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Abstract

Exome sequencing is becoming a standard tool for mapping Mendelian disease-causing (or pathogenic) non-synonymous
single nucleotide variants (nsSNVs). Minor allele frequency (MAF) filtering approach and functional prediction methods are
commonly used to identify candidate pathogenic mutations in these studies. Combining multiple functional prediction
methods may increase accuracy in prediction. Here, we propose to use a logit model to combine multiple prediction
methods and compute an unbiased probability of a rare variant being pathogenic. Also, for the first time we assess the
predictive power of seven prediction methods (including SIFT, PolyPhen2, CONDEL, and logit) in predicting pathogenic
nsSNVs from other rare variants, which reflects the situation after MAF filtering is done in exome-sequencing studies. We
found that a logit model combining all or some original prediction methods outperforms other methods examined, but is
unable to discriminate between autosomal dominant and autosomal recessive disease mutations. Finally, based on the
predictions of the logit model, we estimate that an individual has around 5% of rare nsSNVs that are pathogenic and carries
,22 pathogenic derived alleles at least, which if made homozygous by consanguineous marriages may lead to recessive
diseases.
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Introduction

Since the first successful application of exome sequencing in

finding the causal mutation for a Mendelian disease [1], many

such studies have been conducted to identify other Mendelian

disease-causing (or pathogenic) variants. Compared to genetic

linkage studies of Mendelian diseases, exome sequencing requires

a smaller number of affected individuals, who may even be

unrelated. With decreasing sequencing costs, exome sequencing is

becoming a standard tool for mapping causal genes for human

Mendelian diseases.

The most common cause of Mendelian disease is a non-

synonymous single-nucleotide variant (nsSNV) that results in a

single amino acid change in the encoded protein [2]. With the

large number (typically around 8,000–10,000) of nsSNVs in an

individual genome and the small number of (usually affected and

unrelated) individuals available, standard methods for genetic

linkage and association do not work for exome sequencing studies

of Mendelian diseases. In order to narrow down the list of

candidate nsSNVs, most exome sequencing studies rely on a hard-

filtering approach, in which the causal mutation is assumed to be

rare (with minor allele frequency (MAF) #1%) and so polymor-

phisms (with MAF.1%) found in public databases (e.g., dbSNP

and 1000 Genomes Project) as well as in-house control datasets are

discarded [3]. Moreover, variants are rejected if they are not found

in multiple cases or if they conflicts with the known disease

inheritance mode. This approach has successfully reduced the

number of mutations to look at in numerous studies, and several

tools [3–5] are therefore developed to automate this process.

However, hard-filtering in exome sequencing of Mendelian

diseases still leaves a large number (typically ,100 to 1,000) of

candidate nsSNVs. A method must, therefore, be used to predict

which of the remaining ones have serious functional consequences

and prioritize them for validation. For a comprehensive review of

these methods, see Ng and Henikoff [6]. These different methods

have their complementary strengths and combining multiple
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methods has been suggested to increase prediction accuracy [3,6].

Recently a combined predictive model (known as CONDEL [7])

has been developed. CONDEL is based on a Weighted Average of

the normalized Scores (WAS ) [7] for combining scores from

different algorithms and is available in Ensembl’s Variant Effect

Predictor. Another combined model (known as CAROL) is based

on a weighted Z method of each individual score [8]. As hard

filtering is usually done before prediction methods are applied in

exome sequencing studies of Mendelian diseases [1,3], it is

important for prediction methods to distinguish pathogenic

nsSNVs from other rare variants. However, a number of

individual methods (including PolyPhen2 [9]) and both CONDEL

and CAROL only use common variants as negative controls for

assessing their predictive performance and determining their

optimal cut-offs for variant classification. Since rare and common

variants in the human genome have clearly distinct properties

[10], we argue that such benchmarking may not be appropriate to

exome sequencing studies.

In this paper, we first proposed the use of a logit model to

combine prediction scores from multiple methods and tailored it to

compute an unbiased estimate of the probability of a rare nsSNV

being pathogenic. Then, we assessed the performance of five

popular prediction methods (HumVar-trained PolyPhen2, SIFT

[11], LRT [12], MutationTaster [13], PhyloP [14]) and two

combined models (CONDEL and logit) in distinguishing patho-

genic nsSNVs from other rare variants. As a comparison, we also

examined the predictive powers of these methods in discriminating

between pathogenic and common nsSNVs using HumVar [9] as a

benchmark dataset. In addition, we saw if these prediction methods

could discriminate between autosomal dominant and autosomal

recessive disease mutations. Furthermore, we estimated the

proportion of pathogenic rare variants and total load of pathogenic

derived alleles an individual carries using high coverage exome

sequencing data from the HapMap project. Finally, we applied the

logit prediction model to three in-house exome sequencing subjects

to demonstrate its performance in real data.

