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protein-coupled receptor kinase 2

(GRK2) is emerging as a key
integrative node in cell migration control.
In addition to its canonical role in the
desensitization of G protein-coupled
receptors involved in chemotaxis, novel
recently identified GRK2 substrates and
interacting partners appear to mediate the
GRK2-dependent modulation of diverse
molecular processes involved in motility,
such as gradient sensing, cell polarity
or cytoskeletal reorganization. We have
recently identified an interaction between
GRK2 and histone deacetylase 6
(HDACG), a major cytoplasmic a-tubulin
deacetylase involved in cell motility and
adhesion. GRK2 dynamically associates
with and phosphorylatess HDAC6 to
stimulate its @-tubulin deacetylase activity
at specific cellular localizations such as
the leading edge of migrating cells, thus
promoting local tubulin deacetylation
and enhanced motility. This GRK2-
HDACG6 functional interaction may have
important implications in pathological
contexts related to aberrant epithelial cell
migration.

Many cell types are able to undergo
molecular and morphological polarization
and to trigger motion in response to
chemotactic  gradients. Such oriented
migration or chemotaxis is a fundamental
process in embryogenesis, immunity and
wound healing. However, it also contri-
butes to pathological conditions such
as cancer or inflammatory diseases."”?
Directional sensing involves the detection
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of asymmetric extracellular cues by differ-
ent membrane receptors, many of them
chemokine receptors belonging to the G
protein-coupled  receptors  superfamily
(GPCR). In turn, stimulated chemotactic
receptors generate localized activation of
intracellular signaling effectors, leading to
cell polarization (i.e., the establishment of
distinct functionally and morphological
specialized domains at the front and the
rear of the cell body), membrane protru-
sion and the generation of forces required
to move the cell toward the chemotactic
stimuli.®*

Receptor  desensitization and inter-
nalization have been considered to play
an important role in chemotaxis, since
these processes modulate the intensity and
duration of agonist stimulation.”® GPCR
desensitization initiates with the phos-
phorylation of ligand-bound receptors by
a group of seven serine/threonine kinases
termed G protein-coupled  receptor
kinases (GRKs), of which GRK2 is the
most ubiquitous member. This phosphor-
ylation event enables the association of
arrestins, which leads to receptor uncoup-
ling from G proteins (i.e., desensitiza-
tion). Arrestins also engage endocytic
adaptors to trigger transient internaliza-
tion of receptors, which then may be
recycled back to the membrane (re-
sensitization) or targeted for degrada-
tion.”* Consistent with such canonical
negative role, enhanced expression of
GRK2 has been shown to inhibit the
chemotactic response of “professional”
migratory cells of the immune system (at
least to some chemokines, Fig. 1).
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Figure 1. (A) Schematic representation of the relevant molecular partners/substrates of GRK2 and HDAC6 involved in the migration of different cell types.
The overall effect of GRK2 and HDAC6 on cell migration (either positive or negative), as well as the relative contribution of their catalytic or scaffolding-
dependent activities, will be dependent on the cell type and the signaling context. See main text for details. (B) Model depicting the intertwinement of
GRK2-mediated regulation of GIT-1 scaffolding functions and of HDAC6’s tubulin-deacetylase activity in directed cell motility. In the lamellipodium, GRK2
would be recruited in a GBy-dependent manner to sites of the plasma membrane wherein chemotactic activation is taking place. At such specific
locations, the dynamic association of GRK2 to the GIT1 scaffold (enhanced upon tyrosine phosphorylation of GRK2 and decreased upon phosphorylation
by ERK at S670), would facilitate the localized activation of the Rac/PAK/MEK/ERK pathway, leading to increased focal contact turnover and cortical
F-actin polymerization. Concomitantly, phosphorylation of GRK2 at S670 by MAPK would switch on the ability of GRK2 to phosphorylate co-localized
HDAC6. Phosphorylated HDAC6 would display a higher deacetylase activity toward tubulin, contributing to keep down the acetylation of pioneer, highly
dynamic MTs specifically at the lamellipodium. The presence of hypoacetylated MTs would stimulate cortical F-actin polymerization by helping to recruit
at their plus-ends different Rac activators, such as IQGAP1 via the MT-interacting +TIP protein CLIP-170 or other small G proteins-GEF activities.* In
addition, targeting of focal contacts by dynamic cortical MTs at the lamellipodium prevents their maturation into focal adhesions. Theses contacting MTs
release “relaxing” signals that trigger dissolution of focal contacts, probably as result of the local, +TIP protein-mediated downregulation of RhoA.*®
The concerted action of hypoacetylated MTs and GIT-1 signalosomes at the leading edge of migrating cells could contribute to generate/reinforce
cortical polarity and cellular protrusion.
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However, how receptor desensitization
participates in the different processes
underpinning chemotactic movement has
not been fully deciphered. Importantly,
once oriented movement is initiated,
locomotion needs to be maintained until
cells reach destination. A recent work
proposed that GRK2 levels are important
for defining the stop signal of migration.
Chemotaxis usually displays a biphasic
dose-dependent behavior in response to
chemoattractants, with inhibition appear-
ing at higher doses of these compounds.
The threshold for such inhibition could be
dictated by GRK2 expression levels and
the related extent of receptor desensitiza-
tion and internalization. Therefore, in the
absence of this kinase cessation of migra-
tion would not be achieved properly, what
might result in sustained stimulated
locomotion.’

