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Abstract

Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms
(SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in
intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a
tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of
large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different
tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed
that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the
expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is
tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.
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Introduction

It is now evident that most of the human genome is transcribed

to produce not only protein-coding transcripts but also large

numbers of non-coding RNAs (ncRNAs) of different size [1,2].

Well-characterized short ncRNAs include microRNAs, small

interfering RNAs, and piwi-interacting RNAs, whereas the large

intergenic non-coding RNAs (lincRNAs) make up most of the long

ncRNAs. LincRNAs are non-coding transcripts of more than 200

nucleotides long; they have an exon-intron-exon structure, similar

to protein-coding genes, but do not encompass open-reading

frames [3]. The recent description of more than 8,000 lincRNAs

makes these the largest subclass of the non-coding transcriptome in

humans [4].

Evidence is mounting that lincRNAs participate in a wide-range

of biological processes such as regulation of epigenetic signatures

and gene expression [5–7], maintenance of pluripotency and

differentiation of embryonic stem cells [8]. In addition, several

individual lincRNAs have also been implicated in human diseases.

A well-known example is a region on chromosome 9p21 that

encompasses an antisense lincRNA, ANRIL (antisense lincRNA of

the INK4 locus). Genome-wide association studies (GWAS) have

shown that this region is significantly associated with susceptibility

to type 2 diabetes, coronary disease, and intracranial aneurysm as

well as different types of cancers [9] and some of the associated

SNPs have been shown to alter the transcription and processing of

ANRIL transcripts [10]. Similarly, increased expression of

lincRNA HOTAIR (HOX antisense non-coding RNA) in breast

cancer is associated with poor prognosis and tumor metastasis

[10]. Another example is MALAT-1 (metastasis associated in lung

adenocarcinoma transcript) where the expression is three-fold

higher in metastasizing tumors of non-small-cell lung cancer than

in non-metastasizing tumors [11].

In addition, over the last decade, more than 1,200 GWAS have

identified nearly 6,500 disease- or trait-predisposing SNPs, but

only 7% of these are located in protein-coding regions [12,13].

The remaining 93% are located within non-coding regions [14],

suggesting that GWAS-associated SNPs regulate gene transcrip-

tion levels rather than altering the protein-coding sequence or

protein structure. Even though there is growing evidence to
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implicate lincRNAs in human diseases [15,16], it is unknown

whether disease-associated SNPs could affect the expression of

non-coding RNAs. We hypothesized that GWAS-associated SNPs

can affect the expression of lincRNA genes, thereby proposing a

novel disease mechanism.

To test this hypothesis, we performed eQTL mapping on 2,140

human lincRNA-probes using genome-wide gene expression and

genotype data of 1,240 peripheral blood samples (discovery

cohort) [17]. The lincRNA cis-eQTLs identified were then tested

for replication in an independent cohort containing 891 peripheral

blood samples (replication cohort). Since lincRNAs are considered

to be more tissue-specific than protein-coding genes [4], we set-out

to identify tissue-dependent cis-eQTLs for lincRNAs using data

from another four different primary tissues from the subset of 85

individuals in our primary cohort [18]. Subsequently, we tested

whether SNPs that affect the levels of lincRNA expression are

associated with diseases or traits. Finally, we predicted the most

likely function(s) of a subset of cis-eQTL lincRNAs by using co-

regulation information from a compendium of approximately

80,000 expression arrays (www.GeneNetwork.nl).

Results

Commercial microarrays contain probes for a subset of
non-coding RNA

Whole-genome gene expression oligonucleotide arrays have

played a crucial role in our understanding of gene regulatory

networks. Even though most of the currently available commercial

microarrays are designed to capture all known protein-coding

transcripts, they still include subsets of probes that capture

transcripts of unknown function (sometimes abbreviated as TUF).

We investigated whether the TUF probes present on the Illumina

Human HT12v3 array, overlap with lincRNA transcripts that were

recently described in the lincRNA catalog [4]. The lincRNA catalog

contained a provisional set of 14,393 transcripts mapping to 8,273

lincRNA genes and a stringent set of 9,918 transcripts mapping to

4,283 lincRNA genes. We identified 2,140 unique probes that map

to 1,771 different lincRNAs from the provisional set and 1,325

unique probes that map to 1,051 lincRNA genes from the stringent

set. We chose 2,140 unique probes that mapped to lincRNAs from

the provisional set for further eQTL analysis.

