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Abstract
Ultrasonic displacement estimates have numerous clinical uses including blood-flow,
elastography, therapeutic guidance and ARFI imaging. These clinical tasks could be improved
with better ultrasonic displacement estimates. Traditional ultrasonic displacement estimates are
limited by the Cramer-Rao lower bound (CRLB). The CRLB can be surpassed using biased
estimates. In this paper a framework for biased estimation using Bayes’ theorem is described.

The Bayesian displacement estimation method is tested against simulations of several common
types of motion: bulk, step, compression, and acoustic radiation force induced motion. Bayesian
estimation is also applied to in vivo acoustic radiation force imaging of cardiac ablation lesions.
The Bayesian estimators are compared to the unbiased estimator, normalized cross-correlation.

As an example, the peak displacement of the simulated acoustic radiation force response is
reported since this position results in the noisiest estimates. Estimates were made with a 1.5 λ
kernel and 20 dB SNR on 100 data realizations. Estimates using normalized cross-correlation and
the Bayes’ estimator had mean-square errors of 17 and 7.6 μm2, respectively, and contextualized
by the true displacement magnitude, 10.9 μm. Biases for normalized cross-correlation and the
Bayes’ estimator are −.12 and −.28 μm, respectively. In vivo results show qualitative
improvements. The results show that with small amounts of additional information significantly
improved performance can be realized.

I. INTRODUCTION
To the end of creating displacements estimators that bypass fundamental limits on common
estimators, such as normalized cross-correlation, a perturbation to the traditional likelihood
function was proposed in the accompanying paper and shown to be more discriminative in
the sense of appropriately concentrating probability distributions around the true
displacement [1]. In addition to presenting a modified likelihood function, biased estimators
were introduced in a qualitative manner. In this paper biased estimators are implemented,
and it is shown that with relatively small amounts of additional information it is possible to
surpass the performance limit described by the Cramer-Rao lower bound.

The Cramer-Rao lower bound is a general measure of information content that describes the
minimum obtainable estimation error variance when using an unbiased estimator [2]. A
Cramer-Rao lower bound for displacement estimation related tasks has been derived in the
ultrasound literature [3]–[7], but the derivation by Walker and Trahey [6] seems to be
favored (probably because of broad applicability) and is
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(1)

where f0 is the pulse center frequency, B is the pulse bandwidth, T is the kernel size, ρ is the
normalized correlation between signals, and SNR is signal to noise ratio.

The Cramer-Rao lower bound limited estimator—usually referred to as the minimum
variance unbiased estimator (MVUE)—is unique because the algorithmically induced bias is
zero, which can be useful. The utility of the unbiased nature is seen in situations where
many independent measurements can be acquired. In this case, the mean of all the estimates
will converge towards the true measurement. However, in most clinical scenarios it is not
possible to obtain multiple measurements. In in vivo scenarios where only a single estimate
can be acquired the bias error is often over emphasized as a noise mechanism. This is
because for a single estimate it is not possible to distinguish between different orthogonal
error components [8]. By considering both noise mechanisms—bias and variance—a better
estimator can often be realized.

Bias and variance of an estimator’s error are defined as

(2)

(3)

where τ0 describes the true estimate and  describes the estimated time shift (i.e.
displacement) between two signals. Both noise mechanisms can be appropriately combined
in the form of the mean square error (MSE), which is

(4)

In many cases allowing a small amount of bias into an estimator can lead to a drastic
reduction in the estimation variance creating an overall lower MSE. Fig. 1 shows an
example of two different hypothetical biased estimators and how they might compare to an
unbiased estimator that is Cramer-Rao lower bound limited.

In the ultrasound literature there have been no descriptions of biased displacement
estimators that produce estimates with a lower MSE than would be produced by a minimum
variance unbiased estimator. Several groups have produced estimator schemes where the
displacement search region is shifted and reduced in size based on displacements measured
at adjacent positions [9]–[11], but because of the way these algorithms are implemented they
only achieve improvements in computational efficiency and in reduction of peak-hopping
artifacts rather than an improvement in the actual MSE. (This type of approach will be
shown to be a specific realization of the methods developed herein.)