For clarity, throughout this paper, being deleterious means that

an nsSNV is under purifying selection; being damaging means that

an nsSNV leads to a loss of protein function; and being pathogenic

means that an nsSNV has an effect on a Mendelian disease

phenotype.

Results

Performance of prediction methods in distinguishing
pathogenic nsSNVs from other rare nsSNVs

Figure 1 shows the Receiver Operating Characteristic (ROC)

and Precision-Recall (PR) curves of the five individual methods

(HumVar-trained PolyPhen2 [10], SIFT [11], LRT [12],

MutationTaster [13], PhyloP [14], see a description of each

method in Table S1) and two combined methods (the proposed

logit model and CONDEL [7], based on the scores from all five

individual methods) evaluated on ExoVar (a dataset composed of

pathogenic nsSNVs and nearly non-pathogenic rare nsSNVs)

using a 10-fold cross-validation (see Materials and Methods). The

logit model clearly outperforms all other methods in terms of the

Areas Under the Curve (AUCs) of ROC and PR. The averaged

maximal Matthews correlation coefficient (MCC) [15] of the logit

model and CONDEL in a 10-fold cross-validation are 0.615 and

0.558 respectively. Contrary to our intuition, we found that the

predictive power of CONDEL combining five individual methods

is slightly inferior to that of one individual method (i.e.,

MutationTaster) in terms of ROC AUC, although it is better

than those of all five individual methods in terms of PR AUC.

Among the five individual prediction methods, MutationTaster,

which considered multiple resources such as evolutionary conser-

vation, splice-site changes and loss of protein features, outperforms

the others in classifying pathogenic variants in this dataset. In

contrast, PhyloP, which considers only evolutionary conservation,

has the smallest AUCs, indicating that information other than

evolutionary conservation is also important in classifying patho-

genic nsSNVs. Nonetheless, these results suggest that the logit

model is able to take advantage of the complementarily between

predictions of different individual methods (which are only weakly

and moderately correlated, see Figure S1) to achieve a better

prediction power.

In addition, we investigated whether combining a subset of the

five individual methods in the logit model has similar predictive

power compared to combining all five methods using the same

validation procedure. Interestingly, we found that some reduced

models have similar or slightly better predictive power than the

full model (Figure 2 and Table S2). Among all possible

combinations, a logit model using the scores from SIFT,

Polyphen2 and MutationTaster performs the best, in terms of

ROC AUC and that using the scores from SIFT and

MutationTaster only has similar performance to the full model,

in terms of PR AUC (so later, we will use this model in estimating

the proportion of pathogenic rare nsSNVs and the total load of

pathogenic derived alleles per individual as it requires non-

missing scores for two methods only). In contrast, combining

PhyloP and LRT, which do not incorporate any protein specific

features for prediction, has the worst performance among all

possible combinations.

Performance of prediction methods in distinguishing
pathogenic nsSNVs from common nsSNVs

We also examined the predictive powers of the methods in

discriminating between pathogenic and common nsSNVs evalu-

ated on HumVar (a popular benchmark dataset composed of

pathogenic and common nsSNVs) using a 10-fold cross-validation.

Of note, the HumVar dataset was also used by PolyPhen2 and

CONDEL to benchmark their prediction models for pathogenic

nsSNVs. Figure 3 shows the ROC and PR curves. All combined

models outperform the individual methods in terms of ROC and

PR AUC, but the predictive power of a logit model is still better

than that of CONDEL. The averaged maximal MCC of the logit

Author Summary

Sequencing the coding regions of the human genome is
becoming a standard approach in identifying causal genes
for human Mendelian diseases. Researchers often rely on
multiple functional prediction methods/tools to separate
the candidate causal mutation(s) from other rare muta-
tions in these studies. In this paper, we propose the use of
a statistical model to combine prediction scores from
multiple methods and to estimate the chance of a rare
mutation being Mendelian disease-causing (or pathogen-
ic). We found that our model using all or some individual
prediction methods consistently outperforms other pre-
diction methods examined and could exclude more than
55% of rare non-pathogenic mutations in an individual
genome. Unfortunately, no method was able to discrim-
inate between autosomal dominant and autosomal reces-
sive disease mutations. In addition, based on the predic-
tions of our model, we estimated that a person can carry
,22 pathogenic derived alleles at least, which if present at
the same position in the genome may lead to Mendelian
diseases.

