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Abstract
Normal functioning of the brain depends on the homeostasis (~ steady state) of its various
physiological sub-systems, one of which is the intracranial pressure (ICP) dynamic system. ICP
dynamic system of an injured brain is susceptible to various acute changes that should ideally be
detected by ICP monitoring even for comatose patients. However, the status quo of ICP
monitoring solely targets mean ICP. We aimed to demonstrate a novel approach to detect acute
deviation from steady state of an ICP dynamic system in an absence of significant mean ICP
changes. We hypothesized that steady state of ICP dynamic systems is reflected as ICP pulses of
similar mean ICP levels resembling each other. A general framework was used to derive such a
steady-state indicator that can accommodate different metrics of inter-pulse distance and different
statistics of the distance histograms. In addition to conventional Euclidean distance and Pearson
correlation, geodesic distance between pulses was introduced as a novel metric. These different
ways of calculating steady-state indicators under the proposed framework were evaluated on three
types of continuous ICP recordings: 1) those between two consecutive brain imaging studies that
demonstrated acute ventricular enlargement for slit ventricle syndrome (SVS) patients undergoing
a trial of shunt externalization and clamping (SVS+); 2) those between consecutive brain imaging
studies from the SVS patients under the same trial but without ventricular enlargement (SVS−); 3)
overnight recordings from patients with suspected normal pressure hydrocephalus (NPH). It was
observed that only the standard deviation of geodesic distance correctly differentiated between
SVS+ and SVS− and between SVS+ and NPH while avoiding discriminating between SVS− and
NPH. It was also found that 45% SVS+ cases had a multimodal geodesic distance histogram while
none of SVS− and 3.8% of NPH cases had such a multimodal histogram. Pulses with a large
number of distant pulses for the five multimodal-histogram SVS+ cases fell in short time windows
indicating that acute ventricular changes may have occurred in these confined time windows
during which no significant changes of mean ICP were observed. In contrast, the pulses with a
large number of distant pulses for the two multimodal-histogram NPH cases did not cluster
temporally. In conclusion, the geodesic inter-pulse distance is a promising metric to quantify
distance intrinsic to the underneath geometric structure of ICP signals and hence is an appropriate
metric to derive a steady-state indicator of an ICP dynamic system.
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1. Introduction
Disorders afflicting the brain can perturb homeostasis of cerebral perfusion, cerebral
metabolism, and neuroelectrical activities. For a clinician caring for an afflicted patient in
the acute period of traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), and
hydrocephalus, proper management ideally entails early detection of developing alterations
from equilibrium. This is particularly challenging in comatose patients, in which there may
be a paucity of clinical indicators and restricted availability to obtain imaging diagnostic
tests. Using the terminology of systems engineering, in a normal healthy state various
functional and anatomical sub-systems of the normal brain are in steady state. Early
detection of deviation from steady state of these systems could theoretically facilitate
recognition of pathological changes of the brain prior to crisis states. In the present work, we
will focus on developing such a steady-state indicator for the intracranial pressure (ICP)
dynamic system.

Our approach is motivated based on a first-order approximation of the ICP dynamic system
using a pressure-volume (PV) curve. The concept of PV curve for the ICP dynamic system
has been used widely to derive the brain compliance, which is the slope of a PV curve, and
to interpret the phenomenon that ICP pulse waveform amplitude increases as mean ICP
increases(Avezaat et al., 1979, 1980; Czosnyka et al., 2004). Conceptually, an ICP dynamic
system in steady state can be represented using a single PV curve as illustrated in Fig. 1
(Panel A). The operating point of the system for any given mean ICP corresponds to
different points along this single PV curve. When brain structural alternations occur, a
different PV curve will be established and therefore the operating point of system at a same
mean ICP level would reside on the new PV curves as illustrated in Panel B of Fig. 1.
Following this reasoning, ICP pulses at a similar mean ICP level resemble each other when
the ICP dynamic system is in a steady state because they correspond to the same operating
point of the ICP dynamic system. However, if the intracranial pressure dynamics change, the
ICP pulse morphology will differ from the steady-state form assessed at the same mean ICP,
reflecting a different operating point on the new PV curve.