In the rest of this paper biased displacement estimates with mean-square error surpassing the
limit expressed by the Cramer-Rao lower bound will be demonstrated for several different
types of motion.
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II. METHODS
A. Overview

It is difficult to create estimators with improved MSE characteristics relative to the MVUE
using classical methods [2]. The usual alternative is to use Bayes’ theorem, which is a
simple equation describing the appropriate method for combining the current data with
previous knowledge about the parameter(s) to be estimated [8]. Bayes’ theorem will be used
for ultrasound displacement estimation to appropriately combine information from a local
similarity function and prior information about the displacement to provide a better estimate
for the current displacement estimate. To this end, Bayes’ theorem is expressed as

(5)

where x is the data, τ0 is the displacement, and m indexes axial depth. The term pm(x | τ0)
denotes the likelihood function, pm(τ0) is the prior probability density function (PDF), and
pm(τ0 | x) is the posterior PDF. The likelihood function is the means by which data is
incorporated into the estimate. An appropriate and implementable likelihood function has
been demonstrated in the companion paper to this one [1] and is

(6)

where sm1 and sm2 are the RF A-lines from which motion will be estimated, α is an
application specific scaling term, Δ is the sampling period, and M is the length of the data
record (i.e. kernel length). The quality metric for this function is normalized cross-
correlation and the SNR is calculated as

(7)

The prior distribution expresses previous knowledge of the displacement and is a PDF.
Example uses of prior PDFs would be to use the knowledge of an ARF dynamic response
through depth to allow adjacent spatial locations to appropriately influence the current
estimate, or similarly, in the case of blood flow estimation one could use fluid dynamics to
influence adjacent spatial locations [12]. The posterior distribution is also a PDF and
represents the final state of knowledge of the parameter(s) to be estimated after combining
the new and old information. Displacement estimates at a given depth position will be made
from the posterior distribution.

Two simple methods for obtaining prior PDFs of the displacement estimate will be
described. Accompanying the description of prior PDFs will be a description of appropriate
estimators for resolving the final posterior distribution into estimates of displacements.

B. Prior Probabilities
Methods for computing prior probabilities for ultrasound displacements is an open-ended,
flexible problem with many solutions. Two solutions for computing prior probabilities will
be developed in this section. The intention of the proposed methods will not be to present a
broadly generalizable optimal prior PDF but rather to demonstrate the promise of biased
estimators and the small amount of additional information needed to surpass the CRLB. The
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simplest, least-informative prior for ultrasound displacement estimation is a uniform PDF
with an extent equivalent to the search region. This prior is described as

(8)

where τα and τβ denote the limits of the search region. The mean and variance of the
uniform prior can be static for all displacement estimates in the field, or the uniform PDFs
can be dynamic based on other information such as spatially adjacent displacements [9]–
[11]. For the evaluation here the uniform PDF is static with depth.

The second prior scheme that will be explored is more dynamic than the uniform PDF
proposed above. In this scheme the posterior distribution at the previous depth will be
considered a good estimate for the prior distribution at the current depth. When the previous
posterior gets too narrow based on the posterior’s standard deviation the prior will revert to a
normal distribution with mean equal to the previous estimate and a standard deviation equal
to a defined minimum standard deviation. That is,

(9)

where  is the estimate at the previous depth and the variance is a pre-defined σmin.

In a special case where deterministic and stochastic implementations are compared the prior
will always be a normal distribution based on the mean and standard deviation of the
posterior distribution. In this case the standard deviation will be

(10)

where σmin is a defined minimum standard deviation. This is done because normal
distributions are easy and efficient for taking random samples compared to arbitrary PDFs
that may be encountered in more general methods. Additionally, normal distributions are
useful because they represent the least informative prior when only the mean and standard
deviation are known. This special case and the accompanying results are in the appendix.

C. Parameter estimation from posterior distributions
Using the likelihood function shown in Eqn. 6 and one of the approaches for computing a
prior PDF just described, it becomes simple to use Bayes’ theorem shown in Eqn. 5 to
calculate a posterior PDF, which can be converted into a displacement estimate. Many
methods exist to resolve posterior distributions into displacement estimates [2]. The two
methods evaluated here are the minimum mean square estimator (MMSE) and the maximum
a posterior estimator (MAPE). The MMSE is

(11)

The MMSE is the average of the posterior distribution, and as suggested by the name
minimizes the mean square error of the estimate for . This indicates a significant
conceptual departure from the MVUE (limited by the Cramer-Rao lower bound),
particularly since the possible improvements are available even when used with a non-
informative prior.
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(It is worth stating that the MMSE is not necessarily “better” than the MVUE even when it
yields what would be considered better estimates. This is because the optimization problem
that would lead one to the MMSE is different from the problem that leads to the MVUE. A
thorough discussion on the nature of the various estimators has been presented by Kay [2].)
The MAPE is

(12)

The MAPE resembles the methods for parameter estimation when using normalized cross-
correlation, and since the conversion of the normalized cross-correlation function to a
likelihood function (Eqn. 6) is a monotonic transformation normalized cross-correlation and
MAPE yield identical estimates for the case of a uniform prior (Eqn. 8) on τ0 [1].

In the event that the posterior distribution is normally distributed (or more generally in the
case where the posterior distribution is symmetric about the peak) the MMSE and the
MAPE will yield identical results.

Normalized cross-correlation sometimes referred to as the maximum likelihood estimator
(MLE) will be the primary point of comparison for the estimators introduced.