Genetic control of lincRNAs expression in blood
It is known that in general lincRNAs are less abundantly

expressed compared to protein-coding transcripts [4]. To test the

expression levels of the 2,140 lincRNA probes in 1,240 peripheral

blood samples (discovery cohort), we compared the quantile-

normalized, log scale transformed mean expression intensity as

well as expression variation of the lincRNA probes to probes

mapping to protein-coding transcripts. We indeed observed a

significant difference in the expression levels, where lincRNA

probes are less abundant (mean expression = 6.67) than probes

mapping to protein-coding transcripts (mean expression = 6.92,

Wilcoxon Mann Whitney P,2.2610216; Figure S1). We also

observed a highly significant difference in the expression variation

between lincRNA probes and probes mapping to protein-coding

transcripts (Wilcoxon Mann Whitney P,3.85610296). Next, we

tested whether the expression of these 2,140 lincRNA probes is

affected by SNPs in cis, by performing eQTL mapping in these

1,240 peripheral blood samples for which genotype data was also

available. We confined our analysis to SNP-probe combinations

for which the distance from the center of the probe to the genomic

location of the SNP was #250 kb. In the end, at a false-discovery

rate (FDR) of 0.05, we identified 5,201 significant SNP-probe

combinations, reflecting 4,644 different SNPs; these affected the

expression of 112 out of 2,140 different lincRNA probes. The 112

lincRNA probes mapped to 108 lincRNA genes and comprised

5.2% of all tested lincRNA probes, with a nominal significance

ranging from P,2.861024 to 9.816102198 in peripheral blood

(Table S1).

Replication of lincRNA cis-eQTLs in an independent
blood dataset

We then performed a replication analysis to test the reproduc-

ibility of the identified 112 lincRNA cis-eQTLs using an

independent dataset of 891 whole peripheral blood samples. We

took the 112 lincRNA-probes (or 5,201 SNP-probe pairs) that

were significantly affected by cis-eQTLs in the discovery cohort

and tested whether these eQTLs were also significant in the

replication dataset (at FDR 0.05). We could replicate 45% of the

112 lincRNA cis-eQTLs at an FDR,0.05, of which all the eQTLs

had an identical allelic direction (Figure S2). The smaller sample

size of the replication cohort compared to the discovery cohort

makes it inherently difficult to replicate all the cis-eQTLs that we

have detected in the discovery cohort.

Number of cis-eQTLs is dependent on expression levels
of transcripts

Our observation that 5.2% of all tested lincRNAs are cis-

regulated (Table S1) might seem disappointing, compared to our

earlier observation that 25% of the protein-coding probes in this

dataset are cis-regulated [18]. However, we reasoned that the

generally lower expression levels of lincRNAs compared to

protein-coding genes might make it more difficult to detect cis-

eQTLs for lincRNAs, as the influence of background noise

becomes substantial for less abundant transcripts, making accurate

expression quantification difficult (Figure S1A).

Indeed, we found significantly higher expression levels for the

112 cis-eQTL lincRNA probes (mean expression = 6.80) compared

to the 2,028 non-eQTL lincRNA probes (mean expression = 6.66

Wilcoxon Mann Whitney P = 3.88610215; Figure S3) and also

observed a significant difference in expression variance between

the 112 cis-eQTL lincRNAs compared to the 2,028 non-cis eQTL

lincRNAs (Wilcoxon Mann Whitney P = 1.06761028), indicating

that lower overall expression levels do make identification of cis-

eQTLs more difficult.

To further confirm the relationship between average expression

levels of probes and the number of detectable cis-eQTLs, we first

Author Summary

Large intergenic non-coding RNAs (lincRNAs) are the
largest class of non-coding RNA molecules in the human
genome. Many genome-wide association studies (GWAS)
have mapped disease-associated genetic variants (SNPs)
to, or in, the vicinity of such lincRNA regions. However, it is
not clear how these SNPs can affect the disease. We tested
whether SNPs were also associated with the lincRNA
expression levels in five different human primary tissues.
We observed that there is a strong genotype-lincRNA
expression correlation that is tissue-dependent. Many of
the observed lincRNA cis-eQTLs are disease- or trait-
associated SNPs. Our results suggest that lincRNA-eQTLs
represent a novel link between non-coding SNPs and the
expression of protein-coding genes, which can be exploit-
ed to understand the process of gene-regulation through
lincRNAs in more detail.