It follows from the above motivation that a steady-state indicator can be derived by
characterizing diversity of the morphologies of ICP pulses at similar mean ICP levels.
However, challenges always exist in analyzing ICP pulse waveform morphology for data
recorded in a clinical environment because the inherent noise and artifacts can easily
sabotage any effort to assess the pulse waveform morphology. Hence, our proposed strategy
is to avoid assessing morphology of individual pulses on a beat-by-beat basis. Instead, we
use a validated algorithm, termed Morphological Clustering and Analysis of Intracranial
Pulse (MOCAIP)(Hu et al., 2009b), to extract artifact-free dominant pulses each of which is
representative of a short recording interval of ICP. Such a strategy has been adopted by our
group in many previous studies (Asgari et al., 2011a; Asgari et al., 2011c; Kasprowicz et al.,
2010; Kim et al., 2011b). Once having extracted dominant ICP pulses, detecting
morphological changes between waveforms is deceptively trivial, e.g., using the Euclidean
distance between two pulses. We recognized, however, that this approach was insensitive to
the low-dimensional geometric manifold where the time series of ICP pulses reside.
Accordingly, we applied a novel distance metric, the geodesic distance, as a more powerful
metric for measuring the inter-pulse distance. To our knowledge, the present work is the first
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in applying manifold learning(Roweis and Saul, 2000; Tenenbaum et al., 2000) concept in
studying the ICP dynamic system.

2. Methods and Materials
2.1 Morphological Clustering and Analysis of Intracranial Pulse (MOCAIP)

The MOCAIP algorithm provides an automatic analysis of intracranial pulse morphology by
designating the locations of three well-established sub-peaks in these pulses. This algorithm
is able to cope with the practical issues such as handling noise and artifacts. MOCAIP starts
by detecting individual pulses from a continuous raw signal using an algorithm developed in
our previous work (Hu et al., 2009b). Consecutive sequences of these raw pulses are
clustered to find the biggest cluster. The average pulse of this cluster is termed a dominant
pulse. Then a library of validated reference pulses is used to recognize legitimate dominant
pulses, and only these legitimate ones are further processed to detect candidates of sub-
peaks. Finally, the distribution of the sub-peak positions in the same reference pulse library
is leveraged to designate the candidate peaks to each of the three sub-peaks or a non-peak. In
the present work, the MOCAIP algorithm is used on consecutive 30-second ICP segments to
extract dominant pulse, determine whether the dominant pulse is legitimate, and then
designate the sub-peaks of legitimate dominant pulses.

2.2 A general framework for deriving steady-state indicator
Figure 2 displays a general framework to calculate a steady-state indicator for a continuous
ICP recording of certain duration. The key idea is that it is a necessary condition for ICP
pulses at similar mean ICP level to resemble each other that the intracranial pressure
dynamic system is at a steady state. Therefore, this framework is designed to accommodate
different ways of characterizing the degree of similarity between two pulses given a
matching mean ICP. It starts using the MOCAIP algorithm to form a series of dominant
pulses for the given ICP recording. This pre-processing step is crucial in that it isolates the
artifacts and noises in the ICP recording. Let us assume these pulses are denoted as xi, i =1,
2,…, N. Then for each dominant pulse xi, we find other pulses xj which satisfy the following

where x̄i and x̄j are the mean values of xi and xi, respectively.

We then calculate a similarity or distance measure between xi and all xj Repeating this
calculation for all xj, one obtains a long vector of similarity/distance metrics between pulses
of matched ICP. The length of this vector is hence upper-bounded by N2 In the present
work, we will test the following three measures: 1) Euclidean Distance; 2) Pearson
Correlation Coefficient; 3) Geodesic Distance. The first two metrics are trivial. The
calculation of the geodesic distance will be described in next Section. It is noted that the
pulses are required to have equal length for calculating the above three metrics. Given the
variable heart rates, this is handled by first defining the end of the pulse to be at a point on
the last descending edge of a pulse where its amplitude equals 1/e of the peak amplitude of
the last peak. By this definition, the pulse length is smaller than that of the actual pulse
length of each pulse. Then the final pulse for distance calculation is obtained by using the
95-percentile of this effective pulse length from all pulses in this ICP recording to extract a
sub-segment from the original raw dominant pulse.