D. Simulations
In order to test the new displacement estimators four types of simulations were performed.
Simulations were performed to test the estimators on bulk displacements, step
displacements, compression induced displacements (strain), and acoustic radiation force
(ARF) induced displacements.

The first three sets of simulations (bulk, step, and compressional displacements) are entirely
1D. The 1D data were simulated using an axial convolution method. The convolution was
performed between a complex Gaussian pulse and a randomly distributed scatterer field. For
each scatterer in the field the pulse was given a bulk offset in pixels and a sub-sample phase
rotation based on the difference between the nearest pixel location and its actual location.
This approach to the typical convolution data simulation method allowed continuous
displacements to be simulated. The final simulation result for each scatterer field was a
single A-line of RF data obtained by taking the real part of the complex convolution.

For the purposes of the simulation 35 scatterers were used per resolution cell. Thirty-five
scatterers per resolution cell is excessive—12-15 scatterers are adequate to achieve second-
order speckle statistics [13]; the large number of scatterers was chosen to ensure sufficient
scatterer density regardless of the simulated displacement such as displacement fields
induced by large step displacements or strains.

For all the simulations—including the ARF simulations not yet described—thermal noise
was modeled as an additive random process that was band-limited based on the simulated
pulse’s characteristics. All the simulations used the parameters shown in Table I unless
specified otherwise. Specifically notable is the sampling frequency. A sampling frequency
of 10 GHz was deemed sufficient to avoid using sub-sample estimation for the MAPE or
MLE and obtain an adequate error distribution for almost all cases. (Using a sub-sample
estimator is undesirable in this case because it adds an additional source of bias.) The
sampling frequency was also sufficient to allow numerical integration for the MMSE—with
and without a dynamic prior—to be implemented as a simple summation.
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All four estimators, the MLE, the MMSE with a non-informative prior, the MAPE with a
dynamic prior and the MMSE with a dynamic prior will all be evaluated on each type of
simulated motion.

For the bulk displacement simulations the effect of frequency, bandwidth, kernel length, and
SNR were evaluated. These factors all influence the Cramer-Rao lower bound shown in
Eqn. 1. The only other factor influencing the CRLB is signal correlation. Signal correlation
effects can be mechanism dependent so several mechanisms of inducing decorrelation will
be evaluated in the simulations for step, compressional, and ARF displacements. For the
bulk displacement simulations 1000 realizations of scatterer and noise realizations were
evaluated. Additionally, the displacement for each realization was drawn from a normal

distribution with zero-mean and a standard deviation of . This avoided any biases that
could be caused by a regular pattern of subsample displacements and was computationally
efficient since the necessary search region was small.

For the step displacement simulations, a step displacement equalling 20% of the center
frequency’s wavelength was created at 2 cm of axial depth. The effect of a minimum
standard deviation for the normal prior distribution was evaluated. The step displacement
simulations results for biased estimators was also used to calculate frequency responses.
Frequency responses can be obtained by differentiating the step displacement and
calculating the Fourier transform of the result. The frequency response will also include the
frequency response of a 47th order low-pass filter. This particular filter was the shortest
passive filter designed using the windowed linear-phase FIR method [14] (as implemented
in Matlab) that has a lower MSE for an ARF induced displacement compared to any of the
biased estimators. Minimum prior standard deviations for the dynamic prior between .1 ns
and 100 ns were evaluated. For the step displacement simulations 100 realizations of data
were evaluated.

The ARF results from displacement estimation using biased estimators are also compared
against filtering the ARF displacements estimated using normalized cross-correlation
combined with low-pass filters. The filters were designed using the windowed linear-phase
FIR method [14] (as implemented in Matlab).

Strain displacements were simulated mathematically by compressing the location of the
scatterers in the simulated field. Simulations were performed for compressions between .
01% and 10%. For the strain simulations SNRs between 10 and ∞ dB and adjacent kernel
overlap between 0% and 99% were evaluated. Simulations were also performed for
minimum prior standard deviations between .1 ns and 1 μs. Strain was estimated from the
compression induced displacements using only the derivative without any averaging or
median filtering.

For the strain comparisons some of the plots will be displayed as “strain filters”
conceptualized by Varghese and Ophir [15]. The strain filter plots the SNR of the strain
estimates as a function of strain. The results here will calculate the strain SNR as

(13)

One hundred realizations of scatterer distribution and noise for each level of strain were
evaluated.

ARF simulations were also performed in order to evaluate estimator performance within the
context of a more sophisticated modeling framework. ARF simulations were performed
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using the methods laid out by Palmeri et al. [16], [17], which couple finite-element
simulation of the motion induced by acoustic radiation force and clinically relevant
beamforming implemented using Field II [18], [19]. For the ARF simulations comparisons
were made against SNRs between 10 and ∞ dB, for minimum standard deviations between .
1 ns and 1 μs for the normal prior distribution, and for changes in tracking kernel overlap
between 0 and 99%. Because ARF induced displacement estimates systematically
underestimate the tissue displacement by as much as 50% (and even in the best case
underestimate by about 10%) [29], the displacement values used to calculate error metrics
are the mean displacement values of all realizations tracked with normalized cross-
correlation. When analyzing a specific realization the mean profile was comprised of all
realizations except the one in question.

