
A Freehand Ultrasound Elastography System with Tracking for
In-vivo Applications

Pezhman Foroughia,*, Hyun-Jae Kanga, Daniel A. Carnegieb, Mark G. van Vledderb, Michael
A. Chotib, Gregory D. Hagera, and Emad M. Boctorc

aDept. of Computer Science, Johns Hopkins University, Baltimore, MD
bDept. of Surgery & Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
cDept. of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD

Abstract
Ultrasound transducers are commonly tracked in modern ultrasound navigation/guidance systems.
In this paper, we demonstrate the advantages of incorporating tracking information into ultrasound
elastography for clinical applications. First, we address a common limitation of freehand
palpation: speckle decorrelation due to out-of-plane probe motion. We show that by automatically
selecting pairs of radio frequency (RF) frames with minimal lateral and out-of-plane motions
combined with a fast and robust displacement estimation technique greatly improves in-vivo
elastography results. We also use tracking information and image quality measure to fuse multiple
images with similar strain that are taken roughly from the same location to obtain a high quality
elastography image. Finally, we show that tracking information can be used to give the user partial
control over the rate of compression. Our methods are tested on tissue mimicking phantom and
experiments have been conducted on intra-operative data acquired during animal and human
experiments involving liver ablation. Our results suggest that in challenging clinical conditions,
our proposed method produces reliable strain images and eliminates the need for a manual search
through the ultrasound data in order to find RF pairs suitable for elastography.
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Introduction
Ultrasound elastography is enabled by applying a mechanical stimulus and estimating the
disturbance created by this stimulus. Stimulus can be static mechanical load (Ophir et al.,
1991), generated by external vibration (Parker et al., 1990), or through acoustic push signal
(Berco et al., 2004). Estimation can be achieved by either tracking displacement or
measuring the speed of propagating wave. A common flavor of this technology is quasi-
static elastography in which the elastography image is generated by comparing the pre- and
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post-compression images to form a displacement map. The displacement can be then
differentiated axially to find the strain map. When compression is applied to the tissue by
hand via the ultrasound transducer, the elastography is referred to as “freehand
elastography”. Many ultrasound systems are shipped with freehand elastography modules
already installed. Note that this differs from freehand ultrasound in which the transducer is
swept over the region of interest to create a volumetric (3D) image.

Physicians find elastography with freehand palpation natural as it resembles the centuries-
old practice of examination by hand palpation. Moreover, ultrasound elastography does not
necessarily require especial hardware or major alterations in the equipment and hence can be
an integral part of any ultrasound system from high-end cart-based to pocket size systems.

Despite these advantages, freehand elastography introduces several challenges that have
prevented the routine use of elastography in diagnoses and treatment of patients. This
technique is highly qualitative and user-dependent. The best result is achieved when the
examiner compresses and decompresses the tissue uniformly in the axial direction with the
speed that produces proper strain rate (Ophir et al., 1999; Hall et al., 2003). Small lateral or
out-of-plane motions can result in decorrelation which reduces signal-to-noise ratio (SNR)
(Hall et al., 2003; Chandrasekhar et al., 2006). However, it is difficult to induce pure axial
motion with freehand compression especially for slippery or oblique surfaces or for intra-
operative imaging where the access to the tissue may be limited. The wide-spread clinical
use of elastography could benefit from the development of elastography techniques that are
less influenced by factors such as expertise of the user. It would also enable the longitudinal
study of tumors where the strain images acquired during different time periods are
compared.

Mechanical attachments designed to control the motion of probe can reduce role of the user.
In (Hiltawsky et al., 2001), a mechanical compression applicator which applies uniform
axial motion via compression plates was developed. The mechanical applicator reduced the
amount of out-of-plane motion and consequently the dependency to the experience of the
examiner. A 50% reduction in out-of-plane motion was reported in (Kadour and Noble,
2009) using an assistive hand-held device. In (Rivaz and Rohling, 2007), a low-frequency
vibration was induced to the tissue while reaction forces were compensated. In a recent
work, robotic palpation was studied for laparoscopic elastography (Billings et al., 2012).
The main issues with mechanical solutions are that they require extra hardware, limit
elastography to specific applications, make the probe bulky, and reduce its maneuverability.

Sophisticated algorithms have been developed that extend the search for displacement to
lateral direction and tolerate certain amounts of decorrelation (Rivaz et al., 2008; Jiang and
Hall, 2009; Pellot-Barakat et al., 2004). These algorithms can only partially address the
problem by compensating for in-plane motions and enforcing smoothness constraints.
However, they remain vulnerable to out-of-plane and large in-plane motions.