After obtaining distance metrics among all mean ICP matched pulses, a steady-state
indicator can be calculated by different measures characterizing the distribution of these
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metrics. In particular, we will test the mean, the standard deviation, and 90th percentile value
as three different methods of deriving such an indicator. For Euclidean and geodesic
distances, it is expected that the steady-state ICP will have a smaller mean and 90th

percentile values because ICP pulses resemble each other after matching the mean ICP. On
the other hand, the metrics based on correlation coefficient will have a larger mean and 90th

percentile values. Irrespective of metrics used, the standard deviation of these metrics is
expected to be smaller because a higher standard deviation will likely result from the
analyzed ICP segment being a mixture of a steady state and a dynamical state.

2.3. Calculation of geodesic distance
In a strict mathematic term, geodesic distance is a generalization of length of a straight line
connecting two points to that of a curve connecting the two points in a curved space. In the
present work, each pulse xi can be treated as a point in a high-dimensional Euclidean space.
If assuming no geometric structures exist in the point cloud formed by pulses xi, i =1, 2,…
N, conventional Euclidean distance between two pulses can be used as distance metric.
However, it has been well known since the publication of the two seminal papers(Roweis
and Saul, 2000; Tenenbaum et al., 2000) that many seemingly high-dimensional data
originating from the nature usually reside in a low-dimensional manifold. Revealing this
low-dimensional manifold using nonlinear dimension reduction methods such as
ISOMAP(Tenenbaum et al., 2000) and Local Linear Embedding (LLE)(Roweis and Saul,
2000) has been proven to be fruitful in visualizing the hidden geometrical structure of the
data. There is no exception here for ICP pulses. As shown in Figure 3, we used LLE
algorithm to project the original ICP dominant pulses from a subject onto a two dimensional
space to reveal the geometric structure. Therefore, a more sensible measure of distance
between two pulses should take into consideration of this geometric structure.

Geodesic distance is such a measure. As practiced in other related studies(Roweis and Saul,
2000; Tenenbaum et al., 2000; Cai et al., 2007; Zhu and Goldberg, 2009; Carter et al.,
2011), we choose to approximate the calculation of geodesic distance by using a k-
neighborhood graph. Assume a graph G (V, E) is used to describe xi, i =1, 2,···, N where
vertex Vi represents xi and an edge is placed between Vi and Vj if xi is among the k-nearest
neighbors of xi and we assign the Euclidean distance between xi and xj as the weight of this
edge. This process is executed for all xi to form the graph. After forming the graph, geodesic
distance between any pairs of the pulses can be approximated by the total length of the
shortest path along the graph linking the two vertices representing these two pulses. We used
Dijkstra’s algorithm(Dijkstra, 1959; Cai et al., 2007) to find this shorted path. A graphic
illustration of geodesic distance calculation is provided in Fig. 3.

2.4. Data source and data analysis protocol
A retrospective analysis of continuous ICP recordings from two patient populations was
used to compare different methods of computing steady-state indicators as proposed in
Section 2.2.

The first population consisted of a group of patients undergoing a diagnostic and therapeutic
evaluation of symptomatic slit-ventricle syndrome (SVS). SVS patients typically have been
shunted for many years, and have chronically very small (“slit”) ventricles with medically
refractory headaches. Our protocol consisted of placing an intraparenchymal ICP monitor in
the brain, and then externalizing the peritoneal end of the shunt so as to be able to
completely shut off CSF flow(Bergsneider et al., 2008). In most patients, this resulted in
acute hydrocephalus with expansion of the ventricles with or without marked changes in
ICP. These patients either underwent an endoscopic third ventriculostomy or revision of the
shunt. In other patients, the ventricles did not expand.
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These SVS patients received multiple brain imaging assessments during these evaluations to
assess ventricle size changes. This provided a controlled “laboratory” in which we could
observe acute changes in the steady state due to acute ventricle volume changes over a
period of hours. Based on the radiological reports of the consecutive imaging studies of
these patients, we were able to establish which periods between two consecutive imaging
studies were associated with observable ventricular changes. We assumed that the ICP
recordings measured between these periods of ventricular change represented definitively
change of the steady-state state. We use SVS+ to denote cases in this group. For those
periods without evident acute ventricular changes or any brain structural changes, we
assume that the ICP recordings in these periods were from a steady-state ICP dynamic
system and denote them as SVS− cases.

