation has been used successfully to treat terminal diseases,
certain challenges need to be overcome in order to translate the use of cellular therapy to
other tissues such as the heart. For example, the heart is unlike the bone marrow in that it
has a highly structured cellular architecture that is electrically and functionally synchronized
to produce more than 2 billion heart beats in a lifetime. Further, the working load of the
heart is constantly changing and responding to local and systemic stimuli. These
hemodynamic challenges provide both permissive and repressive challenges for the use of
cell therapy. Third, the geometrical shape of the heart adapts in response to injury, scar,
hemodynamic demand, etc. as remodeling promotes the change from a prolate ellipse to a
spherical shape due to hemodynamic load. Collectively, these challenges are balanced with
increasing prevalence of cardiovascular disease, decreasing donors for heart transplantation
(the only definitive therapy for advanced heart failure) and a need to develop new therapies
for this patient population.

As bone marrow transplantation has been an effective therapy for human diseases, studies
were undertaken to examine the capacity of unfractionated bone marrow mononuclear cells
(which contain hematopoietic stem cells) to transdifferentiate to a cardiomyocyte fate and
improve the functional performance of the injured heart. Using genetic labeling strategies,
studies demonstrated significant, limited or an absence of labeled bone marrow
mononunucleated cells or stem cells to generate cardiomyocytes following the delivery into
the post-injured rodent heart66–69. Despite differences in reported differentiation potential,
several studies demonstrated a functional improvement in response to the delivery of
hematopoietic stem cells, unfractionated bone marrow mononuclear cells and other cell
populations (including fibroblasts, skeletal myoblasts, mesenchymal stem cells, endothelial
progenitors, cord stem cells, etc.)69–71. Despite the variability of the results, the preclinical
studies demonstrating positive results fueled the design of clinical trials using cell therapy
for the treatment of cardiovascular disease (Table 2).

A majority of the cardiovascular clinical cell therapy trials have utilized autologous cell
populations (the exception is the use of allogeneic mesenchymal stem cells), which obviate
immunological mediated cellular rejection. The mode of delivery has been primarily
intracoronary but has also included intramyocardial and endocardial routes. The initial
nonrandomized studies delivered bone marrow mononuclear cells (intracoronary) seven
days following percutaneous revascularization and observed no significant change in
function (LVEF) compared to controls three months following delivery. TOPCARE-AMI
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was the first randomized clinical trial and compared two different cell populations
(peripheral derived stem cells vs. mononucleated bone marrow cells) five days following
PCI. At one year following cell delivery there was a decrease in infarct area in both patient
populations72. The first randomized, controlled study (n = 60) was the BOOST trial which
delivered bone marrow mononucleated cells (intracoronary) five days following PCI. While
LVEF improved in those patients that received cell therapy at six months compared to
controls77, no significant differences were noted at eighteen months post-delivery73. In
contrast, the larger REPAIR-AMI trial (n = 204) was a randomized, controlled study and
reported a modest improvement of LVEF as measured by ventriculography in patients
receiving intracoronary delivery of bone marrow mononucleated cells five days post-PCI at
four and twelve months follow-up compared to controls74, 78. The ASTAMI trial (n = 100)
also examined the efficacy of intracoronary delivery of autologous bone marrow
mononuclear cells six days post-PCI and observed no significant change in LVEF between
experimental and control groups at three years post-intervention75.

Potential side effects associated with cell therapy include: arrythmyogenesis, tumorigenesis,
myocardial injury, infection (bacterial or viral pathogens) or immunological responses. One
example of the side effects associated with the delivery of autologous human skeletal
myoblasts includes the genesis of ventricular arrhythmias and the need for implantable
cardioverter defibrillator support76, 79. Another possible side effect is the immunological
response to the cardiac delivery of allogeneic cell sources. While these complications are
possible, very few side effects have been observed in clinical trials performed in the US and
in Europe.

Collectively, these clinical trials support the conclusion that cell therapy for cardiovascular
disease is relatively safe; it may modulate remodeling and may have a modest improvement
in cardiac function (Table 2). Many of these clinical studies utilized ejection fraction as the
only endpoint for the efficacy of these cell transfer studies which may be insufficient. Other
primary or secondary endpoints for future studies may include exercise tolerance, infarct
size, five year survival rate or progression to heart failure (NYHA Stages I–IV).
Furthermore, future studies aimed at a mechanistic understanding of cell therapy for heart
disease will be important for the advancement of this field.

Paracrine hypothesis and myocardial regeneration
An increasing number of studies suggest that cell therapy may also be associated with a
bystander effect through the release of cytokines, antiapoptotic factors or growth factors
which may improve cardiac function. For example, studies suggest that transplanted cells
release paracrine factors that decrease program cell death (thereby limiting the remodeling
process), promote angiogenesis or enhance myocardial regeneration mediated by the
endogenous cardiac stem/progenitors that are resident in the adult heart80, 81. Alternatively,
small molecules or growth factors such as neuregulin1 may induce cell cycle reentry and
division of differentiated cardiomyocytes82. Increasing evidence supports the hypothesis that
paracrine factors or the delivery of small molecules may promote myocardial repair and
regeneration.