LincRNA eQTLs Are Associated with Human Disease
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mapped cis-eQTLs for an equal set of 2,140 probes that were

instead protein-coding and were the most abundantly expressed of

all protein-coding probes. We also conducted cis-eQTL mapping

for a set of 2,140 protein-coding probes that had been selected to

have an identical expression intensity distribution as the 2,140

lincRNA probes (i.e. matched for mean expression intensity and

standard deviation), using the same 1,240 blood samples

(Figure 1A). We indeed observed a profound relationship between

average expression levels of protein-coding transcripts and the

number of detectable cis-eQTLs. Eighty percent of the 2,140 most

abundantly expressed protein-coding probes showed a cis-eQTL

effect, whereas only 10% of the protein-coding probes that had

Figure 1. The number of detected cis-eQTLs is dependent on the expression levels of the transcripts. (A) Quantile-normalized average
expression intensity and (B) number of cis-eQTL affected probes in percentage, for 2,140 lincRNA probes, 2,140 non-lincRNA (matched for 2,140
lincRNA probes’ median expression and standard deviation) and 2,140 most abundantly expressed non-lincRNA probes.
doi:10.1371/journal.pgen.1003201.g001

LincRNA eQTLs Are Associated with Human Disease
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been matched for an expression intensity of the 2,140 lincRNA-

probes were affected by cis-eQTLs (Figure 1B).

Hence it is possible that if we can accurately quantify all

lincRNAs in large RNA-sequencing datasets, we will be able to

identify cis-eQTLs for a larger proportion of all lincRNAs.

Most SNPs that affect lincRNA expression do not alter the
expression of protein-coding genes

It could be possible that the SNPs that affect lincRNA

expression actually operate by first affecting protein-coding gene

expression levels, which in turn affect lincRNA expression. If this

were to be the case, our identified lincRNA cis-eQTLs would

merely be a by-product of protein-coding cis-eQTLs. To ascertain

this, we tested whether the 112 lincRNA-eQTL SNPs were also

significantly affecting neighboring protein-coding genes. By

keeping the same significance threshold (at FDR,0.05 level, the

P-value threshold was 2.461024), we observed that nearly 75%

(83 out of 112) of the lincRNA-eQTLs were affecting only

lincRNAs, even though the interrogated neighboring protein-

coding genes were generally more abundantly expressed than the

lincRNAs themselves (Figure S4). Genetic variants can thus

directly regulate the expression levels of lincRNAs.

We found 29 cis-eQTLs to be associated with the expression of

both lincRNA and protein coding genes. For 50% of these 29 cis-

eQTLs, we found that the expression of lincRNAs and protein-

coding genes was in the opposite direction, whereas for the other

50% of cis-eQTLs, both types of transcripts were co-regulated in

the same direction (Figure S5).We tested whether these 29 cis-

eQTLs are the strongest eQTLs for both lincRNA and protein-

coding genes. Although these 29 cis-eQTLs were the strongest

eQTLs for lincRNAs, only 5 among 29 were also the strongest

eQTLs for protein-coding genes. This observation further

highlights the direct regulation of lincRNA expression through

genetic variants.

Some lincRNA cis-eQTLs are tissue-dependent
There is considerable interest in mapping eQTLs in disease-

relevant tissue types. We reasoned that since expression of the

lincRNAs seems to be much more tissue-specific than the

expression of protein-coding genes [4], mapping lincRNA-eQTLs

in different tissues could reveal additional, tissue-specific lincRNA-

eQTLs. To test this, we analyzed gene expression and genotype

data of 74 liver samples, 62 muscle samples, 83 subcutaneous

adipose tissue (SAT) samples, and 77 visceral adipose tissue (VAT)

samples from our primary cohort of 85 unrelated, obese Dutch

individuals [18]. Upon cis-eQTL mapping we detected 35 cis-

eQTL-probes, of which 18 were specific in the four different non-

blood tissues, resulting in a total of 130 lincRNA-eQTLs in the

combined set of all five tissues (Table S1). Five cis-eQTLs

identified in blood tissue were also significantly replicated in at

least one other non-blood tissue (Table S1). While we could

replicate 45% of the cis-eQTLs in the substantial whole peripheral

blood replication cohort, the replication rate in the very small

cohorts for fat, liver and muscle tissue was, as expected, much

lower. We were able to observe tissue-specific lincRNA eQTLs in

muscle (1), liver (4), SAT (9) and blood (107) (Figure S6). Since the

four non-blood tissue expression levels were from the same

individuals, these results do indeed provide evidence that some of

the lincRNAs are regulated by genetic variants in a tissue-specific

manner.