In addition, we studied a cohort consisting of 56 elderly patients with suspected normal
pressure hydrocephalus (NPH). Overnight continuous ICP monitoring was conducted as part
of their NPH diagnosis evaluation prior to a 3-day lumbar drain trial in the hospital. Given
the fact that NPH is a chronic condition that progresses over a period of months, we
therefore assumed that the overnight ICP recordings of these patients were essentially
acquired from a steady-state ICP dynamic system. Patients in both populations consented for
the ICP monitoring and data analysis as approved by the UCLA Institute Review Board
(IRB).

As proposed in Section 2.2, there are three distance/similarity metrics including geodesic
distance, Euclidean distance, and Pearson correlation coefficient for comparing pulse
shapes. In addition, three different steady-state indicators can be derived from the histogram
formed by each of these distance/similarity metrics. Therefore, our data analysis experiment
is set up to compare these nine different steady-state indicators among NPH, SVS+, and
SVS− cases.

Mean ICP is a conventional measure used for routine diagnosis. We therefore also obtain the
histograms of the mean ICP for the overnight recordings from NPH patients and those from
the second patient population between consecutive brain imaging studies. In a similar
fashion, we derive the mean, the standard deviation, and the 90th percentile values from
these histograms to compare the NPH, SVS+, and SVS− conditions.

A one-way analysis of variance was used first to see if each of the above 12 metrics was
different among the three conditions. Then a t-test was used to compare each pair of the
three case groups.

3. Results
Among the 32 pairs of consecutive brain imaging studies for the SVS patients, two cases
were removed because of poor ICP pulse quality throughout the recording and four
additional cases were excluded because the time interval between the two brain imaging
studies was greater than 40 hours. The remaining 26 pairs were from 11 SVS patients. The
mean age for these 11 patients (8 females) was 36 ± 16 years.

The number of cases with ventricular changes between two consecutive studies is 11. The
mean duration of ICP recordings was 20.0 ± 6.8 hours for these positive cases and 20.6 ±
10.5 hours for the negative cases. The mean ICP was 7.1 ± 2.7 mmHg for the positive and
7.7 ± 2.3 mmHg for the negative cases. The mean standard deviation was 5.1 ± 2.8 mmHg
for the positive and 6.7 ± 4.2 mmHg for the negative cases. There were 1929 ± 802 and
1915 ± 969 number of dominant pulses for the positive and the negative cases,
retrospectively. The average time interval between two consecutive dominant pulses was
44.1 ± 33.5 seconds for the positive cases and 37.5 ± 4.5 seconds for the negative ones.
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There were 20 female and 36 male patients in the NPH group. The average age for the NPH
group was 72 ± 10 years. Mean duration of overnight ICP monitoring for the 56 NPH
patients was 10.7 ± 2.4 hours. The mean ICP for these patients was 3.8 ± 3.8 mmHg. The
mean standard deviation of these overnight ICP recordings was 2.9 ± 0.8 mmHg. The mean
number of dominant pulses is 1122 ± 307 and the average time interval between two
dominant pulses was 36.0 ± 12.6 seconds.

To obtain the results reported below, ΔICP has been chosen to be one mmHg to match mean
ICP when deriving the steady-state indicators.

The results of twelve one-way analysis of variance experiments are shown in Fig. 4. We
display the results of geodesic distance, Euclidean distance, Pearson correlation coefficient,
and mean ICP in panels A through D, respectively. Each plot in each panel displays the
result from using a particular statistical parameter of the distance histogram as a steady-state
indicator. It can be seen that steady-state indicators based on the mean and standard
deviation of the histograms of mean ICP, Pearson correlation coefficients, and geodesic
distance achieved a significant p (p <0.05) for the ANOVA test while the steady-state
indicators based on the standard deviation of geodesic and Euclidean distance also reached a
significant p value.