Gaps in knowledge and challenges for the future
To further examine these mechanistic questions and accelerate cell based therapies for
cardiovascular disease, the National Heart, Lung and Blood Institute funded the
Cardiovascular Cell Therapy Research Network (CCTRN) that includes investigators at five
institutions across the US83. This network and other ongoing trials will need to collaborate
with bench investigators to define the patient population that benefits from cell therapy (i.e.
ischemic vs. nonischemic dilated cardiomyopathy), the optimal cell population (autologous
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vs. allogeneic vs. EPCs, skeletal muscle satellite cells, bone marrow mononuclear cells,
CD34+ cells, MSCs, cardiospheres, etc.), mode of delivery (intracoronary, intravenous,
intramyocardial, etc.), cell preparation (cultured and possibly reprogrammed vs. freshly
isolated cells), numbers of cells delivered, site of delivery (infarct related artery, border
region of injured myocardium, distant ventricular delivery, atrium, etc.), mechanisms of
action of cell therapy (paracrine effect to limit apoptosis, promote neovascularization,
promote myocardial regeneration, limit fibroproliferative response) and the role of multiple
or serial interventions with cell delivery. These studies will further benefit from the design
of FDA approved cell labeling strategies that will allow for the detection of single cells
using imaging technologies. Moreover, cell therapy studies performed in combination with
patches or scaffolds and ventricular assist devices used as a bridge to heart transplantation
will allow histological analyses of the explanted heart at the time of transplant. These
technologies provide new mechanistic insight regarding the use of cellular therapy for
treatment of cardiac failure.

To complement these clinical trials, the National Heart, Lung and Blood Institute established
the NHLBI Progenitor Cell Biology Consortium, which is a collaborative network for the
exchange of reagents and acceleration of discoveries related to stem cell and progenitor cell
biology84. One of the goals of this consortium is to gain an understanding of the
mechanisms that direct stem and progenitor cells to a cardiac fate. Importantly, this network
will provide an infrastructure for the field and will address issues including but not limited
to:

• The definition of a hierarchy of somatic stem and progenitor cells that reside in the
adult heart.

• The definition of transcriptional networks, epigenetic networks and microRNA
networks that direct stem cells toward a cardiac fate.

• To provide protocols for stem/progenitor cellular characterization and
cardiomyocyte differentiation pathways.

• To establish nonviral strategies to reprogram somatic cells to cardiomyocytes or
iPSCs.

• To establish fate mapping strategies to define the contribution of selected stem/
progenitor cell populations to the cardiac lineage during development and
following myocardial injury.

• To compare specific cardiac and hematopoietic stem/progenitor cells using FACS,
transcriptional, microRNA, functional or epigenetic analyses.

Together, these translational and basic science networks of investigators facilitate
communication and collaborations. They further provide an infrastructure that supports
ongoing and future discoveries that are intended to lead to new therapies for heart disease.

In summary, the field of cardiac regeneration has exploded with interest and opportunities.
While significant advances have energized the field, further studies will be necessary to
provide additional mechanisms and insights into the possibility of identifying the key(s) that
will promote myocardial repair whether the strategy relies on the endogenous repair
program of the heart or the use of a cell delivery program. While neither the endogenous
repair program nor the cell therapy programs are ready for prime time, they will serve as a
platform that will launch the field forward. Collaboration and exchange of data through
professional networks should amplify and accelerate the science to move the field towards
effective therapies.
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Figure 1.
An emerging hypothesis is that the regeneration potential is linked to the fibroproliferative
response of the injured tissue. A) The development of scar following injury results in tissue
(cardiac) dysfunction. The ability of an injured heart to regenerate results in improvement of
cardiac function. B) Models suggest there is a balance between scar formation and
regeneration. These models support the notion that scar formation impairs regeneration and
a regenerating tissue lacks scar.
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Figure 2.
The neonatal and adult mammalian hearts are capable of cellular proliferation. A) Relative
cardiomyocyte proliferation from BrdU labeling and tritiated thymidine incorporation
studies of neonatal and adolescent mice support the notion that the heart’s proliferative
capacity decreases with age (see references #34 and #35). B) BrdU labeling studies
following injury reveal proliferation of murine cardiomyocytes in the border region of the
adult mouse heart. Arrowheads mark BrdU labeled cardiomyocyte nuclei, which are green
and are immunostained with α-actinin, which is red. Adapted from Naseem et al. Physiol
Genomics, 2007.38 Am Physiol Soc, used with permission.
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Figure 3.
The adult heart is capable of limited regeneration. A) Schematic highlighting the potential of
stem cells for self renewal and their capacity to generate cardiac progenitors or
cardiomyocytes. B) Schematic highlighting the possibility that extracardiac stem or
progenitors can be recruited from the bone marrow, the endothelial lineage, skeletal muscle
or other sources to further participate in myocardial regeneration and repair. C) Table
outlining several cardiac stem or progenitors that have been identified and their
characterization. E: embryonic expression; A: adult expression.
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