E. In vivo example
In order to demonstrate basic in vivo feasability normalized cross-correlation and MAPE are
compared for a cryoablation lesion visualized with ARFI. The results were acquired using
an open-chested canine preparation. The cryoablation was formed on the epicardial surface
of the heart using a Brymill Cry-Ac®Tracker® with a 3mm Mini Probe (Brymill Cryogenic
Systems, Ellington, CT). The data were acquired using a SONOLINE Antares ultrasound
system and VF10-5 linear array transducer (Siemens Healthcare, Ultrasound Business Unit,
Mountain View, CA, USA). The data were acquired at baseband at 8.9 MHz. The baseband
data were interpolated to 142 MHz and reconstructed to radio frequency data. For each ARF
induced displacement four adjacent A-lines were acquired in parallel. The center frequency
for the data used to estimate the dynamic response is 8 MHz. The pulse repetition frequency
for measuring each dynamic response is 8.9 kHz. The α for equation 6 is 4, the minimum
standard deviation for the prior was 5 ns, and the kernel length was 1.5 λ. For both
implementations of the displacement estimation—normalized cross-correlation and MAPE
—parabolic subsample estimation was used.

III. RESULTS
A. Bulk Motion Displacement Simulations

Results of the bulk displacement simulations are shown for parameters (excluding signal
correlation) impacting the Cramer-Rao lower bound. The bias and variance are plotted as

 and  respectively in order to demonstrate the result in μm, which is often more
concise, while the MSE is always displayed in μm2. Results are shown for all four
estimators for frequency and bandwidth as a function of the parameter in Fig. 3. Results for
varying SNR and kernel length are shown as a function of depth for the MAPE and
normalized cross-correlation (i.e. the MLE) in Figs. 4, and 5.

In Fig. 3, where the frequency and bandwidth affects on bulk motion estimation are shown,
it is clear that the MSE for biased estimation is less than that for unbiased estimation. In
addition to this, there are several other key trends. The first trend is that normalized cross-
correlation and the MMSE with a non-informative prior perform almost identically for bulk
motion. The same can be said for the MAPE and MMSE when implemented with the
dynamic prior for bulk motion. The second trend is that the functional behavior of the
frequency and the bandwidth for the biased estimators is very similar to the behavior of the
unbiased estimator. The third trend, which is very significant, is that for bulk motion the
biased estimator has lower bias than the algorithmically unbiased normalized cross-
correlation. Additionally, the bias always represents a significantly smaller portion of the
MSE than the variance for all estimators.
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The effect of SNR on bulk motion estimates is shown in Fig. 4 as a function of depth in
order to show how improvements evolve. The results are only shown for normalized cross-
correlation and the MAPE since the other estimators were shown to perform almost
identically. The results generally follow the trends seen for frequency and bandwidth. These
results add additional perspective and show that the region of most rapid improvement—
compared to the MLE—is within the first 0.5 cm of axial depth with modest improvements
past about 1 cm axially. This demonstrates that only small amounts of additional
information are required to achieve results that surpass the CRLB. Finally, the SNR results
show an “artifact” for the MAPE when the SNR is ∞ dB1. The no noise scenario for the
bulk motion simulations should be considered a degenerate case since all the probability is
concentrated to a single sample. The sample that the probability concentrates to is not the
exact solution, but since the probability is a δ–function the estimator assumes this answer is
exact resulting in an inconsistent framework. This artifact is not seen in any of the other
results and is not expected in in vivo scenarios due to the ubiquity of thermal noise and
signal decorrelation.

The most interesting bulk motion results are for the kernel length. Kernel length results are
shown as a function of depth for the MLE and MAPE in Fig. 5. The results show that for the
MAPE the kernel length has almost no effect on the MSE particularly when compared to the
behavior of normalized cross-correlation. In addition, the results for the MAPE show that
the smallest kernel length evaluated (1.5 λ) has the smallest bias. The results for kernel
length are unexpected but intriguing. It is hypothesized that by passing information from one
estimate to the next the amount of information contained in the displacement estimate from
8 consecutive 1.5 λ kernels is equivalent to the information from estimating the
displacement from a single 12 λ kernel.

B. Step Displacement Results
Results for the step displacement simulations are shown in Fig. 6. The figure shows the
MSE of the MAPE in response to a step displacement. The results are shown for a selection
of prior PDF minimum standard deviations. The broadest standard deviation shown is
basically normalized cross-correlation since the prior imposes so little effect on the MSE.
Additionally, one of the useful aspects of simulating a step displacement profile is the ability
to construct the frequency response. Frequency responses for a selection of minimum prior
standard deviations are also shown in Fig. 6. Included in the figure is the frequency response
of a 47th order low pass filter since this was found to be the shortest filter that produced a
lower MSE than any biased estimator for ARF induced displacements.