Another approach is to define a quality metric in order to evaluate the performance of strain
images. Jiang et al. (2006) defined this metric as the multiplication of the Normalized Cross-
Correlation (NCC) of the motion compensated RF fields (i.e. motion tracking accuracy) and
the NCC of the motion compensated strain fields (i.e. consistency of strain images). This
quality metric may be provided to the user as a feedback or used to combine multiple strain
images. In (Jiang et al., 2007), they combined two strain images weighted by this metric to
form a composite image. They also determined the gap between RF frames chosen for
elastography by optimizing for this quality metric. Retrospectively processing the data,
Lubinski et al. (1999) optimized the SNR. Using phantom studies, they showed that
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weighted averaging of displacement improves SNR. The weights were then adaptively
selected for different frame step sizes.

Lindop et al. (2008) developed a framework in which the stream of strain images are
normalized for the displacement estimates with a nonlinear function to compensate for
uneven distribution of force and varying strain rates. The generated “pseudo-strain” images
were then averaged over time on a “per-pixel basis” which depends on the precision of
displacement estimation. The weights were also presented to the user as a feedback on the
quality.

Normally the gap between frame pairs in elastography is fixed, and it is assumed that poor
elastography results are detectable. Even when this gap is dynamically selected, the search
range remains vary small. The other limitation of these approaches is that the strain has to be
estimated prior to the calculation of the quality metric. With typical settings, the ultrasound
frame rate can reach well above 30 Hz. For consecutive frames, an e cient implementation of
these image-based metrics (probably with GPU acceleration) might accommodate this frame
rate. However, the task will be extremely difficult when the aim is to evaluate all plausible
combinations of frame pairs in a series of images.

It is common to localize the ultrasound transducer by attaching a position sensor to it. Some
of the main applications of tracked ultrasound include volume reconstruction and extended
field of view (Fenster et al., 2001), multi-modality registration (Gobbi et al., 1999; Foroughi
et al., 2008), spatial compounding (Rohling et al., 1998), and navigation/guidance (Banovac
et al., 2002; Sjolie et al., 2003). The growing interest in tracked ultrasound has led the
emergence of ultrasound systems from companies such as “Ultrasonix”, “GE”, and
“Siemens” which have electromagnetic (EM) sensors already embedded within their
transducers.

The aim of this paper is to show that by tracking the ultrasound transducer, the information
from the tracking device can be exploited to select pairs of RF frames for elastography
which produce images with high SNR, contrast-to-noise ratio (CNR), and consistency. The
frame selection happens before calculation of displacement and strain requiring negligible
computational power. The selected frame pairs contain minimal lateral and out-of-plane
motion and a predefined compression range with respect to each other. Based on tracking
information, the strain images taken roughly from the same location are fused to obtain a
high-quality elastography image. The method is validated using tissue mimicking phantom
as well as intra-operative experiments on a porcine subject and on human patient data.

Methods
The block diagram of our algorithm summarizing the major steps are shown in Figure 1. As
shown in this figure, the assumption is that a sequence of RF frames synchronized with
tracking information is available to our algorithm in a buffer. For each RF frame in this
buffer, a 6 DoF transformation is provided that determines the location of the RF frame at
the time of its formation. Given this input, the task is to construct a high-quality 2D strain
image.

The cross-section test chooses a subset of these frames that are roughly taken from the same
cross-section. The frame pair selection evaluates pairs of RF frames based on their tracking
information and predicts which pairs generate acceptable strain images. The last step
computes strain for all selected pairs and merges them together after compensating for the
relative motion.
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The core of our algorithm is a cost function that evaluates the motion between two frames
and predicts the relative quality of the strain image without the need to compute the strain.
Minimizing this cost function should minimize the overall speckle decorrelation between
two frames. We start with a model for the speckle decorrelation, and use this model as a
basis to define our cost function.