Predicting Mendelian Disease Variants in Exome
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Figure 1. ROC and PR curves of prediction methods evaluated on the ExoVar dataset using a 10-fold cross-validation. (a) ROC and (b)
PR. AUC is shown next to the name of each method.
doi:10.1371/journal.pgen.1003143.g001

Figure 2. ROC and PR curves of combining a subset of the five individual methods in a logit model evaluated on the ExoVar dataset
using a 10-fold cross-validation. (a) ROC and (b) PR. AUC is shown next to the name of each method.
doi:10.1371/journal.pgen.1003143.g002

Predicting Mendelian Disease Variants in Exome
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model and CONDEL in a 10-fold cross-validation are 0.664 and

0.616 respectively. More importantly, all methods have less

predictive power, in terms of ROC and PR AUC, in distinguishing

pathogenic nsSNVs from other rare nsSNVs than from common

nsSNVs.

Performance of prediction methods in discriminating
between autosomal dominant and autosomal recessive
disease nsSNVs

Figure 4 shows the ROC and PR curves of the methods

evaluated on a dataset composed of autosomal dominant and

autosomal recessive disease-causing nsSNVs, DomRec, using a 3-

fold cross-validation. Although there is a significant difference in

prediction scores between the two classess of disease mutations

(with the largest difference observed in PhyloP, Mann-Whitney U

test p-value = 4.5661024) (see Table 1), no method can confi-

dently discriminate between the two classes of mutations (ROC

and PR AUCs of all methods <0.5, i.e., random prediction)

(Figure 4). These results suggest that there is not enough

information to characterize autosomal dominant and recessive

disease mutations in these prediction tools.

Estimation of the proportion of pathogenic rare nsSNVs
and the total load of pathogenic derived alleles per
individual

To calculate an unbiased (posterior) probability of a rare nsSNV

being pathogenic in a logit model (See Materials and Methods), we

need to estimate the prior probability, i.e., the proportion of

pathogenic rare nsSNVs in an individual genome. Therefore, we

downloaded the high coverage exome sequencing data of 8

HapMap individuals [1] and estimated the proportion of patho-

genic rare nsSNVs in each individual to get an estimate of the true

prior with adjustment for sensitivity and specificity of the prediction

(See Materials and Methods). Also, we obtained the total load of

pathogenic derived alleles (See Materials and Methods). We used a

reduced logit model that combines the scores from SIFT and

MutationTaster (with 80.2% averaged sensitivity and 82.8%

averaged specificity ) since it has similar performance to the full

model (in terms of PR AUC) and allows nsSNV with missing scores

for any other three methods to be used. The proportion of predicted

pathogenic rare nsSNVs ranged from 17% to 24% at individual

genomes. After the adjustment of sensitivity and specificity, the true

proportion of rare nsSNVs being pathogenic per individual genome

is estimated to be around 0.6–12.2%, with a mean of 5%.

Consequently, the total load of pathogenic derived alleles per

individual genome varies from 3 to 51, with a mean of 22 (Table 2).

Based on the estimated average load of pathogenic derived alleles

per individual (which is around 22 at least), we calculated the

expected load of homozygous pathogenic variants in an offspring

from consanguineous mating. Given the theoretical inbreeding

coefficient (F) of a child of a consanguineous union [16], the

corresponding number of homozygous pathogenic variants in the

child equals F NN/2, where N is the total load of pathogenic derived

alleles in each common ancestor of the consanguineous couple

(Table 3). For example, brother–sister marriages, which constitute

20–30% of all marriages in Roman Egypt [17], would produce

offspring homozygous for the pathogenic derived alleles at 3 loci.

The offspring of first cousins with no family history of Mendelian

diseases would theoretically have 1.4 homozygous pathogenic

variants. However, in reality, there is a large variability in the

values of F for the children of a given relationship. The offspring of

first cousins can have a value of F as little as 3% or as much as 12%

[18], which corresponds to 0.3–1.3 homozygous pathogenic

variants in an individual genome. Therefore, for counseling

purposes, it would be important for genetic counselors to obtain

the actual proportion of genome that the consanguineous couple

shares by descent from common ancestors, say by genome-wide

genotyping using commercial arrays, when assessing the risk to the

offspring of a couple seeking information.

Figure 3. ROC and PR curves of prediction methods evaluated on the HumVar dataset using a 10-fold cross-validation. (a) ROC and
(b) PR. AUC is shown next to the name of each method.
doi:10.1371/journal.pgen.1003143.g003

Predicting Mendelian Disease Variants in Exome
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Relationship between prior and posterior probabilities of
a rare nsSNV being pathogenic

We found that, on average, around 5% of rare nsSNVs an

individual carries are pathogenic (i.e., the prior probability of a

rare nsSNV being pathogenic <5%), but this does not mean that

every rare nsSNV has the same (posterior) probability of being

pathogenic given the scores from individual prediction methods.