C. Compression Induced Displacement Results
Results for compression induced motion estimates and the resulting strain estimates are now
shown. The results show the effect of assigning an appropriate minimum standard deviation
to the prior PDF, the effect of SNR, and the effect of kernel overlap.

The first results show the effect of minimum standard deviations of the prior PDF on
compressional motion estimates. These results are shown in Fig. 7. The results show that
there is a relatively narrow range of minimum standard deviations that produce better results
over normalized cross-correlation. However, for a large range of standard deviations the
estimates are no worse than normalized cross-correlation2. Similar results are shown for the

1The MMSE with either prior scheme shows the same artifact.
2Even when MSE improvements over normalized cross-correlation are not realized the prior can still act as a peak-hopping filter.
Peak-hopping can be reduced by the prior (as compared to the non-informative prior) by slightly attenuating correlation peaks away
from the prior’s mean.
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actual estimation of strain in the form of a “strain filter” in Fig. 8. Results are shown for a
range of minimum standard deviations for the MAPE and for one minimum standard
deviation case for all four estimators. One interesting result is that for small strains in the
range of .01-.1% that are normally difficult to measure can be estimated effectively. This is
probably at least in part because the prior scheme assumes bulk motion, which is also
probably why the improvement in the more traditional clinical strain region is more modest.

The effect of SNR on estimating compressional motion and strain are shown in Fig. 9. The
results show that the MSE is lowest when there is 20 dB of SNR. There is a small decline in
performance when the SNR gets better and a larger decline in performance when the SNR
gets smaller. It is not known why this is the case, but it is hypothesized that 20 dB is the
right amount of SNR to keep the posterior (and by extension subsequent prior) distributions
sufficiently broad to more adequately handle the gradually increasing displacement
encountered in these simulations. The results for actual strain estimates do not show
estimation improvement at 20 dB but do show that at SNRs 20 dB and higher SNR has little
impact on the strain MSE. This trend is not significantly different than the results derived
from normalized cross-correlation based estimates.

The effect of kernel separation on displacement estimation is displayed in Fig. 10. The
results show the best lag between kernels for the purpose of displacement estimation is 80%
of the kernel’s length. However, these results may be slightly misleading since the minimum
prior standard deviation used for these estimates was optimized for 80% kernel overlap. It
may be possible to find a better combination of kernel overlap and minimum prior standard
deviation. The result of estimating the strain with various levels of kernel overlap is also
shown in Figs. 10. These figures show, for the biased estimators, that when estimating strain
the amount of kernel overlap matters less. For these results the MLE derived displacements
can actually lead to better estimates of strain. This seems to be true for kernel overlap that is
about 50% or less. This occurs because the difference between the two estimates is higher
and the noise on the estimates has less impact. The general method employed in the
literature is to calculate strains with kernel overlap of 75-80% and then filter the results (or
fit to a model), which mitigates the improvement of having no kernel overlap.

D. ARF Induced Displacement Results
ARF induced motion estimates are shown next. The results will show the effect of assigning
an appropriate minimum standard deviation for the prior PDF and the effect of kernel
overlap.

First, the results showing the impact of the minimum standard deviation of the prior are
shown in Fig. 11. The figure shows three different positions along the axis of the ARF
dynamic response. The figure demonstrates the absolute performance of each estimator as
well as each estimator’s relative performance to the others over a range of selections for
σmin. The estimators that use a dynamic prior do have the lowest MSE, but they also have
the highest MSE. This trend indicates the importance of proper selection of σmin.
Additionally, in the region of best performance there is no difference between the estimators
using a dynamic prior. However, when non-informative priors are used the mean-square
error has a slightly lower MSE for the estimate from the leading edge and peak, but slightly
worse performance on the trailing edge compared to the MLE.

The results for changes in kernel decimation are shown in Fig. 12. The figure shows the
MSE plotted as a function of the distance between kernels in percent of kernel overlap for
the same positions along depth shown in Fig. 11. One of the initial hypothesis was that more
overlap would be beneficial to the biased estimators. This figure shows a trend that is
distinctly in the opposite direction. The figure suggests that a kernel overlap of no more than
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20% produces the best results. This is an attractive result since it decreases computational
overhead.