LincRNA tissue specific cis-eQTLs are disease-associated
SNPs

As most of the GWAS-associated SNPs are located within non-

coding regions, we tested whether the 130 lincRNA-eQTLs

identified in five different tissues are also GWAS-associated

variants. To do this, we intersected trait-associated SNPs (at

reported nominal P,9.961026, retrieved from the catalog of

published genome-wide association studies per 26 July 2012) [14]

with the 130 top lincRNA cis-eQTLs and their proxies (proxies

with R2.0.8 using the 1000Genome CEU population as

reference). We identified 12 GWAS SNPs or their proxies, that

were also a lincRNA cis-eQTLs of eight different lincRNA genes

(Table 1). All except one of the 12 SNPs were exclusively

associated with lincRNA expression and thus did not affect the

expression levels of neighboring protein-coding genes (Table 1),

suggesting a causative role of altered lincRNA expression for these

phenotypes.

Table 1. Some of the lincRNA cis-eQTLs are disease-associated SNPs.

Cis-eQTL SNP
eQTL P
on lincRNA

Proxies (R2.0.8)
associated with
disease/trait Chr Trait/Disease

eQTL affected
lincRNA eQTL tissue

rs13278062 4.31610232 rs13278062 8 Exudative age-related macular
degeneration

XLOC_006742 Blood

rs11066054 4.09610211 rs6490294 12 Mean platelet volume XLOC_010202 Blood

rs206942 3.6361025 rs206936 6 Body mass index XLOC_005690 Blood

rs11065766 6.6761025 rs10849915 12 Alcohol consumption XLOC_009878 Blood

6.6761025 rs10774610 2 Drinking behavior

rs1465541 1.8461024 rs11684202 2 Coronary heart disease XLOC_002026 Blood

rs12125055 1.8461024 rs7542900 1 Type 2 diabetes XLOC_000922 Blood

rs199439 8.2561026 rs199515 17 Parkinson’s disease XLOC_012496 SAT

rs415430 17 Parkinson’s disease SAT

rs199533 17 Parkinson’s disease SAT

rs17767419 1.0561028 rs17767419 16 Thyroid volume XLOC_011797 SAT, VAT

rs3813582 16 Thyroid function SAT, VAT

Chr chromosome, SAT Saturated adipose tissue, VAT Visceral adipose tissue.
doi:10.1371/journal.pgen.1003201.t001

LincRNA eQTLs Are Associated with Human Disease
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Notably SNP rs13278062 at 8p21.1, associated with exudative

age-related macular degeneration (AMD) in the Japanese popula-

tion, was reported to alter the transcriptional levels of TNFRSF10A

(Tumor necrosis factor receptor superfamily 10A) protein-coding

gene [19]. Here we identified SNP rs13278062 as a highly

significant cis-eQTL of lincRNA XLOC_006742 (LOC389641)

(P = 4.31610232) rather than for TNFRSF10A (P = 4.2161024)

protein-coding gene (Figure S7). Furthermore, SNP rs13278062 is

located in exon 1 of lincRNA XLOC_006742, which encompasses

an ENCODE (Encyclopedia of DNA elements) enhancer region

characterized by H3K27acetylation and DNaseI hypersensitive

clusters [20] (Figure S8).

Another interesting example is at 17q21.31 where three

Parkinson’s disease associated SNPs were in strong linkage

disequilibrium (R2.0.8) with top cis-eQTL SNP rs199439, which

affects lincRNA XLOC_012496 expression exclusively in SAT

(Table 1). Weight loss due to body-fat wasting is a very common

but poorly understood phenomenon in Parkinson’s disease patients

[21]. In this regard, it is intriguing to note that the Parkinson’s

disease associated SNPs affects lincRNA expression exclusively in

fat tissue (Table 1). Hence, identifying lincRNA-eQTLs in disease-

relevant tissue types using larger groups of individuals may open

up new avenues towards achieving a better understanding of

disease mechanisms.

LincRNA function predictions using a co-expression
network of ,80,000 arrays: A mechanistic link between
disease and lincRNA

Our observations suggest a role for lincRNAs in complex

diseases and other phenotypes. The next, rather daunting task is to

elucidate the function of these ncRNAs. We recently developed a

co-regulation network (GeneNetwork, www.genenetwork.nl/

genenetwork, manuscript in preparation), to predict the function of

any transcript based on co-expression data extracted from

approximately 80,000 Affymetrix microarray experiments (see

Methods). We interrogated the GeneNetwork database to predict

the function of eQTL-affected lincRNAs. Among the 130 cis-

eQTL lincRNAs that we had identified in the five different tissues,

43 were represented by expression probe sets on Affymetrix arrays

for which we could predict the function (Table S2). These 43

probes include four out of eight disease-associated lincRNAs

described above (Table 1) and function prediction for these probes

provided relevant biological explanations.