Since both SVS− and NPH cases represent a steady-state situation, the group analysis using
ANOVA is not sufficient to 1) test if SVS+ cases can be separated from both SVS− and
NPH cases; 2) if a steady-state indicator is different between SVS− and NPH cases.
Therefore, we conducted three t-tests to compare these three groups in a pair-wise fashion.
These results are reported in Table 1. We can observe that mean ICP steady-state indicators
performed well in differentiating NPH from SVS+. Mean ICP was also different between
SVS+ from SVS− groups (p = 0.041). However, mean and standard deviation of mean ICP
histogram could also incorrectly differentiate between SVS− and NPH groups. Pearson
correlation coefficient-based steady state indicators failed to differentiate between SVS+ and
SVS−, incorrectly differentiated SVS− and NPH groups even though they could correctly
differentiate between SVS+ and NPH. The Euclidean distance based approach did not
incorrectly differentiate between SVS− and NPH groups but it also failed to differentiate
between SVS− and SVS+ groups. The only steady-state indicator that could differentiate
correctly between SVS+ and NPH/SVS− but also avoided discriminating between SVS− and
NPH groups is based on the standard deviation of the geodesic distance(the second row in
Table 1).

To assess the distributions of the four metrics including mean ICP, geodesic distance,
Euclidean distance, and Pearson correlation coefficients, histograms of these metrics in one
example case from each of the three case groups are presented in Fig. 5. It is clear by
comparing these histograms that all three inter-pulse metrics of the SVS+ example have two
peaks in their histograms while histograms of both NPH and SVS− groups have only one
peak. However, the peaks in the histograms of the geodesic distance metric were better
separated than those of the Euclidean and correlation coefficients. In contrast to this
observation, histograms of mean ICP for all three cases had only one peak. It should be
noted that this kind of multimodal histograms only existed for four additional SVS+ cases
but it did not exist for any of the SVS− cases and only existed for 2 out of the 56 NPH
patients.

It was also found that the appearance of multimodal histogram of geodesic distance did not
depend on the existence of abnormally high mean ICP as shown in Fig. 6 where we display
histogram, mean ICP trend, and percentage of distant pulses (geodesic distance > 15 mmHg)
for two SVS+ cases in panels A and B, and for two NPH cases (geodesic distance > 7
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mmHg) in panels C and D, respectively. The two vertical lines in the time series plots
indicate the time of brain imaging studies. We can observe that abnormally high mean ICP
values were not present and that the periods of high percentage of distant pulses were
confined in narrow temporal windows of approximately two hours long for the SVS+ cases
but they are more scattered for the two NPH cases.

4. Discussion
A new approach is proposed in the present work to test the hypothesis that a consistent
relationship between mean ICP and ICP pulse morphology is an indicator of an ICP
dynamic system being at a steady state. We have shown that using standard deviation of the
inter-pulse geodesic distances as a steady-state indicator was able to differentiate between
SVS+ and NPH, SVS+ and SVS− and avoid discrimination between SVS− and NPH groups.
Since it is a reasonable assumption that acute brain ventricular changes perturb the steady
state of the ICP dynamic system that was present for the NPH and SVS− groups, our results
hence demonstrate the effectiveness of the proposed approach to derive a steady-state
indicator of an ICP dynamic system.

While a steady-state indicator based on conventional metrics including Euclidean distance
and Pearson correlation coefficient was able to differentiate between NPH and SVS+
groups, this result alone is far from convincing to show that these two metrics can be used
for detecting steady state of an ICP dynamic system. This is because both metrics failed to
deliver a valid steady-state indicator capable of differentiating SVS+ and SVS−.
Differentiating between SVS+ and SVS− groups, although more challenging, is also more
clinically useful because continuous ICP monitoring can be leveraged using the proposed
approach to detect deviation of the ICP dynamic system from a steady state, which can be
used as a nonspecific harbinger for acute intracranial changes typically seen in brain injured
patient under neurocritical care.

Although the comparison between SVS+ and SVS− groups helps demonstrate the
superiority of using geodesic distance to measure inter-pulse distance as compared to
Euclidean and Pearson correlation coefficient, one may argue that there was already a
significant difference between mean ICP of these two groups (p = 0.041). This doubt can be
cleared by two key observations. First, an even greater difference of mean ICP existed
between SVS− and NPH groups, which are not unexpected given the fact that patients with
suspected NPH and with slit ventricle syndrome are different in age, gender, the brain
ventricular system, and plausibly the intracranial compliance state. However, in spite of such
significant difference in mean ICP between these two groups, the steady-state indicator
based on the geodesic distance still produced a valid result that treated the two groups as the
same with regard to being a steady state. Second, the mean ICP trend for the SVS+ cases as
shown in Fig. 6 did not show significant changes in terms of mean ICP, which would have
failed to alert the clinicians that the ICP dynamic system of the patients was changing. To
detect such changes, regularly scheduled brain scans had to be prescribed in the current
standard of care.