Figure 5 illustrates how both prior probability and prediction

scores determine the posterior probability of a rare nsSNV being

pathogenic. When the prior is large (.0.9), moderate prediction

scores (,0.6) can already lead to a posterior as large as 0.8. But

when the prior is small (,0), only a small posterior is obtained,

regardless of the prediction scores. Within our estimated range of

the prior, the posteriors range from 6.861024 to 0.20 when the

prediction scores are increased from 0 to 1. So when all prediction

scores of an nsSNV reach their maximal values of 1, the

probability that the variant is pathogenic is only around 20%,

indicating that a logit model alone still cannot declare a variant as

pathogenic even with the strong supports from several individual

methods. So additional information (like regions shared among

multiple affected family members) is needed to confidently isolate

the causal variant(s) [3]. In contrast, when all prediction scores of

an nsSNV are close to their minimal values of 0, such probability is

close to 0, indicating that a logit model is confident to declare a

variant as non-pathogenic even with no or little support from

individual prediction methods.

Application of prediction methods to exome-sequencing
studies

We applied the ExoVar-trained logit model using SIFT,

PolyPhen2 and MutationTaster to prioritize nsSNVs in 3

Mendelian-disease patients with in-house exome sequencing data.

Table 4 shows the numbers and percentages of nsSNVs removed

by the hard-filtering approach and functional prediction using the

logit model in these patients. Although hard-filtering (MAF.1%

in dbSNP, HapMap and 1000 Genomes) can exclude ,7,000

Figure 4. ROC and PR curves of prediction methods evaluated on the DomRec dataset using a 3-fold cross-validation. (a) ROC and (b)
PR. AUC is shown next to the name of each method.
doi:10.1371/journal.pgen.1003143.g004

Table 1. Mann–Whitney U test p values for the difference in prediction scores between autosomal dominant and autosomal
recessive disease-causing mutations.

Mean scores

Prediction score Autosomal dominant Autosomal recessive Mann-Whitney U test p-value

PhyloP 0.968 0.929 4.5661024

SIFT 0.947 0.930 1.4061023

PolyPhen2 0.808 0.784 0.018

LRT 0.985 0.962 1.8061023

MutationTaster 0.864 0.842 7.2061023

doi:10.1371/journal.pgen.1003143.t001

Predicting Mendelian Disease Variants in Exome
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(more than 80% of) nsSNVs, there are still ,1,000 variants left for

examination in each patient. Prediction using different logit

models can further exclude more than 500 (55% of) nsSNVs. Of

note, the causal mutations in these patients (i.e., c.1528G.C of

TGM6 for spinocerebellar ataxia patients [19] in patients 1 and 2

as well as compound heterozygosity for IL10RA mutations:

c.251C.T and c.301C.T [20] in patient 3 with neonatal onset

Crohn’s disease) were all predicted to be pathogenic by the logit

model.

Discussion

In this paper, we propose to use a logit model to combine

multiple prediction methods to increase the performance in

predicting pathogenic nsSNVs and to compute an unbiased

(posterior) probability of an nsSNV being pathogenic in exome

sequencing after hard-filtering. Also, we examine the predictive

power of five popular prediction methods (PolyPhen2, SIFT,

LRT, MutationTaster, PhyloP) and two combined models

(CONDEL and logit) in discriminating between pathogenic

nsSNVs and other rare nsSNVs (which is strictly relevant to

exome sequencing studies). Contrary to our intuition, we found

that the combined approach CONDEL is not necessarily better

than individual methods, as demonstrated by its lower ROC AUC

compared to that of MutationTaster. However, the logit model

using multiple individual methods consistently outperforms other

methods examined and the model combining SIFT and

MutationTaster has comparable or even slightly better perfor-

mance than that combining all of the five individual methods.

Unfortunately, no method is able to discriminate between

autosomal dominant and autosomal recessive disease mutations.

Finally, based on the predictions of the logit model, we estimate

that an individual has around 5% of rare nsSNVs being

pathogenic and carries at least ,22 pathogenic derived alleles,

which if made homozygous by consanguineous marriages may

lead to recessive diseases.

We found that prediction methods are less powerful in

predicting pathogenic variants from other rare variants than from

common variants. This is consistent with the fact that most rare

alleles (no matter whether they are pathogenic or not) of nsSNVs

are subject to strong purifying selection and therefore have similar

structural and functional properties, whereas common nsSNVs (in

which the minor alleles are also found at high frequency in

populations) are subject to weak purifying selection and so have

nearly different properties compared to rare nsSNVs. Thus, as

expected, it is more difficult to separate pathogenic mutations from

other rare nsSNVs than from common nsSNVs using prediction

methods.

There is a significant difference in PhyloP conservation scores

between dominant and recessive disease mutations. This may be

Table 2. The proportion of pathogenic rare nsSNVs and total load of pathogenic derived alleles in 8 HapMap subjects with high
coverage sequencing data.