LincRNA co-expression analysis: Disease-associated
lincRNAs are co-expressed with neighboring protein-
coding genes

It has been reported that some transcribed long ncRNAs

function as enhancers that regulate the expression of neighboring

genes [3] and may thereby contribute to the disease pathology. We

found that the AMD-associated lincRNA XLOC_006742

(LOC389641) (by virtue of SNP rs13278062 which exhibits a

significant eQTL effect) (Figure S7) is in strong co-expression with

TNFRSF10A based on our GeneNetwork database (Table S3).

AMD is a leading cause of blindness among elderly individuals

worldwide and recent studies, both in animal models and in

humans, provide compelling evidence for the role of immune

system cells in its pathogenesis [22]. The gene TNFRSF10A, which

encodes TRAIL receptor 1 (TRAIL1), has been implicated as a

causative gene for AMD [19]. It has been shown that binding of

TRAIL to TRAILR1 can induce apoptosis through caspase 8

activation [23] and using GeneNetwork we also predict a role in

apoptosis for lincRNA XLOC_006742 (Table S2).

Another trait-associated SNP, rs11065766, is the top cis-eQTL

of lincRNA XLOC_009878 (ENSG00000185847 or RP1-46F2.2

or LOC100131138) and it is in strong linkage disequilibrium with

two SNPs associated with alcohol drinking behavior (Table 1). We

found that the lincRNA XLOC_009878 is strongly co-expressed

with the neighboring protein-coding gene MYL2 (Table S4) and,

according to our predictions, lincRNA XLOC_009878 is involved

in striated muscle contraction (P = 1.22610226). Chronic alcohol

abuse can lead to striking changes in skeletal muscle structure,

which in turn plays a role in the development of alcoholic

myopathy and/or cardiomyopathy [24]. It has also been reported

that alcohol can reduce the content of skeletal muscle proteins

such as titin and nebulin to affect muscle function in rats [25]. We

found lincRNA XLOC_009878 to be co-expressed with titin and

many other skeletal muscle proteins necessary for the structural

integrity of the muscle (Table S4). Thus, it needs to be tested

whether deregulation of lincRNA XLOC_009878 expression

might alter an individual’s ability to metabolize alcohol due to

changes in the muscle functional property.

Localization of lincRNA cis-eQTLs in regulatory regions
We found that more than 70% of the lincRNA cis-eQTLs from

both blood and non-blood tissues were located in intergenic

regions with respect to protein-coding genes (Figure 2A). We also

found high frequencies of lincRNA cis-eQTLs to be located

around transcriptional start site (Figure 2B), suggesting that these

cis-eQTLs may affect the expression of lincRNAs through similar

gene regulatory mechanisms as those seen for protein-coding cis-

eQTLs. Thus, in order to understand the mechanism of how

lincRNA cis-eQTLs affect lincRNA expression, we intersected the

location of top 112 lincRNA cis-eQTLs and their proxies (r2 = 1) in

blood with regulatory regions using the HaploReg database [26].

The results suggested that indeed most of the lincRNA cis-eQTLs

(69%) were located in functionally important regulatory regions

(Figure S8), which contained DNAse I regions, transcription factor

binding regions, and histone marks of promoter and enhancer

regions. Furthermore, these cis-eQTLs were found to be located

more often within blood cell-specific enhancers (K562 and

GM12878) (Figure 3A), suggesting that some of these cis-eQTLs

regulate lincRNA expression in a tissue-specific manner through

altering these enhancer sequences.

Since we observed enrichment of cell-specific enhancers for

lincRNA cis-eQTLs within blood cells (K562 and GM12878), we

compared the fold enrichment of enhancers in these two cell types

to see whether lincRNA cis-eQTLs are more often located in

functionally important regions than any random set of SNPs. We

found a significant difference in the enrichment of enhancers in

which more than a 4-fold enrichment was seen for real cis-eQTLs

both in K562 cells (P = 0.0004) and GM12878 cells (P = 0.011)

compared to permuted SNPs. These findings suggest that some of

the identified lincRNA cis-eQTLs are indeed functional SNPs.