E. Simulation results summary
Considering all the results as a whole, the results of none of the estimators had zero bias
including normalized cross-correlation. Since normalized cross-correlation is
algorithmically unbiased, this suggests that there is bias in the data used to track the motion
of diffuse scatterers. The biased estimators often had lower bias than normalized cross-
correlation, and when the bias of the biased estimator was worse it was still lower than the
noise from variance. These observations are consistent with the arguments and examples
given by Jaynes on biased estimation [8]. (This pattern of improvement excludes minimum
standard deviations that are grossly inappropriate. As an example, a prior standard deviation
of 10−11 in the ARFI results shown in Fig. 12 would result in much worse behavior not
conforming to the pattern just described.) The observation that the variance is still the
dominant noise source is significant because it signifies that the estimators are not over
biased, or in other words, the estimators are not being dominated by prior information and
are sensitive to the data over a fairly wide range of prior standard deviations.

While the observations above about the variance are generally consistent with ultrasonic
displacement estimation literature, the observations regarding bias are not. Two hypotheses
for the source of the displacement bias are posited. First, it is possible that bias comes from
subsample displacements. This seems unlikely based on the design of the bulk motion
simulations because the displacements were drawn from a Gaussian distribution centered
about zero displacement. If the source of the bias was from the randomness of the
displacements it is expected that measured bias would be several order of magnitude smaller
then what was actually measured and would mirror the simulations without noise. Second, it
is possible that the bias comes from the noise. This immediately seems at least plausible
since Fig. 4 shows that the bias is a function of the SNR. In this case the noise induced bias
is just the orthogonal component to noise induced variance. The higher than expected bias
may be related to the correlation length of the noise, which in turn is related to the
bandwidth of the signal.

F. In vivo results
In vivo ARFI results of a canine right ventricle cryoablation are shown in Fig. 13. The figure
shows the same data with motion estimated using normalized cross-correlation and using
Bayesian speckle tracking with MAPE. The images show the stiff cryolesion as low
displacements and the soft spared tissue as high displacement. The image formed using
Bayesian speckle tracking shows less variability than the image made using normalized
cross-correlation. Additionally, there is detail in the MAPE image that is not present (or hard
to see) in the normalized cross-correlation image. An example of the additional detail
visualizable using MAPE is the blockiness on the right side of the MAPE image outside the
lesion. This blockiness results from the position of the parallel tracking beams and the early
time point after the radiation force excitation that is being shown3. The impact of the receive
beamforming appears to be present in the image formed using normalized cross-correlation,
but is not as obvious because of the higher variance of the displacements.

The contrasts of the ARFI image made using normalized cross-correlation and MAPE are
0.4370 and 0.3988, respectively. The contrast-to-noise ratios (CNR) for the ARFI image
made with normalized cross-correlation and MAPE are 0.2534 and 0.6236, respectively4.

3At later times the blockiness goes away as the displacement propagates away from its original lateral location in the form of some
transverse wave (e.g. lamb wave, shear wave, etc.).
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(The CNR calculated for the MLE derived ARFI image may seem low based on the
visibility of the lesion, but the image has been saturated on the high displacement end.
Image saturation significantly improves the effective CNR.)

One downside side of Bayesian speckle tracking—as implemented here—is that the final
result is influenced by the starting position of the prior scheme. Worse results have been
seen when the prior scheme starts outside of the tissue, which could occur because it starts
above the myocardium in the standoff pad, or because it starts below the myocardium inside
the chamber. The dependence on start position is not seen to be a major limiting factor since
the important issue seems to be starting at any tissue location.

IV. DISCUSSION
The results presented in this paper are significant but not because of the specific method
used to estimate prior probabilities5, but because with a simple prior scheme the Cramer-
Rao lower bound can be surpassed. It is entirely expected that within the framework laid out
here and in the companion paper [1] displacement estimation performance will continue to
improve. This improvement will come from increasingly sophisticated methods for
computing prior information [20], [21].

As an example, one of the first ways to realize improved performance is suggested by the
results seen from low-pass filtering the unbiased displacements of ARF induced motion6.
The ARF induced motion estimates that were low-pass filtered by a long filter had slightly
better MSE performance than any of the biased estimates. The low-pass filter appears to be
advantaged (at least in part) because it was implemented non-causally (i.e. symmetrically)
and unlike the biased estimators was not tethered by a false causality. Forcing a false
causality is a common theme in advanced displacement estimation methods [22]–[24] where
only estimates before the current estimate are allowed to assist in refining the current
estimate. By moving away from this unnecessary constraint, estimator performance will
likely improve.

In addition to developing a framework for Bayesian speckle tracking two new estimators
were introduced, the minimum mean square estimator and the maximum a posteriori
estimator. The usefulness of each estimator is situational. For large search regions—such as
in static elastography imaging—MAPE works well particularly if the prior has a large
variance. For smaller search regions required for estimating ARFI induced motion the
MMSE may work slightly better, particularly for environments with high thermal noise. The

4The contrast is defined as

(14)

The CNR is defined as

(15)

5In the chance that someone imitates the method used here for computing dynamic priors an inherent weakness in the approach is that
there is not a good mechanism for allowing the prior PDFs to become wider if the information at an adjacent location appears to be
uncorrelated. This is easily observed in the results of the step displacement simulations where small values for σmin result in nearly
unrecoverable performance degradation after the step displacement. This will be a function of both the step size and the standard
deviation of the prior distribution.
6These results where primarily shown in the figure of frequency response, Fig 6. It was observed that a 47th order low-pass filter
could produce a better MSE.
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MMSE can also be shown to be computationally more efficient if sub-sample estimators are
not used in conjunction with the MAPE or MLE.

