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Abstract
False alarms produced by patient monitoring systems in intensive care units (ICU) are a major
issue that causes alarm fatigue, waste of human resources, and increased patient risks. While
alarms are typically triggered by manually adjusted thresholds, the trend and patterns observed
prior to threshold crossing are generally not used by current systems. This study introduces and
evaluates a smart alarm detection system for intracranial pressure signal (ICP) that is based on
advanced pattern recognition methods. Models are trained in a supervised fashion from a
comprehensive dataset of 4791 manually labelled alarm episodes extracted from 108 neurosurgical
patients. The comparative analysis provided between spectral regression, kernel spectral
regression, and support vector machines indicates the significant improvement of the proposed
framework in detecting false ICP alarms in comparison to a threshold-based technique that is
conventionally used. Another contribution of this work is to exploit an adaptive discretization to
reduce the dimensionality of the input features. The resulting features lead to a decrease of 30% of
false ICP alarms without compromising sensitivity.

Index Terms
patient monitoring; false alarm; intensive care unit; ICP; brain injuries; smart alarm; supervised
learning

I. Introduction
Bedside monitors are omnipresent in intensive care units (ICU) of modern hospitals. They
allow for monitoring of key clinical variables of the patient and for alarms to be set to
trigger sounds when abnormal values are detected to quickly attract the attention of the
nurse. Although the use of alarm-based patient monitoring systems is potentially life-saving
and improves the efficiency of treatment, it is currently far from being implemented
optimally. It has been acknowledged that most of alarms produced by the systems are false
[3], [8], [10], [15]. As few as 15% of alarms have been found to be clinically relevant [13].
False alarms are typically generated due to noise and artifacts in the signals or by alarming
criteria that are too generic. They not only distract bedside clinicians but also cause alarm
fatigue and distrust in the device. These factors may contribute to true alarms to be missed
which in turn would place patient safety in jeopardy. There is a clear need to design
intelligent monitoring systems that would reduce the number of false alarms using specific
patterns observed in continuously recorded signals of the patient.

Most of research efforts to reduce false alarms have focused on signal processing aspects of
alarm generation [1], [16]. Recent studies [7], [9] have emphasized the potential interest in
using contextual and trending information of clinical variables in identifying critical events.
Drawing from these observations, we investigated whether the use of pattern recognition
methods based on machine learning models can help reduce the number of false alarms in
comparison with a threshold based approach as currently implemented in monitoring
systems. In the ICU, patients treated for traumatic brain injuries (TBI) are continuously
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monitored with electrocardiogram (ECG), arterial blood pressure (ABP), and intracranial
pressure (ICP). Specific thresholds can be set manually to generate different types of alarms
associated with various degrees of severity. This study targets alarms related to intracranial
hypertension (IH), a known cause of complications for TBI. ICP alarms are typically
generated when the ICP is above 20mmHg for a few seconds and therefore does not exploit
specific morphological patterns and trends that may occur in the ICP waveform of the
patient. It has been shown [12] that changes occur in the morphology of the ICP waveform
prior to IH episodes. Existing treatments for IH include drainage of cerebrospinal fluid
(CSF), osmotherapy, hyperventilation, sedation, and diuretics. This study provides a
comparative analysis between different types of regression models trained from
morphological time-series features extracted from the ICP prior to the time of the alarm.
Reducing the burden of false ICP alarms using machine learning and feature extraction
techniques can be seen as a proof of concept for reducing false alarms triggered by other
physiological signals (e.g. ECG).

II. Methods
A. Patient Population and Data Acquisition

The dataset of ICP signals and alarms originates from the University of California, Los
Angeles (UCLA) Medical Center and its usage in the present retrospective study was
approved by the local institutional review board committee (IRB). This study includes 154
patients admitted for various conditions with known risk of IH. The majority of the patients
(108 patients) was treated for brain injuries (TBI, subarachnoid hemorrhage (SAH), and
intracerebral hemorrhage (ICH)). A total of 63, 954 ICP alarms were recorded from bedside
monitors between 8/2010 and 10/2011 in the 24-bed UCLA NeuroICU. For these patients,
the proportion of ICP alarms among all monitor alarms ranges from 0.17% to 88.7% with a
median value of 14.4%. The total number of ICP alarms per patient ranges from 2 to 2620
with a median value of 146. The average median of inter-alarm intervals is 37.1 ± 140.7
minutes. ICP signals were recorded continuously at a sampling rate of 240 Hz using
ventriculostomy systems.