Discussion

Even though it may have been expected that lincRNA

expression would be under genetic control, this is the first study,

to our knowledge, to comprehensively establish this link. We were

able to identify cis-eQTLs in five different tissues and have

demonstrated that common genetic variants regulate the expres-

sion of lincRNAs alone. It is intriguing that around 75% of

lincRNA cis-eQTLs are specific to lincRNAs alone, but not to

protein-coding genes. Recent data from the ENCODE project

suggests that combinations of different transcription factors are

involved in regulating gene-expression in different cell types and

LincRNA eQTLs Are Associated with Human Disease
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non-coding RNAs tend to be regulated by certain combinations of

transcription factors more often than others [27]. Thus, it could

still be possible that some transcription factors specifically regulate

lincRNA expression. We also observed a strong relationship

between whether or not a transcript is affected by cis-eQTLs and

its expression levels, where highly abundant transcripts were more

often affected by cis-eQTLs. This relationship was comparable

between lincRNA and protein-coding probes, although protein-

coding probes (matched for expression levels of lincRNA probes)

tend to show more cis-eQTLs (Figure 1B; 5.2% versus 10%).

Although this difference is not drastic, it may suggest that

lincRNAs exhibit another layer of gene regulation which is more

tissue-specific. Thus, we may expect to identify many more

lincRNA cis-eQTLs once larger datasets of different tissues

become available.

One limitation of our study is the lack of probes to

comprehensively map eQTLs to all the reported lincRNAs, as

we relied upon microarrays. Future analyses using RNA-sequenc-

ing datasets will undoubtedly provide much more insight into how

genetic variants affect lincRNA expression. So far, two landmark

RNA-sequencing based eQTL studies have been published using

60 (Montgomery et al) [28] and 69 samples (Pickrell et al) [29],

respectively. While Pickrell et al did not mention lincRNAs with a

cis-eQTL effect, Montgomery et al identified six cis-regulated

Figure 2. Distribution of lincRNA cis-eQTLs with respect to different transcripts. (A) The majority of the lincRNA cis-eQTLs are located
within the non-coding part of the genome and less than 6% of lincRNA cis-eQTLs are located within mRNA. (B) Distribution of lincRNA cis-eQTLs with
respect to distance to the lincRNA transcripts. The x-axis displays the 250 kb window used for cis-eQTL mapping and the y-axis displays the fraction of
lincRNA cis-eQTLs located within this window.
doi:10.1371/journal.pgen.1003201.g002

Figure 3. Localization of lincRNA cis-eQTLs in regulatory regions. (A) A plot to indicate the location of lincRNA cis-eQTLs in cell-specific
enhancers. The x-axis shows the different cell lines analyzed and the y-axis shows the fold enrichment of enhancers. (B) A plot to show the difference
in fold enrichment of enhancers for real lincRNA cis-eQTLs compared to permuted lincRNA cis-eQTLs. The significance of the difference in fold
enrichment was tested by T-test. The HaploReg database was used to analyze the fold enrichment of enhancers.
doi:10.1371/journal.pgen.1003201.g003
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lincRNAs (at a slightly higher FDR of 0.17). We re-analyzed these

two datasets and found that we could replicate one of the 112 cis-

eQTL lincRNAs effects that we detected using arrays (with an

identical allelic direction; Figure S10). These results indicate that

cis-eQTL lincRNAs detected using conventional microarrays can

be replicated in sequencing-based datasets. However, it also

indicates that sample size is currently a limiting factor in finding

many more cis-eQTL lincRNAs in sequencing-based datasets.

Nevertheless, our results clearly indicate that there is a strong

genotype-lincRNA expression correlation that is tissue-dependent.

A considerable number of the observed lincRNA cis-eQTLs are

disease- or trait-associated SNPs. Since lincRNAs can regulate the

expression of protein-coding genes either in cis [3] or in trans [8],

lincRNA-eQTLs represent a novel link between non-coding SNPs

and the expression of protein-coding genes. Our examples show

that this link can be exploited to understand the process of gene-

regulation in more detail, which may assist us in characterizing

lincRNAs as another class of disease biomarkers.

Methods

Ethics statement
This study was approved by the Medical Ethical Board of

Maastricht University Medical Center (four non-blood tissues),

and local ethical review boards (1,240 peripheral blood samples) in

line with the guidelines of the 1975 Declaration of Helsinki.

Informed consent in writing was obtained from each subject

personally. The subject information is provided in Table S5.

Mapping probes to lincRNAs
A detailed mapping strategy of Illumina expression probe

sequences has been described previously [17]. We extracted 43,202

expression probes mapping to single genomic locations (hg18 build)

and excluded those that did not map or that mapped to multiple

different loci. LincRNA chromosomal coordinates (hg19 build) were

obtained from the lincRNA catalog (http://www.broadinstitute.org/

genome_bio/human_lincrnas/?q = lincRNA_catalog) and converted

to hg18 coordinates using UCSC’s LiftOver application (http://

genome.ucsc.edu/cgi-bin/hgLiftOver). Subsequently, we extracted

probes mapping to lincRNA exonic regions by employing BEDtools

[30].