Finally, biased displacement estimation has only been applied to 1D displacement scenarios.
Two and three dimensional realizations of biased displacement estimation can easily be
accomplished by extending the normalized cross-correlation function in (6) to two or three
dimensions. (The associated value would also change based on the kernel size.) This has
been applied succesfully to in vivo cardiac speckle tracking [25].

V. CONCLUSION
Biased estimators were devised using several simple prior schemes, the non-informative
prior and a dynamic prior PDF. These prior schemes were coupled with two methods of
extracting displacement estimates from posterior distributions, the MMSE and the MAPE.
Using the new biased estimators it was shown that with relatively small amounts of
additional information the Cramer-Rao lower bound can be surpassed. While the biased
estimators obviously contained bias for appropriate selection of the prior PDF the dominate
noise mechanism was still the variance of the error.
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APPENDIX: STOCHASTIC VS. DETERMINISTIC IMPLEMENTATIONS
Bayesian estimators are appropriately implemented stochastically. For example, the
estimators developed here should be implemented by drawing random values from the prior
PDF that describes the a priori knowledge of τ0. However, deterministic approximations can
in some cases be faster or at least can be more readily implemented in existing code. It will
be shown that appropriate stochastic implementations of the Bayesian estimators and
deterministic implementations yield statistically indistinguishable results. The estimators
will be implemented deterministically by directly multiplying the prior distribution over τ0
and the likelihood function. In order to make the sampling simple the prior PDF for both
cases will always be a normal distribution with mean and variance equivalent to the previous
posterior distribution.

Two example results for specific data realizations are shown in Fig. 14. The results show
how the random sampled implementation converges to a final estimate as more samples are
drawn. The example shows that the deterministic and stochastic implementation for a given
realization of data do not necessarily converge to the same result. Results for simulating
1000 data realizations and comparing the displacement estimate error distribution between
the two methods is shown in Fig. 15. The figure shows the resulting p-value from statistical
tests to compare the mean and variance of the error distributions for the two methods as a
function of depth and of number of drawn samples for the stochastic implementation. The
results show that only at very shallow depths (i.e. broad prior distribution) and a small
number of draws from the prior distribution do the error distributions vary. The exception to
this is at deeper depths (i.e. narrow priors) where a small portion of the estimates derived
from the stochastic implementation yield large errors, which result in statistically different
distributions.
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While the deterministic and stochastic approach are shown to be statistically equivalent for
the simple case implemented in this paper, this similarity should not automatically be
expected to hold for more complex problems.
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Fig. 1.
Three distributions describing the error of different hypothetical estimators are shown. The
broad distribution can be equated to a MVUE, which would be described by the Cramer-Rao
lower bound. The other two estimators have a significantly smaller variance. The estimator
with the small bias to the right of θtrue is attractive, while the other biased estimator is
clearly not.
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Fig. 2.
A flowchart for the deterministic implementation of biased estimation described in the
methods.
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Fig. 3.
Frequency and bandwidth functional responses for bulk motion. The effect of bandwidth and
frequency are shown for all four estimators. The estimators with a depth-dependent,
dynamic, gaussian prior are shown for two depths, 1.5 cm and 4.5 cm. The mean and
standard deviation displayed are calculated over a 0.5 cm window in both directions. The
MLE and MMSE with a non-informative prior are shown based on their statistics centered
around 1.5 cm. The functional forms for frequency and bandwidth are very similar to the
functional form seen for the MLE (i.e. normalized cross-correlation). Consistent with other
results, the bias is lower for the biased estimator.
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Fig. 4.
SNR comparisons for bulk motion. This figure compares the MLE (normalized cross-
correlation) to the MAPE with the dynamic guassian prior distribution as a function of depth
for several levels of SNR. For both cases the mean-square error is dominated by variance.
The bias is very similar between the two estimators, but the biased estimator actually has a
lower bias for bulk motion when comparing a given level of SNR. The no noise case for the
MAPE (i.e. ∞ dB) should be seen as a degenerate case since the sampling frequency is not
adequate for this level of probability concentration. This failure is not seen when any
amount of signal decorrelation is present.
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Fig. 5.
Kernel size comparisons for bulk motion. This figure compares the MLE (normalized cross-
correlation) to the MAPE with the dynamic guassian prior distribution as a function of depth
for several common kernel lengths. For both cases the mean-square error is dominated by
variance. The biased estimator actually has a lower bias for bulk motion when comparing a
given level of SNR. For the MAPE the shortest kernel length evaluated produces the lowest
bias.
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Fig. 6.
Step displacement results. In the first figure the results of the MAPE for a step displacement
at 2 cm are shown for several different minimum standard deviations for the normal prior.
The bottom figure shows the result of using the step response to calculate the frequency
response. On this plot the frequency response of the shortest filter that outperforms the
biased estimator in a mean-square error sense.
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Fig. 7.
Minimum prior standard deviation’s effect on compressional motion estimates. The effect of
minimum standard deviation on the MSE is shown for all four estimators.. Results are
displayed for two ranges of depth, 0–1 cm and 2–3 cm axially. The standard deviation is
shown (untransformed) and is displayed only on the upper side when μ–σ would be less
than zero (since the data are displayed on a log scale). All four estimators are shown. There
is a range of minimum standard deviations where the MAPE and MMSE outperform
normalized cross-correlation for 1% strain.
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Fig. 8.
Several “strain filters” are plotted for varying levels of σmin as expressed in Eqn. 9 for the
MAPE and the MMSE. Additionally, in the bottom plot all the estimators are compared (for
this figure the minimum prior standard deviation is 3.1 ns).
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Fig. 9.
SNR functional response for compresional motion and strain estimation. This figure shows
compressional motion estimation MSE as a function of SNR. The results are shown for four
different estimators (MLE, MAP, MMSE non-informative prior, MMSE).