The proposed approach of deriving a steady-state indicator of ICP dynamic system admits a
general framework as proposed in Fig. 2. Within this framework, one novel element of our
approach is the adoption of geodesic distance to quantify the similarity among ICP pulses.
To the best of our knowledge, this is the first time that such a distance metric is used to
analyze ICP pulses. It is likely that ICP pulse like many other naturally occurring signals is
inherently low-dimensional. Exploiting the geometric structure in this low-dimensional
space where ICP pulses reside is critical in developing metrics that can meaningfully
quantify the distance between pulses. As has been done in many existing manifold learning
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algorithms, k-nearest neighbor (KNN) was used to construct a weighted graph to facilitate
the approximation of geodesic distance using the shortest graph distance between vertices.
Other approaches of constructing the graph remain to be studied in future work.

Standard deviation of the geodesic distance was found in the present work to be the best
steady-state indicator. It should be noted that other metrics characterizing the distance
histogram can be derived in future work. In particular, characterizing the multimodal
distribution of inter-pulse distance as shown in Figs. 5 and 6 is a promising one. The
existence of multiple peaks in the distribution of inter-pulse distance can be considered as a
strong marker of a transient intracranial pressure dynamic system because each peak may
represent a cluster of pulses from a steady-state period and the coexisting of these clusters
may indicate that the system undergoes transition between different steady states. However,
this statement should be considered speculative because two NPH cases also showed a
multimodal distribution of inter-pulse geodesic distance. We could not ascertain the
underlying causes of the existence of multimodal histograms for these two NPH patients
given the retrospective nature of this study.

Although the present work has only studied the acute brain ventricular change, the same
approach and data analysis experiment are applicable to investigating whether changes in
the steady state of an ICP dynamic system can be detected when other forms of acute
intracranial change occur. In neurocritical care of brain injury patients, such changes may
include acute intracranial mass increase, massive edema, and acute hydrocephalus. If the
proposed approach can be demonstrated to work in these conditions, the potential of
extending ICP monitoring to brain injury patients susceptible to such acute changes is
promising and significant as early detections and treatments of these conditions may result
from continuously tracking a valid steady-state indicator of the ICP dynamic system.

Monitoring of mean ICP is useful for making patient management and therapeutic decisions
by itself as conventionally practiced, however, recent studies across different groups have
shown that more information with regard to brain compliance (Carrera et al., 2011; Kim et
al., 2011a; Eide, 2006), cerebral blood flow (Hu et al., 2010a), prediction of acute mean ICP
elevation (Hu et al., 2010b), cerebral vasculature status (Asgari et al., 2011b; Asgari et al.,
2011c; Hu et al., 2009a), and autoregulation (Radolovich et al., 2011) can be further derived
by analyzing the whole ICP pulse waveform using more advanced signal processing and
pattern recognition techniques. The present work continues to add evidence supportive of
such a potential in enhancing conventional ICP monitoring.

There are several limitations in the present work. The current approach of calculating a
steady-state indicator cannot tell when the change starts to occur, which is a desirable
feature for the monitoring purpose. In addition, the proposed approach in its current form
will not be able to provide specific information regarding what types of acute intracranial
changes are occurring. Obtaining such information is important to further provide decision
support of managing those changes. This can potentially be obtained by combining other
brain monitoring modalities and/or a more detailed ICP pulse waveform analysis, e.g., the
elevation of the third sub-peak of an ICP pulse may indicate cerebral hypoperfusion(Hu et
al., 2010a).