Blood dataset of 1,240 samples
The blood dataset and a detailed eQTL mapping strategy have

been described previously [17]. Briefly, 1,240 peripheral blood

samples from unrelated, Dutch control subjects were investigated

(Table S5). Genotyping of these samples was performed according

to Illumina’s standard protocols (Illumina, San Diego, USA), using

either the HumanHap370 or 610-Quad platforms. Because the

non-blood samples (see below) were genotyped using Illumina

HumanOmni1-Quad BeadChips, we applied IMPUTE v2 [31] to

impute the genotypes of SNPs that were covered by the Omni1-

Quad chip but that were not included on the Hap370 or 610-

Quad platforms [31]. Anti-sense RNA was synthesized using the

Ambion Illumina TotalPrep Amplification Kit (Ambion, New

York, USA) following the manufacturer’s protocol. Genome-wide

gene expression data was obtained by hybridizing complementary

RNA to Illumina’s HumanHT-12v3 array and subsequently

scanning these chips on the Illumina BeadArray Reader.

Replication blood dataset of 891 samples
We used a dataset comprising peripheral blood samples of 891

unrelated individuals from the Estonian Genome Centre, Univer-

sity of Tartu (EGCUT) biobank cohort of 53,000 samples for

replication. Genotyping of these samples was performed according

to Illumina’s standard protocols, using Illumina Human370CNV

arrays (Illumina Inc., San Diego, US), and imputed using

IMPUTE v2 [31], using the HapMap CEU phase 2 genotypes

(release #24, build 36). Whole peripheral blood RNA samples

were collected using Tempus Blood RNA Tubes (Life Technol-

ogies, NY, USA), and RNA was extracted using Tempus Spin

RNA Isolation Kit (Life Technologies, NY, USA). Quality was

measured by NanoDrop 1000 Spectrophotometer (Thermo Fisher

Scientific, DE, USA) and Agilent 2100 Bioanalyzer (Agilent

Technologies, CA, USA). Whole-Genome gene-expression levels

were obtained by Illumina Human HT12v3 arrays (Illumina Inc,

San Diego, US) according to manufacturers’ protocols.

Four non-blood primary tissues
Previously we described tissue-dependent eQTLs in 74 liver

samples, 62 muscle samples, 83 SAT samples and 77 VAT

samples from a cohort of 85 unrelated, obese Dutch individuals (all

four tissues were available for 48 individuals) [18] (Table S5).

These samples were genotyped according to standard protocols

from Illumina, using Illumina HumanOmni-Quad BeadChips

(Omni1). Genome-wide gene expression data of all samples was

assayed by hybridizing complementary RNA to the Illumina

HumanHT-12v3 array and then scanning it on the BeadArray

Reader.

Cis-eQTL mapping
The method for normalization and principal component

analysis-based correction of expression data, along with the

methods to control population stratification and SNP quality,

were described previously [17,18]. The cis-eQTL analysis was

performed on probe-SNP combinations for which the distance

from the center of the probe to the genomic location of the SNP

was #250 kb. Associations were tested by non-parametric Spear-

man’s rank correlation test and the P values were corrected for

multiple testing by false-discovery rate (FDR) at P,0.05, in which

the distribution was obtained from permuting expression pheno-

types relative to genotypes 100 times within the HT12v3 dataset

and comparing those with the observed P-value distribution. At

FDR = 0.05 level, the P-value threshold was 2.461024 for

significantly associated probe-SNP pairs in blood, 1.561025 in

SAT, 5.2161026 in VAT, 6.361026 in liver and 1.861026 in

muscle.

LincRNA function prediction
To predict the function(s) for lincRNAs, we interrogated the

GeneNetwork database (www.genenetwork.nl/genenetwork) that

has been developed in our lab (manuscript in preparation). In short,

this database contains data extracted from approximately 80,000

microarray experiments that is publically available from the Gene

Expression Omnibus; after extensive quality control, it contains

data on 54,736 human, 17,081 mouse and 6,023 rat Affymetrix

array experiments. Principal component analysis was performed

on probe-set correlation matrices of each of four platforms (two

human platforms, one mouse and one rat platform), resulting in

777, 377, 677 and 375 robust principal components, respectively.