B. Retrospective Alarm Annotation
One-hour ICP/ECG waveform segments surrounding each of the 63, 954 ICP alarms were
retrieved from the database. An expert researcher was presented randomly selected segments
of ICP through a dedicated annotation software created in our research laboratory and was
asked to label them using the following criterion: an alarm is a false positive if there was no
CSF drainage to treat ICP elevation within 15 minutes following the alarm. The expert
marked the segment as “noise” if the quality of the ICP recording was not satisfying or if the
ICP recording was stopped at any time during the 30 minutes prior to the time of the alarm.

CSF drainage could be visualized by noticing a sudden loss of pulsatile ICP and drop of
mean ICP. The expert annotation effort was challenged by total blinding of clinical context
of these alarms. In addition, situations were encountered: 1) no CSF drainage following an
alarm that was associated with a rising ICP trend or obvious ICP elevation; 2) CSF drainage
was activated in response to an alarm associated with no apparent acute increase of ICP
prior to the alarm. Those cases were skipped by the expert and were not used in the rest of
this study as we are not sure whether they are true or false. Therefore, because of this
limitation, the expert was able to annotate 1739 true ICP alarms and 3052 false ICP alarms
from 108 patients. Other medical interventions are used at our center to manage ICP but not
to treat acute ICP elevation, as considered in this study. For the vast majority of cases, CSF
drainage is the first line of defense. True alarms could only have been missed if these

Scalzo et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



interventions were given without first resorting to CSF drainage. Given the common practice
at UCLA, such instances should be rare.

C. Alarm Detection Framework
The proposed alarm detection framework relies on a regression model that is learned in a
supervised fashion from a set of labelled training segments of ICP waveforms. Once the
model has been trained, it can be used to detect alarms on new patients. The following
subsections describe how the raw ICP waveforms are processed to extract morphological
features.

1) Analysis of ICP Waveforms—The morphology of the ICP waveform holds essential
information about cerebral volume compensatory mechanisms and is related to several
cerebrovascular pathophysiologies. Therefore, characterizing the distribution of ICP
waveform features for the segment preceding an ICP alarm may be useful for validating it.
Morphological Clustering and Analysis of ICP Pulse (MOCAIP) algorithm [6], [11] is
applied to process the 20 min ICP waveform segment extracted prior to each alarm.
Tracking is performed in real-time through a probabilistic graphic model that characterizes
the interdependence among the position of peaks within a pulse and those between
consecutive pulses. Whereas the original algorithm [11] only tracks the latency and
elevation of the three peaks, we extend it to track the 24 morphological metrics (Fig. 1) by
adding a random variable in the model for each additional metric.

2) Conditional Discretization of Morphological Features (CDF)—In contrast to
directly using time-series of MOCAIP metrics as input vectors, we evaluate if the use of a
supervised dimensionality reduction algorithm [14] producing features that are invariant to
different pace and initial state of ongoing ICP crisis may improve the detection of false
alarms. Drawing from the fact that the mean ICP level is one of the influencing factors of
the waveform morphology [12], the algorithm independently process each of the 24 metrics
mi, i ∈ [1, 24] together with the mean ICP (mICP) using an adaptive discretization based on
their joint occurrence frequency accumulated across the 20-min segment. This leads to 24
subspaces whose dimensions vary and are automatically determined by the algorithm [14].
The concatenation of these subspaces is used as our input feature and termed CDF.