5. Conclusion
We have shown that a hallmark of an ICP dynamic system at a steady state is manifested as
ICP pulses at similar mean ICP resembling each other. We have also demonstrated that
geodesic distance is superior in measuring the inter-pulse distance to derive a steady-state
indicator of the ICP dynamic system as compared to conventional metrics such as Euclidean
distance and Pearson correlation coefficient. In addition, monitoring of the changes in the
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steady state of the ICP dynamic system can potentially provide more information than
monitoring mean ICP alone. Further development of the approach to detect specific acute
intracranial changes remains to be undertaken.
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Figure 1.
An illustration of the theoretical underpin of the proposed intracranial pressure (ICP)
dynamic system steady state detection approach. Panel A displays a single pressure volume
curve as a first-order approximation for an ICP dynamic system in a steady state. Points A
and B on this curve have different mean ICP and hence different ICP pulse waveform
amplitude and morphology. However, pulse amplitude and waveform morphology will be
the same for a given mean ICP. In other words, individual pulses move along this curve as
mean ICP oscillates in the form of B waves etc. Panel B shows an ICP dynamic system
undergoing acute changes such that the system follows different pressure volume curves at
different time points so that the pulses with same mean ICP will likely have different
amplitude and waveform morphology because the system now jumps between different
pressure volume curves. Therefore, a manifestation of the ICP dynamic system at steady
state is that the ICP pulses at similar mean ICP resemble each other.
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Figure 2.
A general block diagram of an algorithm to derive steady-state indicator for the intracranial
pressure dynamic system. This algorithm can accommodate different ways to characterize
inter-pulse distance/similarity. In the present work, we evaluate geodesic distance, Euclidean
distance, and Pearson correlation coefficient as three examples of such approaches. In
addition, the proposed algorithm supports using different statistical metrics derivable from
the distance histogram as steady-state indicator. The three metrics tested in the present work
include mean, standard deviation, and 90th percentile value.
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Figure 3.
A two dimensional projection of dominant ICP pulses using the local linear embedding
(LLE) algorithm to illustrate the difference between Geodesic distance and Euclidean
distance between two points on this two-dimensional trajectories. Each dot in this graph is a
projection of the original pulse. It can be noted that the calculation of geodesic distance
needs to follow the geometric structure of the data and hence may reflect the true distance
between two pulses.
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Figure 4.
Twelve box-plots for one-way ANOVA group analysis of 12 different steady-state
indicators in differentiating among NPH, SVS+, and SVS− groups. Geodesic distance,
Euclidean distance, Pearson correlation coefficient, and mean ICP based results are
displayed in panels A through D, respectively. In each panel, results from three different
metrics are presented in a separate plot.
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Figure 5.
Histograms of the four metrics including inter-pulse geodesic distance, Euclidean distance,
correlation coefficient, and mean ICP corresponding to one example from each of three
groups SVS+, SVS−, and NPH, respectively. The appearance of multimodal histogram is a
potentially strong marker of SVS+ group.
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Figure 6.
Two SVS+ (A and B) and two NPH (C and D) cases with multimodal histograms of inter-
pulse geodesic distance as examples to show that multimodal histogram of inter-pulse
geodesic distance is not necessarily associated with abnormally high ICP. In addition to
mean ICP trend, we also display the time series of the percentage of distant (geodesic
distance > 15 mmHg for SVS+ and > 7 mmHg for NPH) pulses. For the two SVS+ cases,
two vertical lines are used to show the timing of the two consecutive brain imaging studies.
It is noted that there were localized periods when the ICP pulses had large number of distant
pulses for the SVS+ cases. Such an observation is not held for the NPH cases. The two NPH
cases shown here were also the only ones with multimodal histograms.
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Table 1

Table of p values from conducting t-tests comparing twelve different steady-state indicators for NPH vs SVS
+, SVS + vs SVS −, and SVS vs NPH groups. It can seen that only the steady-state indicator based on the
standard deviation of the Geodesic distance correctly differentiates between NPH and SVS +, SVS + and SVS
- groups while avoids discriminating between SVS − and NPH.

Steady State Index NPH vs SVS+
p

SVS+ vs SVS−
p

SVS− vs NPH
p

Geodesic Distance

Mean 0.014 0.086 0.515

Standard Deviation 0.000 0.022 0.111

90th Percentile 0.003 0.053 0.394

Euclidean Distance

Mean 0.036 0.127 0.493

Standard Deviation 0.002 0.078 0.098

90th Percentile 0.020 0.120 0.335

Pearson Correlation Coefficient

Mean 0.000 0.880 0.000

Standard Deviation 0.000 0.844 0.000

90th Percentile 0.000 0.907 0.000

Mean ICP

Mean 0.000 0.041 0.001

Standard Deviation 0.000 0.081 0.000

90th Percentile 0.032 0.442 0.094
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