Population Individual
Number of rare
nsSNVs useda

% of rare variants
predicted to be pathogenic

% of rare nsSNVs
truly pathogenic

Total load of pathogenic
derived alleles (95% CI)b

Caucasian NA12156 384 20.3 5.5 21 (5, 36)

NA12878 426 24.4 12.0 51 (33, 68)

Japanese NA18956 356 19.1 3.6 13 (0, 26)

Chinese NA18555 424 21.2 6.9 29 (12, 46)

African NA18517 660 17.1 0.4 3 (0, 28)

NA18507 623 20.9 6.4 40 (14, 64)

NA19129 629 17.5 1.0 6 (0, 31)

NA19240 688 18.3 2.3 16 (0, 42)

aThe nsSNVs with missing scores at SIFT and/or MutationTaster were not used in the estimation.
bthe 95% confidence interval was derived empirically from randomly repeating 10-fold cross-validation 200 times.
doi:10.1371/journal.pgen.1003143.t002

Table 3. Theoretical inbreeding coefficient (F) and corresponding number of homozygous pathogenic variants in the children of
various relationships, given that on average each individual carries 22 pathogenic derived alleles.

Relationship Inbreeding coefficient, F
Expected number of homozygous pathogenic variants
in children

Siblings 1/4 2.8

Half siblings 1/8 1.4

Uncle-niece, aunt-nephew 1/8 1.4

First cousins 1/16 0.7

First cousins once removed 1/32 0.3

Second cousins 1/64 0.2

Double first cousins 1/8 1.4

Double second cousins 1/32 0.3

doi:10.1371/journal.pgen.1003143.t003

Predicting Mendelian Disease Variants in Exome
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because dominant disease genes are more conserved than recessive

disease genes which can be ‘‘hidden’’ from purifying selection

while heterozygous [21]. However, none of the prediction

methods we examined, which mainly use the genomic features

at variant level, are able to distinguish autosomal dominant

mutations from autosomal recessive disease-causing mutations.

Presumably, the genomic features at gene level may help

distinguish them. Some studies have analyzed the difference in

Figure 5. The relationship between prior and posterior probabilities of a rare nsSNV being pathogenic, given the prediction scores
from SIFT, PolyPhen2, and MutationTaster. The white dashed lines indicate the estimated range of the prior (5%). We assume that there is no
difference in prediction scores from the three methods for the same variant. The a, bSIFT, bPolyphen2 and bMutationTaster in a selected sample evaluated in
the ExoVar dataset are used in the calculation of posteriors (See Eq. 2 and 3 in Materials and Methods) and take the values of 23.53, 1.64, 1.48, and
2.47 respectively. The prior and posterior are equivalent to the quantity Pdisease in an individual genome in Eq. 3 and P(Y = 1|X) in Eq. 2 respectively.
doi:10.1371/journal.pgen.1003143.g005

Table 4. The numbers and proportion of nsSNVs removed by hard-filtering and functional prediction by the logit model in 3
Mendelian-disease patients with in-house exome sequencing data.

Patient 1a Patient 2a Patient 3b

Missense, stop-loss and stop-gain variants 8,383 8,563 7,969

MAF.1% 27,398 (288.3%) 27,552(288.2%) 26,751(284.7%)

= 985 = 1,011 = 1,218

Predicted to be non-pathogenic 2569 (257.8%) 2583 (257.7%) 2702 (257.6%)

= 416c = 428c = 516c

aRelated cases with autosomal dominant spinocerebellar ataxia.
bCase with neonatal-onset Crohn’s disease.
cnsSNVs in which prediction is unavailable due to missing scores.
doi:10.1371/journal.pgen.1003143.t004

Predicting Mendelian Disease Variants in Exome

PLOS Genetics | www.plosgenetics.org 7 January 2013 | Volume 9 | Issue 1 | e1003143



functional classification of the two classes of disease mutations and

found that mutations in genes coding for enzymes and transporters

are most likely to cause recessive diseases, whereas mutations in

transcription regulators, structural molecules, nucleic acid binding

genes and signal transducers have a higher chance to cause

dominant diseases [22,23]. Also, genes involved in recessive

diseases have less conserved paralogs than dominant disease genes

[21,23], as recessive diseases are often caused by loss-of-function

mutations [22,24] (which create a defective protein product with

little or no biologic activity, and/or interfere with the normal

expression of the gene). If a close paralog of a recessive disease

gene is present, the paralog is likely to compensate for the loss of

function due to a mutated recessive disease gene and so the disease

is not observed [25]. On the contrary, dominant diseases are

usually caused by gain-of-function mutations (which confer a new

activity on the gene product, or lead to its inappropriate spatial

and temporal expression) and so the presence of wild-type proteins

encoded by functionally similar paralogs may not suppress the new

functions acquired by the mutant proteins [23].