D. Regression-based Detection model
A regression model y = f(x) is used as alarm detection method and maps the input features x
∈ X extracted from the 20 min segment of ICP prior to the alarm to its label y ∈ Y. A
comparison is provided between Spectral Regression (SR-DA) [2], Kernel Spectral
Regression (SR-KDA) [2], and Support Vector Machine (SVM) [4]. SR-KDA has been
shown in the literature to successfully capture nonlinear relationships in a wide variety of
problems. The performance of SR-KDA was at least on par with state-of-the-art techniques
such as AdaBoost and decision trees while offering more efficient training of the model. To
the best of our knowledge, however, it has never been used in the context of alarm detection.

1) Spectral Regression—SR-DA [2] is a recently proposed method to solve discriminant
analysis (DA) as a regularized regression problem,

(1)

SR-DA formulates the regularized problem as follows,
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(2)

where I is the identity matrix, α is the eigenvector, and δ > 0 the regularization parameter.
Interestingly, this formulation can be solved efficiently using a Cholesky decomposition,

(3)

(4)

2) Kernel Spectral Regression—SR-KDA [2] generalizes SR-DA to utilize a kernel
projection of the data and obtain nonlinearity. Input data samples x ∈ X are projected onto a
high-dimensional space via a Gaussian kernel K, and class labels y to obtain vectors α,

(5)

where σ is the standard deviation of the kernel.

Similarly to SR-DA, SR-KDA uses a Cholesky decomposition from the regularized positive
definite matrix K and class labels y to obtain vectors α,

(6)

(7)

3) Support Vector Machines—SVM [4] is a supervised machine learning technique that
aims at finding the optimal separating hyperplane that minimizes the misclassification rate
on the training set, while maximizing the sum of distances of the training samples from this
hyperplane.

E. Experimental Setup
The experiments proposed in this study first aim at evaluating if the use of machine learning
methods (Section II-D) improves the alarm detection accuracy (and by extension reduces
false alarms) in comparison to a threshold-based method. The second purpose is to
investigate if the proposed feature encoding via conditional distributions (CDF) improves
the performance in comparison with raw morphological metrics extracted from ICP
waveforms using MOCAIP tracking.

Using the dataset of 4791 samples (section II-A), a 10-fold cross-validation (CV) is
performed to compare three regression methods; SR-DA, SR-KDA, and SVM. The
parameters of these three models are optimized at each iteration by using an inner 10-fold
CV excluding the patient to be tested at the current iteration, which is a recommended
practice to avoid model overfitting and conduct fair comparison. The outer 10-fold CV is
executed for five independent runs. For each run, the area under the curve (AUC) is
computed from the receiver operating characteristic (ROC) curve. The average AUC and
standard deviation are calculated across the five runs and used as measure of performance.
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Although differences in AUCs can be used to rank different models, they may not be
statistically significant. To verify if the differences between SR-DA, SR-KDA, and SVM
and between raw morphological features and CDF features models are statistically
significant on our dataset, the 95% confidence interval associated with each AUC is
computed using DeLong et al [5] method and significance tests are performed using a
binomial exact test between AUCs obtained for the different models. For the threshold-
based method, the ROC curve is generated by increasing the threshold from 20 to 80mmHg.
Therefore, for this model it was not possible to obtain a confidence interval or a standard
error since the predicted output is binary and does not change between different runs.

The AUC is a global measure of performance that reflects both sensitivity and specificity.
However, a desirable property of an alarm detection system is to offer a very high sensitivity
(i.e. true positive rate, TPR = TP/(TP+FN)) so that a minimum number of true alarms are
missed. To quantify such a property, we compute the false positive rate (i.e. 1-specificity) at
three given TPRs, {90%, 95%, 97.5%}.

III. Results
The average and standard deviation of each AUC are reported in the third row of Table I.
The AUC of the threshold-based method is 55.9, while the improvement in terms of AUC
for morphological metrics and CDF features is respectively 64.1 ± .9 to 80.6 ± 2.6 for SVM,
55.2 ± 7.1 to 79.4 ± 3.7 for SR-DA, and 69.2 ± 1.2 to 85.9 ± 1.1 for SR-KDA. The
corresponding 95% confidence interval is reported in the fourth row in Table I. Statistical
tests indicates that the performance of all the models were significantly different (p-value <
0.01), except for Threshold-based versus SR-DA+metrics, and SR-DA+CDF versus SVM
+CDF. The latter indicates that when SR-DA is combined with CDF features it can be
considered equivalent to the SVM model. When considering the computational cost in
training the models, there is an advantage of using SR-DA over SVM, which is typically
more time consuming. Average ROC curves are illustrated in Fig. 2 shows the significant
improvement obtained by SR-KDA over SR-DA and threshold, when used with CDF
features.