Decorrelation Model
The backscattered RF signal rf(t) is often modeled as the collective response of N scatterers
randomly distributed within the resolution cell (Wagner et al., 1983) of the ultrasound
(Wagner et al., 1983; Shankar, 2000):

(1)

where ai and θi represent the random amplitude and the phase of the signal reflected by the
ith scatterer. The distributions of ai and θi are often assumed to be uniform. ω0 is the mean
frequency of excitation. Assuming fully developed speckle and Gaussian-shaped resolution
cell, it is possible to show that the signal decorrelation, ρ(δ), caused by the displacement, δ,
will have a Gaussian shape. Prager et al. (2003) proved the Gaussian shape of the correlation
function for the “intensity” of the signal. A similar proof follows for the backscattered signal
which gives:

(2)

σ is the standard deviation of the width of the resolution cell in the direction of the
displacement. It should be noted that the decorrelation model is normally employed to
estimate the displacement, whereas here, the correlation is estimated knowing the
displacement. Extending Equation 2 to all three directions of displacement, a pseudo-
correlation function, Crr, is defined as follows:

(3)

where Dx, Dy, and Dz represent the displacement in out-of-plane, axial, and lateral directions
respectively. Kx, Ky, and Kz determine the sensitivity to motion in their corresponding
directions.

Distance Metric
Given the relative homogeneous transformation between two frames, Equation 3 can be used
directly only when the relative rotation is ignored. However, even a small rotation may
cause large decorrelation at the bottom of the image, and degrade the quality of the strain. At
the same time, a component-wise metric is needed since the axial motion needs to be
isolated as the desired type of motion. Suppose a = [ax ay az]T is the axis-angle
representation of the relative rotation, and t = [tx ty tz]T is the relative translation. Assuming
a small rotation, the relative displacement of a point, P = [x y 0]T, will be d = a × P + t. We
then define the distance vector of two frames, D = [Dx Dy Dz]T, as the RMS of the
components of d for all the points in the region of interest (ROI):
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(4)

where sqrt{.} returns the root. The ROI is assumed to be rectangular and determined by x1,
x2, y1, and y2. Symbols x21 and y21 are equal to x2 - x1 and y2 - y1 respectively. The vector
D provides a measure of distance for each direction separately.

Frame Pair Selection
Given a sequence of RF frames, all possible combinations of frame pairs are evaluated using

a slightly modified version of Crr. For M frames, there will be  pair
combinations which provides more choices than consecutive frames. Since the pairs are
directly compared, it su ces to minimize the negated exponent of Equation (3) in order to
maximize Crr. Since axial motion is desired, the term for axial motion is also modified to
penalize compressions that are higher or lower than the optimum compression value, topt.
This forms a “cost function”, Cost, defined as follows:

(5)

topt is determined based on the desired stain rate which is set by the user considering the
amount of decorrelation that the elasticity estimation algorithm can handle. c is a small
number that limits the cost of zero compression. With Dy much larger than topt, the second
term of the cost function grows quadratically similar to that of lateral and out-of-plane
motion. A Dy value close to zero also increases the cost preventing the selection of pairs
with no axial motion. The sensitivity to the exact value of topt is adjusted by Ky (see Figure
2).

Using this function, multiple frame pairs with the lowest cost values are identified. In our
implementation, a maximum of 8 frame pairs are selected to ensure an upper bound for the
required processing time. A pair is rejected if the value of the cost function is above ln(2) (or
equivalently when the pseudo-correlation drops to lower than 0.5).

Elastography and Fusion
To compute the displacement map for a pair of RF frames we have employed the “2D AM”
technique (Rivaz et al., 2011) which is shown to be robust and fast. It computes a sub-pixel
estimation of the motion field in both axial and lateral directions. The regularization terms
makes it tolerant to outlier and noise. Furthermore, it can handle small internal motions
induced by heartbeat or respiration. Since localization information is assumed to be
available to us, we can automatically adjust the search range for the recovery of the motion
field and increase the speed of displacement estimation.

Given the displacement map, the strain is computed by applying least squares fitting. The
strain image is calculated for all selected pairs. The final image is found by merging the
motion compensated strain images. Motion compensation is aimed to reduce the effect
blurring caused by mixing strain images. Assume the selected frame pairs are

 where n is the number of selected frame pairs resulting in the
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strain set {S1, S2, …, Sn}.  is chosen as the reference frame and  to  are registered back
to the reference frame to find their relative “global” compression and lateral motion. This
registration is applied to a subset of RF intensities forming a grid, G. The tracking
information is used to initialize the registration. G is comprised of a constant number (20) of
rows and columns. This approach speeds up the optimization and makes it independent of
the number of samples in the RF frames. For a pair of frames I1 and I2, the optimization
function will be:

(6)

The optimization variables a and b determine the lateral motion and axial compression
respectively. The symmetric form of the objective function ensures that the optimization
does not depend on the order of frames, and exchanging the frames only a ects the sign of
the variables. The search spans of a and b are initialized from the tracking information. In
the case of b, this range will be from zero to the value reported by the tracker since the
actual observed compression might be less than that value. For both a and b, the search span
is also extended in both sides with an assumed maximum error value for the tracker readings
(0.2 mm). Note that the relative motion error is expected to be much lower than the absolute
error.