We found that the correlations among the scores from several

complementary prediction methods are mostly weak to moderate

(see Figure S1). This can occur for two possible reasons. First, the

set of species used by one method for measuring conservation may

be significantly different from those used by another, and thus this

may lead to a big difference between the prediction scores

calculated by the different methods for the same site. Second, the

set of perfectly conserved sites used for training by one method

may also be different from the ones used by others due to the

variation in sequence alignments adopted by each method.

Nevertheless, to our knowledge, MutationTaster uses the largest

amount of resources for training and this may explain its excellent

predictive performance among the five individual methods

examined. But some redundancy among prediction scores from

multiple methods also explains why combining a subset of the five

individual methods (i.e., PolyPhen2, SIFT, and MutationTaster)

has similar predictive performance to combine all five individual

methods in a logit model.

We note that our estimates of the number of pathogenic alleles

per individual from the human genome data are higher than

those from the data on consanguineous marriages (which suggest

a much smaller number, usually less than 10 [26–30]). But

comparison of our estimates with those from inbreeding studies is

difficult since we use totally different method and data. A similar

situation has also occurred in quantifying the number of lethal

equivalents per individual, in which inbreeding studies suggest

that each individual carries 2-6 lethal equivalents [31,32] whereas

Kondrashov [33] found the number could be as high as 100.

Anyway, estimation from inbreeding studies typically relies on an

implicit assumption that all recessive alleles are completely

penetrant and expressive, but examples that violate this

assumption have recently been found. For example, the presence

of a dominant modifier DFNM1 leads to normal hearing in an

individual homozygous for the DFNB26 mutation [34]; high

expression of actin-binding protein plastin 3 (PLS3) protects

individuals carrying homozygous SMN1 deletions from develop-

ing spinal muscular atrophy (SMA) [35]; and among the two

siblings affected by autosomal recessive polycystic kidney disease

(ARPCKD), one died at 18 hr but the other still had no symptom

when presented at 16 [36]. So the numbers from inbreeding

studies are likely to be an underestimate. However, mapping

errors may also inflate our estimates. For example, it was found

that sequencing variants in the inactive gene copy of CDC27

gene (i.e., pseudogene) were wrongly mapped to the active gene

copy of CDC27 [37] and we observed that the active gene copy

of CDC27 had as many as 11 nsSNVs at 2 out of 8 HapMap

subjects examined. It is likely that some of these nsSNVs actually

came from CDC27 pseudogene(s) and that can therefore inflate

our estimates. But missing scores at sequencing variants could, on

the other hand, deflate our estimates. Around 13–17% of rare

nsSNVs in an individual have missing scores at SIFT and/or

MutationTaster and so pathogenic alleles in these variants cannot

be counted.

We also observed a marked variability in our estimates of the

number of pathogenic alleles per individual. The statistical

fluctuation of specificity is the major reason for the large

variability. As shown in Table 2, a standard error of 1.3% in

specificity can already lead to a standard error of 1.9% in the

estimated proportion of pathogenic rare variants and finally results

in a standard error of ,10–15 in the estimated total load of

pathogenic rare variants.

We showed that, after MAF filtering, the prior (i.e., the

proportion of variants left being pathogenic) is low (which is

around 5% and leads to a posterior probability of ,20% at

most) and so it is still difficult for prediction methods to pinpoint

the pathogenic mutation(s) in exome sequencing studies of

Mendelian diseases. One way to increase the prior is to use

additional information, including genomic regions shared by

multiple affected family members and known biological path-

ways, to reduce the number of candidate pathogenic variants

and therefore we have implemented these functions in

KGGSeq. We also found that even low prediction scores can

lead to a posterior that can help exclude non-pathogenic

variants. Using the exome sequencing data of three patients with

Mendelian diseases, we observed that a logit model could

exclude more than 55% of rare nsSNVs. Moreover, these

posterior probabilities can be used as weights of the nsSNVs for

other analyses.

Materials and Methods

Benchmark datasets
ExoVar. This dataset is composed of 5,340 alleles with known

effects on the molecular function causing human Mendelian

diseases from the UniProt database, which are treated as positive

control variants, and 4,752 rare (alternative/derived allele

frequency ,1%) nsSNVs with at least one homozygous genotype

for the alternative/derived allele in the 1000 Genomes Project,

which are treated as negative control variants. This dataset can be

downloaded from our KGGSeq website (see Data Access). It is

used for evaluating the performance of prediction methods in

distinguishing pathogenic nsSNVs from other rare variants. This

benchmark dataset can be downloaded at http://statgenpro.

psychiatry.hku.hk/limx/kggseq/download/ExoVar.xls.

HumVar. This dataset was prepared by the PolyPhen2 team

for benchmarking their program and is available online (see Data

Access). It consists of 22,196 human disease-causing or loss of

activity/function mutations (except cancer mutations) present in

the UniProtKB database, which are treated as positive control

variants, together with 21,151 common (MAF.1%) nsSNVs with

no reported disease association, which are treated as negative

control variants. Of note, HumVar was used by PolyPhen2 and

CONDEL for benchmarking models used for predicting patho-

genic nsSNVs.