Byram et al. Page 23

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2013 January 17.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 10.
Kernel overlap functional response for compressional motion and strain estimation. This
figure shows compressional motion MSE for displacement and strain as a function of kernel
overlap. Results are shown for four different estimators (MLE, MAP, MMSE non-
informative prior, MMSE). The results in the top plot show the lowest MSE for kernel
overlaps typically found in the literature. However, the bottom plot shows the best
performance for the no kernel overlap case. This likely stems from the strain estimation
method used here.
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Fig. 11.
ARFI displacement MSE as a function of minimum prior width. These data show the mean
square error as a function of the minimum allowable prior distribution. The data are shown
for the estimates at the positions shown in Fig. 11a. Four different estimators are compared
at each depth. The maximum a posteriori, the minimum mean square error with a dynamic
prior, the minimum mean square error with a non-informative prior, and the maximum
likelihood estimate.
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Fig. 12.
ARFI displacement estimation MSE displayed as a function of kernel separation. Estimation
MSE is shown for the leading edge, the peak and the trailing edge of the ARFI displacement
as shown in Fig. 11a. The results for all four estimators are shown in each figure.
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Fig. 13.
An In vivo comparison of unbiased and biased ARFI images of a cryoablation lesion
(copper scale) embedded in a BMode image (grayscale). The first image shows an image of
the cryoablation lesion with displacements estimated using normalized cross-correlation.
The same data is used to create the second image, but the displacements are estimated using
the MAPE. The contrasts of the normalized cross-correlation and MAPE derived
displacement images are 0.4370 and 0.3988, respectively. The CNRs of the normalized
cross-correlation and MAPE derived images are 0.2534 and 0.6236, respectively. The
MAPE image on the right shows subtle vertical displacement streaks resulting from the
parallel tracking sequence in conjunction with the early time step after the initial push used
to form this image. Because the image is created at an early time after excitation there has
not been sufficent time for the shear wave to propagate away from the initial excitation
position and a banding artifact results. This effect is also present in the image on the left, but
the artifact is masked by the larger variance of the unbiased estimator.
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Fig. 14.
This figure shows two example results comparing a deterministic implementation (direct
multiplication of PDFs) of the proposed estimator and a true Bayesian implementation
(randomly drawing from the prior distribution) for the simple case implemented here. The
first example is for a relatively shallow depth with a wide prior probability on τ0. The
second example is for still shallow but deeper depth (5 mm), which has a more refined prior.
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Fig. 15.
This figure demonstrates the similarity between the deterministic and probabilistic
implementations of the biased estimators. The two figures show the actual p-value
calculated as a function of the number of samples from the prior and depth.
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Table I

Simulation Parameters

Parameter Value

Center Frequency 5 MHz

Bandwidth 50%

Sampling Frequency 10 GHz

Kernel Length 3λ

Kernel Overlap 80%

Strain Specific

Strain 1%

ARF Specific

Tracking Center Frequency 7 MHz

Tracking F/# 0.5

Radiation Force Center Frequency 2.22 MHz

Radiation Force Duration 180 μs

Radiation Force F/# 2

Sampling Frequency 100 MHz

Focus Depth 2 cm

Tracking PRF 10 kHz

Young’s Modulus 8.5 kPa

Kernel Length 1.5λ

ρ 1.0g/cm3

ν 0.499
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