Jointly these components explain between 79% and 90% of the

variance in the data, depending on the species or platform. Many

of these components are well conserved across species and

enriched for known biological phenomena. Because of this, we

were able to combine the results into a multi-species gene network

with 19,997 unique human genes, allowing us to utilize the

principal components to accurately predict gene function by using

a ‘guilt-by-association’ procedure (a description of the method is

LincRNA eQTLs Are Associated with Human Disease
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available at www.genenetwork.nl/genenetwork). Predictions were

made based on pathways and gene sets from Gene Ontology,

KEGG, BioCarta, TransFac and Reactome.

Functional annotation of lincRNA cis-eQTLs
We employed the HaploReg web tool [26] to intersect SNPs

(and their perfect proxies, r2 = 1 using the CEU samples from the

1000 Genomes project) with regulatory information and also to

calculate the fold enrichment of cell-type specific enhancers. In

order to ascertain whether this enrichment was higher than

expected, we took eQTL results from 100 permutations (shuffling

the gene expression identifier labels): for each permutation we

determined the top 112 eQTL probes and took the corresponding

top SNPs and their perfect proxies (r2 = 1). We extracted the fold

enrichment of enhancers from HaploReg for these 100 sets of

SNPs as well, which then permitted us to estimate the significance

of enrichment of the real eQTL analysis, determined by fitting a

normal distribution on the 100 log-transformed permutation

enrichment scores.

Supporting Information

Figure S1 LincRNA probes show different expression charac-

teristics compared to other transcripts. The figure shows the

difference in quantile-normalized average expression intensity

between lincRNA probes and non-lincRNA probes. The signifi-

cance of difference in expression intensity was tested by the

Wilcoxon Mann Whitney test.

(TIF)

Figure S2 Replicated lincRNA cis-eQTLs show identical allelic

direction of effect in the both the discovery and replication

datasets. We compared the z-scores (association strength) of each

significantly associated probe-SNP pair in the discovery dataset

(Groningen HT12v3; N = 1,240) with the replication dataset

(EGCUT; N = 891).

(TIF)

Figure S3 lincRNA probes with cis-eQTL effect show higher

expression levels compared to lincRNA probes without cis-eQTL

effect. The significance of difference in expression intensity was

tested by the Wilcoxon Mann Whitney test.

(TIF)

Figure S4 LincRNA cis-eQTL SNPs mostly affect lincRNA

transcripts alone. Quantile-normalized average expression inten-

sity of cis-eQTL lincRNAs and their neighboring protein coding

genes without cis-eQTL.

(TIF)

Figure S5 Distribution of Z-scores of co-regulated lincRNA and

protein-coding genes. We compared the z-scores (association

strength) of each significantly associated probe-SNP pair for the 29

cis-eQTLs that affect both lincRNAs and protein-coding genes.

(TIF)

Figure S6 Number of specific and overlapping cis-eQTL

lincRNAs identified across five different tissues.

(TIF)

Figure S7 Plots to show the association of age-related macular

degeneration SNP rs13278062 with expression levels of lincRNA

LOC389641 and protein-coding gene TNFRSF10A in blood

(N = 1,249). The x-axis shows the number of samples according

to the genotypes at rs13278062 and the y-axis is the average

expression intensity of probes.

(TIF)

Figure S8 UCSC genome browser screen shot (http://genome.ucsc.

edu) to show the location of age-related macular degeneration SNP,

rs13278062. The x-axis is the chromosome location in the hg19

build and indicates the location of transcripts and regulatory

elements identified by ENCODE on chromosome 8.

(TIF)

Figure S9 A plot to show the number of lincRNA cis-eQTLs on

the y-axis within different regulatory regions on the x-axis.

(TIF)

Figure S10 Plots to show the cis-eQTL effect on lincRNA

XLOC_00197 from both microarray data (Groningen HT12v3;

N = 1,240) and RNA-sequencing data (Montgomery et al; N = 60).

The x-axis shows the number of samples according to the

genotypes at rs1120042 and rs2279692 (LD between these two

SNPs, R2 = 0.96) in microarray data and RNA-sequencing data,

respectively.

(TIF)

Table S1 LincRNA cis-eQTLs in blood and four other non-

blood tissues.

(XLSX)

Table S2 Function prediction of lincRNAs affected by cis-

eQTLs using GeneNetwork.

(XLSX)

Table S3 Identification of co-expressed genes for lincRNA

LOC389641 using GeneNetwork.

(XLSX)

Table S4 Identification of co-expressed genes for lincRNA

LOC100131138 using GeneNetwork.

(XLSX)

Table S5 Characteristics of sample cohorts used for cis-eQTL

mapping.

(XLSX)
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