The motion compensated strain images, , are constructed by applying the global
deformation to the strain images (Si). Since we are only interested in global motion, the
registration is fast and unlikely to fail. These images are merged by weighted averaging in
the pixel level to increase the SNR forming the output image, Sfinal:

(7)

The weight factor, wi(p), is found by multiplying three values, , , and ρi(p).  is
the estimated correlation coefficient from the cost function of Equation 5

( ).  and ρi(p) represent the overall and pixel-level correlation

coefficient of the RF frame pair after applying the estimated displacement.  reduces the
bias toward lower compression created by the other two factors. This bias is due to the fact
that in general pairs with lower compression yield higher correlation coefficient.

Whenever the overall correlation coefficient is low for a pair of images, the whole strain
estimation cannot be trusted even if the pixel-level correlation for a specific area is high.

The inclusion of  reduces the share of strain images with low overall correlation
coefficient.

Cross-section Test
It is only meaningful to fuse images that are taken from roughly the same cross-section of
tissue. The tracking data may be utilized to detect which frames are from one cross-section
of the tissue with minimal lateral and out-of-plane motion. This is a step taken prior to the
selection of frame pairs and provides the pool of frames from which the pairs are selected.
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Since axial motion is not of interest in this case, Ky is set to zero in Equation 3 providing a
“closeness measure.” Given a single frame, the closeness measure of this frame with respect
to all other frames in the sequence is computed. These values are sorted in descending order,
and the frames with closeness measure greater than 0.5 are chosen. A threshold on the
maximum number of frames, M, is also applied which ensures that the number of frames
from that cross-section is equal to or less than M. This process is carried out for all frames in
the sequence and the set of frames with the largest sum of closeness measures is chosen.

One can also extract sets of frames from multiple cross-sections and generate a strain image
for each cross-section. The availability of localization information means that a 3D strain
volume could be automatically reconstructed.

Data Acquisition
System Specifications

Two different ultrasound systems were used to collect RF data. The data from phantom and
pig experiments was collected using the SonixSP ultrasound system (Ultrasonix Medical
Corp.) and the L12-5 transducer with central frequency of 10 MHz. The RF data was
obtained via our interface software based on Ultrasonix research SDKs. This software
controls RF acquisition and sends the data over a local network to a laptop computer where
the RF frames are saved along with the tracking information. This is our preferred setup as it
provides an excellent research interface and we have full control over the parameters of the
ultrasound machine and the flow of the data.

In the case of patient experiments, the raw ultrasound data was obtained from an ACUSON
Antares™ (Siemens Medical Solutions USA, Inc.), a high-end ultrasound system with an
intra-operative ultrasound transducer (VF13-5SP) at center frequency of 8.89 MHz. The
Axius Direct™ Ultrasound Research Interface was employed to enable RF acquisition and
trigger the ultrasound system. For synchronization purposes, our software signaled both the
ultrasound system and the external tracker the start of data collection. The duration of each
sequence of RF frames was limited by the buffer size on the machine.

The localization information was gathered via a “medSAFE” electromagnetic (EM) tracker
(Ascension Tech. Corp.) with model 180 sensors. The mid-range cubic transmitter supplied
the magnetic field for all experiments except for the patient experiment where a “flatbed”
transmitter was placed under the mattress of the surgical bed before the arrival of the patient.
The data from the flatbed transmitter was filtered with a low pass filter to reduce the
inherent jitter in the readings. The ultrasound transducer was calibrated using the standard
cross-wire calibration (Prager et al., 1998).

Synchronization
It is important for the success of this method to have the correspondence between the RF
frames and the tracking data. Here, we rely on the timestamp of the tracker readings and the
RF frames. The task of synchronization would be to find the constant delay between the two
timestamps and compensate for that. This goal is achieved by exploiting the same freehand
palpation used for elastography, which implies that no special procedure is required for
synchronization. This also enables dynamic synchronization, where not only the constant
delay between RF and tracker data is estimated as the data is collected, but also small jitters
in delay are compensated. In this work, a constant delay is assumed since timestamps are
available for the acquired data. To find this delay, the global axial compression is first
recovered by correlating the first frame and the stretched version of the next frame. The
same optimization procedure described by Equation 6 is employed for this purpose. The
compression values are integrated over a period of time to get the compression with respect
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to the first frame in that period. The resulting curve is matched with the axial motion reading
from the EM tracker using NCC. For both Ultrasonix and Antares machines, the tracker and
RF data are synchronized using this technique. Figure 3 shows the two signals after the
delay is compensated. To find the exact transformation for each RF frame, the tracking data
interpolate. The translations and rotations are separately interpolated using “spline”
interpolation for the translations and “spherical linear interpolation” (Slerp) (Shoemake,
1985) for the rotations.