Rows 5, 6, 7 of Table I reports the False Positive Rate (FPR) at for three given True Positive
Rates (TPR); 90%, 95%, and 97.5%. In contrast with the average AUCs, Threshold-based
method performs better that the regression techniques (SR-DA, SR-KDA, SVM) trained
from raw metrics. However, for each TPR, significant improvements are obtained using
CDF features as input to the models. A major result of this study is that the SR-KDA
reduces the FPR from 66.7 to 31 ± 2.9 at a TPR of 90%, from 69.9 to 42 ± .8 at a TPR of
95%, and from 72.5 to 53 ± .3 at 97.5%. This means that at a similar TPR, when SR-KDA is
combined with CDF features, it can reduce false alarms by about 30%.

IV. Discussion
The experiments have demonstrated that significant improvements in terms of AUC (up to
30%) can be obtained by SR-KDA and SVM models in comparison with a threshold-based
approach. Similarly, reduction of false alarms by the best of our models in terms of FPR was
27% at a TPR= 95%. This suggests that specific patterns in the morphology of the ICP
waveform may be related to true ICP alarms. In addition, the use of CDF features provides
an improvement over the use of raw ICP metrics. Further work is needed to optimize the
models so that the number of true alarm missed is minimized. This can be done by defining
an objective function that would, for example, maximize the portion of the AUC falling in a
given TPR interval, such as T P R = [90%, 100%].
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It can be hypothesized that some of the good performance in detecting true alarms can be
attributed to the fact that the proposed features can capture the known “rounding” of the
pulse associated with higher ICP elevation. In the case where an alarm is triggered by an
artifactual shift, it is less likely that the pulse did not contain such a change.

While ICP alarms account for about 15% of the total of alarms in the neuro ICU, several
other critical types of alarms are generated. The results obtained by our pattern recognition
framework are encouraging. A similar approach could be used to identify false alarms in
other signals such as ECG and ABP. Although the type of feature will inevitably be different
due to the specific nature of the signal and may add an additional layer of complexity,
supervised models trained over time-series of those signals seem to be a promising approach
as well.

A limitation of this study is that the annotation was only done on a subset of 4791 alarms.
Integration of the unlabeled alarms within the model is desirable. SR-DA and SR-KDA can
accommodate with such a requirement and be trained with a semi-supervised strategy. We
plan to investigate if the models can be trained in an incremental way using active learning
strategies that would identify the most relevant episodes to annotate, thus minimizing the
time required for annotation. In addition, we will also explore if the use of patient-specific
informations can help to further reduce the number of false alarms; it is possible that the
clinical context may help to improve the alarm detection accuracy.

V. Conclusion
The trend and morphological properties of the ICP waveform hold essential properties about
future elevation of the mean ICP. Current monitoring systems do not exploit this
information and are based on a threshold to detect critical values and therefore produce a
large percentage of false alarms. This study has introduced a framework to detect false ICP
alarms using spectral regression models that learn predictive patterns in the morphology of
ICP. Results demonstrate the significant improvement of the model in detecting false ICP
alarms and its potential to be applied in bedside monitor.
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Fig. 1.
Illustration of the 24 morphological metrics extracted from the configuration of the three
peaks of the ICP pulse detected using MOCAIP.
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Fig. 2.
Average ROC curves computed for SR-KDA, SR-DA, and threshold models. Improvement
in terms of AUC between SR-DA (blue) and threshold-based approach (green) is significant
(p-value < 0.01). A significant improvement can also be observed between SR-KDA (black)
and SR-DA (blue).
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