DomRec. To examine the performance of predictive models

in discriminating between autosomal dominant and autosomal

recessive disease mutations, we retrieved from Galaxy [38,39] 253

nsSNVs causing only autosomal dominant diseases and 389

nsSNVs causing only autosomal recessive diseases.
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Functional prediction scores
We obtained, from dbNSFP database v2.0 [40], the prediction

scores from four prediction algorithms (SIFT, HumVar-trained

Polyphen2, LRT and MutationTaster) and a conservation score

(PhyloP) for each nsSNV in the human genome (hg19). Some

methods (e.g. MutationTaster) reported predictions for alternative

(or non-reference) alleles while some (e.g. PolyPhen2) conducted

predictions for derived (or non-ancestral) alleles. To avoid

inconsistency in predictions, we removed variants whose alterna-

tive alleles are not derived alleles. We also downloaded the

CONDEL perl script from the authors’ website (see Data Access)

and used it to compute a CONDEL WAS score for each nsSNV

based on the scores from all five individual methods. For all

methods, the scores were standardized to range from 0 to 1 and, in

general, the larger the score, the higher the probability of causing

diseases.

Exome sequencing datasets
HapMap. We downloaded the protein coding SNVs of 8

HapMap individuals with high coverage exome sequencing data

[1] (see Data Access). They are NA12156 and NA12878from

Caucasians, NA18956 from Japanese (Asian), NA18555 from

Chinese (Asian), as well as NA18517, NA18507, NA19129 and

NA19240 from Africans.
In-house. Two samples came from an autosomal dominant

spinocerebellar ataxia pedigree [19] and another from a neonatal-

onset Crohn’s disease pedigree [20]. They were collected in Hong

Kong with Institutional Review Board approval and were

sequenced by the Illumina Genome Analyzer II platform at

deCODE Genetics. The paired-end 76-bp short reads from

Illumina Genome Analyzer II were aligned and mapped onto the

UCSC human reference genome (hg18), by Burrows-Wheeler

Aligner [41]. Duplicated reads were marked by Picard (see Data

Access). The Genome analysis toolkit (GATK) [42] was then used

to recalibrate the alignments and to call SNVs (by UnifiedGen-

otyper).

Logit model for combining individual prediction tools
Given a vector, X, of prediction scores from multiple prediction

methods for a particular nsSNV, the (posterior) probability that

the nsSNV is pathogenic (Y = 1) is given by:

P(Y~1DX )~1
�
½1ze{(azbX )� ð1Þ

where a and b are, respectively, the constant and vector of

coefficients of X from logistic regression on a population (or

random sample) of pathogenic (positive control) and other

(negative control) variants. However, when the sample (bench-

mark dataset) is selected, the probability in Eq. 1 would be biased.

An unbiased estimate of (posterior) probability can be obtained by

(see Text S1):

P(Y~1DX )~1
�
½1zR � e{(azbX )� ð2Þ

where R is the odds of a variant being pathogenic in the selected

sample divided by that in the population (i.e., an individual

genome), i.e.,

R~
Pdisease in a selected sample

1{Pdisease in a selected sample

�
Pdisease in an individual genome

1{Pdisease in an individual genome

ð3Þ

where Pdisease denotes the proportion of pathogenic nsSNVs. Note

that the value of R is the same for all variants and affects only the

probability calculated, but not variant classification. Also, in our

case, Pdisease in a selected sample is simply the proportion of

positive control variants among all variants included in the

benchmark dataset. We will demonstrate how Pdisease in an

individual genome can be obtained in the section below.

Assessment of predictive power
We evaluated the performance of five individual methods

(SIFT, HumVar-trained Polyphen2, LRT, MutationTaster, and

PhyloP) and two combined methods (CONDEL WAS and logit) in

discriminating between

1. pathogenic nsSNVs and other rare variants using a 10-fold

cross-validation on the ExoVar dataset;

2. pathogenic nsSNVs and common variants using a 10-fold

cross-validation on the HumVar dataset, and;

3. autosomal dominant and autosomal recessive disease-causing

nsSNVs using a 3-fold cross-validation on the DomRec dataset.

The parameters a and b in the logit model, as well as the

complementary cumulative distributions and optimal cutoffs (that

maximizes MCC) for each individual prediction method required

by CONDEL were obtained from the training dataset in each fold

in a K-fold cross-validation. When we validated the trained models

in a test dataset, the probability cutoff was increased from 0 to 1

and the corresponding true positive prediction rate (sensitivity) and

true negative prediction rate (specificity) of different prediction

methods were recorded. We built the ROC and PR curves and

reported the MCC [15], ROC AUC and PR AUC of each

method evaluated on each benchmark dataset. The program

AUCCalculator [43] was used to calculate the AUCs. The

sensitivities and specificities from K folds in a K-fold cross-

validation were averaged for ROC and PR curve plotting. For the

logit model, the quantity R in Eq. 3 is assumed to be 1 as this

affects only the biasness of the probability calculated but not

classification. Furthermore, we evaluated the effect of using a

subset instead of all five individual methods in the logit model on

the power in distinguishing pathogenic nsSNVs from other rare

variants using a 10-fold cross-validation on the ExoVar dataset.