Experiments
The performance of our algorithms is demonstrated with three sets of experiments: phantom,
animal, and patient experiments. The phantom experiment provides a controlled
environment for which the shape, location, and elasticity of the target is known. The pig
experiment replicates the challenging environment of the operation room and surgery, but at
the same time, control over the duration of the experiment and ultrasound system parameters
is maintained. The gross pathology is also available as the pig is sacrificed at the end of the
experiment. The patient experiment imposes a less controlled environment where the time
for data collection is limited and minimal interference is introduced to the routine flow of
the surgery.

Phantom experiment
The data was taken from the CIRS (CIRS Inc. Norfolk, Virginia) elasticity phantom model
049A. Out-of-plane and lateral motion is less problematic for this experiment since the
surface of the phantom is flat and there is more control over hand motion. However, low
compression rate can a ect the quality of the strain image. Figure 4 shows four strain images
with increasing compression rates taken from a 1.58 mm diameter lesion located at the depth
of roughly 3 cm. The strain images are automatically generated from a “single” sequence of
RF frames using our frame selection technique. This experiment demonstrates the capability
of our frame selection in providing some level of control over the strain rate. It also shows
that higher strain rates are more effective for scanning small lesions. This lesion is almost
three times softer than the background and does not show up in the B-mode image (Figure
4(b)). In Figures 4(c-e), as the strain rate increases, enough SNR and contrast is achieved to
make the lesion easily detectable. The diameter of the lesion in the image seems to be
slightly larger than the original size. This could be due to smoothing constraints applied in
the elastography algorithm and the least square fitting. The strain rates chosen by the user in
Figures 4(c-f) are given in the figure caption. The algorithm tries to find the closest strain
rate to these values. However, the strain rate may be lower than the selected value when not
enough compression is applied by hand. In this case, the phantom was not compressed more
than about 4% to prevent damaging it. The frame rate for RF data was about 30 frames per
second which means for a slow palpation, a large gap between the frames (12 frames for
4(f)) was necessary to achieve the required strain.

Animal experiment
Generating strain images intra-operatively is difficult since factors such as experimental
time constraint, safety, and the introduction of surgical tools need to be taken into account.
The access to the imaging area may be limited, and internal motions can be disruptive. In
these conditions, axial hand motion mostly does not translate into simple up and down
palpation. The force needs to be exerted with an oblique angle making it difficult to avoid
lateral and out-of-plane motions. Moreover, the slippery surface of the tissue or the
ultrasound gel applied to the surface of tissue causes the transducer to slide over the tissue.
The aim of this experiment is to show the benefit of the proposed technique for intra-
operative imaging.
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Our protocol for animal experiment was approved by the Johns Hopkins University
Institutional Care and Animal Use Committee (IACUC). For this experiment, the cubic
electromagnetic transmitter was secured on the bed side prior to the arrival of the pig. The
pig was then prepared for the surgery, and the liver was exposed for ablation. Next, the
ablation needle was inserted inside the liver under ultrasound guidance. The liver was then
ablated to create an ablation zone of about 2 to 3 cm. After the ablation, the needle was
removed and a sequence of tracked RF data was collected from the ablated region. The data
collection was carried out a few minutes after the ablation to allow for the dispersion of the
bubbles caused by the ablation procedure. The placement of the probe and the direction of
the needle were marked on the surface of the liver by two small burns on both sides of the
transducer and a third arrow-shaped burn mark. Three zones were ablated creating three
hard lesions (a fourth lesion was also ablated for a separate experiment). Finally, the pig was
sacrificed and the liver was harvested. Guided by the burn marks, the liver was cut on
approximately the same plane as the ultrasound data was gathered.

Figure 5 shows the B-mode, strain, translational motion from tracking, and the gross
pathology of the ablated zone. The core of the ablation appears as a slightly hypoechoic
region in the B-mode image. Compared to the whole ablated region, this core is smaller and
contains the dehydrated tissue for which the acoustic properties are mildly modified. The
needle imprint is also visible as a hyperechoic line inside the ablation. The strain image
shown in Figure 5(b) is the output of our algorithm. The ablation is harder than the
surrounding tissue and appears darker in the strain image. It is larger than the hypoechoic
region in the B-mode image, and its size matches the size of ablation from gross pathology
(Figure 5(d)).

The graph in Figure 5(c) displays the translational motion of the ultrasound plane with
respect to the first frame in the sequence. The effect of respiration is captured in the lateral
and elevational components of the tracking information as a periodic cycle. In this case, the
breathing pushed the liver which in turn caused the motion of the transducer placed on the
top of it. Only the frames from the resting portion of the breathing cycle are suitable for
computation of strain as the breathing motion may cause the transducer to slide over the
tissue. The presented algorithm can automatically compute the strain from only the resting
phase of respiration as long as the breathing cycle is captured in the tracking data. This
observation was possible in the animal experiment since the data collection system permits
long sequences of images containing several breathing cycles to be obtained.

Patient experiment
The protocol for patient experiment was approved by the Johns Hopkins institutional review
board (IRB), and informed consent was acquired. In this experiment, raw ultrasound data
was obtained from a cancer patient undergoing multiple liver wedge resections and
radiofrequency ablations of metastatic lesions. In order to introduce minimal deviation to the
normal flow of the surgery, only one lesion was imaged before and after ablation. The
ultrasound data acquisition was quick and added only a few minutes to the total length of the
surgery.

To collect the ultrasound data, the surgeon had to slide the ultrasound probe inside the
abdominal cavity through the surgical incision making out-of-plane motion and probe
sliding nearly unavoidable. This can be seen in Figure 6 which shows the translational
component of the hand motion of the surgeon during data collection. The frames selected by
the “crosssection test” are marked by small squares on the top of the motion curve. From
Figure 6 it could be noted that these frames have lower lateral and elevational (out-of-plane)
motion with respect to each other.
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The pre- and post-operation CT scans of the patient were taken as a routine part of the
operation. In the pre-operative CT scan, the contrast between the tumor and background was
very low, and an accurate comparison between CT and ultrasound could not be established.
The post-operation CT scan of the patient is presented in Figure 7 where (a) contains the
ablated region and (b) is the resliced cross-section that roughly matches the plane of
ultrasound imaging. The vascular structure in the CT scan taken in venous phase appears
brighter, and the ablated region is darker compared to the normal liver tissue. To compare
strain and CT, the plane in CT volume corresponding to the strain should be found. This
could be achieved relying on anatomical features as proposed in Clements et al. (2008). In
this work, we rely on three clues to reslice the CT volume. The first is the shape of the
ablation which is extended toward the direction of the needle. From the shape, we were able
to approximate the position of the needle in the CT scan. We also collected a series of
tracked ultrasound images containing the track of the needle. The position of the needle in
CT and ultrasound was then matched. The elastography data was obtained from an almost
perpendicular plane to the plane of the needle avoiding the distortion from the needle.
Assuming minimal motion during ultrasound data acquisition, the spatial relation of the
image with the needle and the elastography image could be determined. Although the
rotation of the slice could not be determined with this method, the size of the ablated zone is
measurable. In Figure 7(a), there are two ablated regions visible out of which only the
ablation on the right side was imaged. The pixel spacing (x and y directions) is 0.7 mm and
the slice thickness is 3 mm. The diameter of the ablated zone is about 19 mm.

The elastography results of the tumor before and after ablation are depicted in Figures 8 and
9. Prior to ablation, the tumor appears as a hypoechoic region in the B-mode ultrasound
image (Figure 8(a)). Since the tumor is harder than the surrounding tissue, it is darker in the
strain image. The border of the tumor and its shape are better distinguishable in the
elastography image. The B-mode and strain images of the tumor after ablation shown in
Figure 9 have similar characteristics to those of the animal experiment. A slightly
hypoechoic core is visible in the B-mode image which is created by the dehydrated tissue
similar to the animal experiment. This region is smaller than what is detectable in the CT
scan. The size of the ablation in the elastography image is approximately 17 mm which is
closer to the size of the ablation in Figure 7(b).

Quantitative Results
SNR and CNR are the most common measures used for quantifying the quality of the strain
image. The SNR and CNR values are computed from (Chaturvedi et al., 1998):

(8)

where s ̄ and σ denote the mean and standard deviation of intensities. The t or b subscripts
mean that the computation is only for the target or the background region, respectively.