Estimation of the proportion of pathogenic rare nsSNVs
and the total load of pathogenic derived alleles per
individual

To obtain an estimated range of Pdisease, i.e., the proportion of

pathogenic rare nsSNVs in an individual genome, in Eq. 3, we

need to get an estimated range of P*
disease, i.e., the proportion of

predicted pathogenic rare nsSNVs in an individual genome. To

estimate P*
disease, we downloaded the high coverage exome

sequencing data of 8 HapMap individuals and removed common

nsSNVs annotated in dbSNP and 1000 Genomes using KGGSeq.

Then, prediction was done in these filtered datasets using a logit

model (with a cutoff that maximizes the MCC evaluated on the

ExoVar dataset) to obtain P*
disease for each of the individuals.

Given the specificity and sensitivity of the prediction model used,

we have

Pdisease in an individual genome~

½P�disease in an individual genome{(1{specificity)�
.
½sensitivity{(1{specificity)�

ð4Þ

Since the number of homozygous genotypes for the derived allele

in an individual is small compared to that of heterozygous

genotypes, result from the prediction and estimation on all

genotypes is similar to that on heterozygous genotypes only. So, for
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simplicity, we reported the latter results. That also simplifies our

calculation of the total load of pathogenic derived alleles in each

individual presented as the value just equals the number of

pathogenic rare variants.

To quantify the variability in the estimates of the total load of

pathogenic derived alleles per individual, we randomly repeated

the 10-fold cross validation 200 times. Each round of 10-fold cross

validation generates a pair of averaged sensitivity and specificity

values and this pair of values is then used to calculate Pdisease

according to equation (4) and the total load of pathogenic derived

alleles. We obtained the 95% confidence interval (CI) of the total

load of pathogenic derived alleles by taking the 2.5% and 97.5%

quantiles in the distribution of 200 such estimates.

Implementation
We implemented the logit model as one of important functions

in our KGGseq software package, which was designed to conduct

knowledge-based downstream analyses in sequencing studies.

KGGSeq also gives a posterior probability of being pathogenic

for each nsSNV by combining the five individual prediction scores

available in the dbNSFP database v2.0 [40]. These features should

facilitate the ranking and/or filtering of nsSNVs in exome

sequencing studies of Mendelian diseases.

Application to exome sequencing data
We applied the logit model to the in-house exome sequencing

data of three patients. KGGSeq was used to exclude variants and

genotypes with low quality (read coverage #46, Phred-scaled base

sequencing quality #50, and Phred-scaled genotype calling quality

score #20), map variants onto the reference genome (hg18),

extract nsSNVs as well as remove known common nsSNVs

(annotated in dbSNP and 1000 Genomes). Finally, for each of the

remaining rare nsSNVs, KGGSeq assigned a logit prediction

score, a posterior probability of being pathogenic and decided

whether it is pathogenic or not using a cutoff that maximizes the

MCC in ExoVar dataset.

Data access
The URLs for data presented herein are as follows:

KGGseq software tool, http://statgenpro.psychiatry.hku.hk/

kggseq/

ExoVar dataset, http://statgenpro.psychiatry.hku.hk/limx/

kggseq/download/ExoVar.xls

dbNSFP, http://sites.google.com/site/jpopgen/dbNSFP

Galaxy, http://main.g2.bx.psu.edu/library

Polyphen2HumVar dataset, http://www.nature.com/nmeth/

journal/v7/n4/suppinfo/nmeth0410-248_S1.html

Online Mendelian Inheritance in Man, http://www.ncbi.nlm.

nih.gov/Omim

1000 Genomes Project data, http://www.sph.umich.edu/csg/

abecasis/MACH/download/

Polyphen-2 website, http://genetics.bwh.harvard.edu/pph2/

UniProt website, http://www.uniprot.org/

Picard website, http://picard.sourceforge.net/;

High coverage exome sequencing data of 8 HapMap individ-

uals, http://krishna.gs.washington.edu/12_exomes/;

CONDEL, http://bg.upf.edu/condel/home
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Figure S1 Spearman’s rank correlation matrix for the scores

from the five individual algorithms (SIFT, HumVar-trained

Polyphen2, LRT, MutationTaster, and PhyloP) in HumVar’s a)
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positive controls, d) negative controls.
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