Figure 10 shows the SNR and CNR for the CIRS phantom with a hard inclusion that is twice
sti er than the background. The results are presented for strain images generated from the
automatically selected frames, consecutive frames, and a constant gap of two frames. Our
method consistently selects frame pairs which produce strain images with higher SNR and
CNR values. The drop in SNR is more prominent for consecutive frames where there is not
enough compression between the frames. Increasing the gap improves the SNR and CNR for
some frames while reduces these values for other frames due to decorrelation (see the
bottom row of Figure 10). The periodic behavior of SNR for the constant gap roughly
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matches cycles of the axial motion by hand. The reason is that the speed of hand motion is
variable and the step size is not adjusted accordingly.

Averaging a large number of strain images increases the SNR of the signal as shown in
(Lubinski et al., 1999). However, it blurs the strain image as demonstrated in Figures 8(c)
and 8(d). The blurring is mainly due to the displacement of the tumor in the strain sequence
which includes out-of-plane motion. Table 1 shows the surge in SNR and CNR as a result of
averaging especially for successive frames for the pre-ablated tumor in our patient
experiment. These values are still less than those of our method although the number of
frame pairs used is ten-fold larger. At the same time, the quality of the final image is
severely degraded due to the displacement of the tumor during data collection.

In Table 2, our frame selection technique is compared to the selection of consecutive frames.
The SNR, correlation coefficient, and strain consistency of the selected frames are being
compared for all our experiments. The number of frames used in both methods are fixed
(five frame pairs). For consecutive frame selection the average over the whole sequence
(100 frames) is presented. The standard deviation of each value is shown in parenthesis.

The correlation coefficient is the same as  in Equation 7. The two methods produce
comparable correlation coefficient, but for consecutive frames this number is slightly higher.
Selecting consecutive frames normally yields the highest correlation coefficient. This does
not translate into higher quality of elastography. The reverse is however true. If the
correlation coefficient is low, the output image is not reliable. In all cases, the value of
correlation coefficient remained above 0.80 which means that the displacement estimation
did not fail.

Consistency among strain images has been suggested as a good measure for the quality of
the images. Jiang et al. (2006) defined a performance descriptor based on consistency of two
consecutive stain images. They showed that this descriptor correlates with the CNR and
human ranking score. The consistency is defined as the NCC of the two strain images. Here,
the consistency of more than two images is examined. For this purpose, the NCC for all
possible pairs of strain images is computed. The average and standard deviation of this value
is reported in Table 2. The range of this value is from zero to one. For both consecutive
frames and selected pairs, the number of strain images is set to 5 resulting in 10 possible
combinations. In all cases of our experiments, the average consistency is significantly better
for the frame pairs selected using the tracking information while the standard deviation is
lower.

Discussion
Choosing the right frame pairs is essential for the success of elastography in clinical
conditions. Frame selection using tracking reduces the dependency of elastography to the
quality of hand motion and provides control over the rate of compression. It is an effective
tool especially since the rate of ultrasound data is very high. The computational cost of
evaluating frame transformations is practically ignorable compared to the cost of strain
estimation which makes it possible to analyze hundreds of frame pairs prior to strain
calculation. The combination of this technique with strain motion compensation and the
pixel-wise image fusion significantly elevates the quality and reliability of elastography.

Although an additional tracking device is required for this method, localization data is
already available to many ultrasound navigation systems. The arrival of new ultrasound
systems that embed the localizing sensor within the probe suggests a rising trend for such
systems. We believe that elastography can become an essential element of these systems to
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aid the diagnoses, monitoring, or targeting in clinical applications. In our experiments, the
source of tracking was an EM tracker. Nonetheless, other types of tracking devices such as
optical trackers or accelerometers could also be employed for this purpose.

We showed that blindly averaging strain images could introduce significant blurring. Much
better results can be achieved with a smaller number of images that are carefully selected
using the tracking information. For the last step of this technique, a similar approach to what
has been suggested in (Jiang et al., 2007) or (Lindop et al., 2008) could also be adopted to
further refine the results of elastography.

The frame selection method generally produces results with higher SNR. Both the average
SNR of the selected frames and the SNR of the fused image are reported in Table 2. As
expected, the combined SNR value is higher than that of individual images. Although the
SNR value seems to be a better indicator of the quality of the image, there are some cases
where this value might be misleading. Specifically for the second pig ablation, the
consecutive frames produced better SNR. However, this is due to the fact that the image in
that case contains a large hard lesion which a ects the mean of the strain and therefore,
reduces SNR (Figure 11). As shown in Figure 11(c), the noise in the individual strain images
has caused the lesion appear softer than its actual sti ness in the averaged image. This is also
partly the result of the regularization term in displacement estimation when the compression
is very low. In this case, the relatively higher value of SNR (1.14) is only the result of the
increase in the mean value of the strain. In frame selection method, low compression and
unwanted motions are avoided resulting in an image that is in agreement with gross
pathology. The 3 cm size of ablation in Figure 11(d) matches the measurement from gross
pathology (Figure 11(b)).

Consistency among frames seems to be the best indicator of failure. With multiple strain
images from one cross-section available, this indicator could be employed to detect failed
images and eliminate them in the final step. However, this will introduce additional
computational cost to the system.

Our data acquisition interface, developed in C++, undertakes the tasks of connecting to the
ultrasound machine and tracking device, synchronizing the acquisition, and recording the
data. Currently, our implementation is in MATLAB and all the processing is preformed off-
line. However, there are no computational limitations for processing the data in real-time as
the data is being collected. The “2D AM” method (Rivaz et al., 2011) appears to be both fast
and robust, and the image fusion could be implemented in real-time as it only involves 2D
image mapping and weighted averaging.

Conclusion
In this paper, we presented a method to incorporate the information from a tracking device
in elastography to tackle the challenges of clinical applications. In our experiments, the
consistency and the SNR of strain images is increased by 67% and 97% respectively. This is
a pilot study aimed to demonstrate the potential of this approach to reliably produce high
quality strain images. Further clinical trials are necessary to fully evaluate the diagnostic
impact of our frame selection. This system could particularly be effective for the intra-
operative procedures where traditionally manual search through the frames is needed after
data collection in order to find the pair that generates an acceptable image. In conjunction
with the incorporation of tracking, our method benefits from e cacious displacement
estimation and image fusion techniques making it resilient to failure.

There are numerous possibilities to improve this elastography system. In the presence of
tracking data, an immediate improvement could be the addition of hand motion feedback to
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the user. This will involve developing easy-to-understand interfaces which will provide real-
time feedback during hand palpation. 3D strain imaging from the 2D images will also be a
natural extension to this system. This will be similar to the volume reconstruction from 2D
B-mode images with the exception that the localization information will be used not only for
placing the strain images inside the volume, but also for frame selection. Finally, the full
integration of this system in a clinical platform will allow for clinical trials for specific
applications.
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Figure 1.
A block diagram illustrating the steps of the proposed method.
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Figure 2.
The cost of axial motion for topt = 1 and Ky = (4σ2)−1.
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Figure 3.
Axial palpation is used for synchronization.
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Figure 4.
Four strain images with increasing compression rates are automatically generated from a
single sequence. The structure of the phantom is shown in (a). The small lesion is not visible
in the B-mode image displayed in (b). (c)-(f) shows the resulting strain image for the
selected strain rate. The lesion is clearly visible in (f).
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Figure 5.
The figure shows in-vivo ablation experiment on pig liver. The B-mode image (a) only
shows the core of ablation composed of dehydrated tissue. The strain in (b) is generated by
our method and depicts the ablated zone in dark. The size of hard lesion in strain image
matches gross pathology shown in (d). The relative translational motion of the frames with
respect to the first frame is presented in (c). The breathing motion is captured in the lateral
and elevational components of the tracking data.
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Figure 6.
The translational component of the hand motion of the surgeon w.r.t. the first frame in the
sequence.
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Figure 7.
Post-operation CT scan of the ablated region. The plane of resliced cross-section roughly
matches the plane of ultrasound image.
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Figure 8.
The B-mode ultrasound and strain image of the tumor prior to ablation.

Foroughi et al. Page 22

Ultrasound Med Biol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
The B-mode and strain image of the tumor after the ablation.
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Figure 10.
The strain images from the top 100 frame pairs selected by our algorithm vs. consecutive
frames. In the top row, the step size is zero whereas in the bottom row the step size is two. In
both cases, the strain images from the automatically selected frames maintain higher SNR
and CNR values. Although the mean CNR and SNR slightly rises when the constant gap
between the frames is increased, the variations of these values surges.
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Figure 11.
The results of second ablated region in pig experiment. The strain from consecutive frames
has relatively high SNR but very low consistency.
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