Remarkably, emerging evidence indicate
that the impact of GRK2 on cell migration
is highly dependent on the stimuli and/or
cell type considered, even leading to
outcomes opposed to those aforemen-
tioned."” For instance, while genetic
deletion of GRK2 enhanced chemotactic
responses of both T and B cells to
sphingosine-1-phosphate (S1P), oriented
migration of these cells toward CCL21
was decreased.'’ On the other hand, we
have reported a positive role for GRK2 in
the migration of epithelial cells and
fibroblasts."> How can these discrepancies
be explained on the basis of the conven-
tional “GPCR-desensitizing role”  of
GRK2? It is now known that tumor or
immune cells are not in permanent
locomotion during the migratory pro-
cess,'”' but rather alternate periods of
motility with stationary intervals or breaks
that can vary in length and frequency in a
cell type-specific or stimuli-dependent
way. Such breaks may serve to build new
and to
external chemotactic gradient, what would
require the presence of fully active recep-
tors at the cell surface. In this context, it is
possible that enhanced GRK2 function-
ality could contribute to reduce the extent/
frequency of such breaks (as this kinase
also initiates receptor re-sensitization),
thus facilitating “processivity” of motion

pseudopodia re-evaluate  the

in  some  stimuli-specific  contexts.

Alternatively, there is now compelling
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evidence that different chemokine recep-
tors, as well as the same receptor in
different cell types, can engage distinct
signal transduction routes to promote
motility, which could be positively influ-
enced by GRKs in a desensitization-
independent manner. In this regard, novel
substrates and interacting partners that
might underlie the positive contribution of
GRK2 in cell migration have been iden-
tified.” For instance, phosphorylation of
ezrin'® and radixin'” by GRK2 results in
membrane ruffling as well as membrane
protrusion and motility of epithelial cells.
Besides such phosphorylation-dependent
events, we have described that GRK2
positively regulates migration of epithelial
cells and fibroblasts in a kinase-independ-
Such
GRK2-dependent stimulation of the scaf-
fold function of GIT1 in the activation of
the Rac/PAK/MEK/ERK1/2 pathway.'?
Dynamic GRK2/GIT1

response to integrin and S1P receptor-

ent manner. effect involves the

association in

mediated stimuli promotes cortical F-actin
rearrangement and focal adhesion turn-
over, both critical events for efficient

protrusion and locomotion.

A Novel GRK2/HDACSG6 Interaction
Regulates the Microtubule
Cytoskeletal Network
during Cell Migration

We have recently unveiled that another
important process influenced by GRK2 is
the establishment and maintenance of cell
polarity by means of the regulation of
microtubules (MTs). During cell migra-
tion, the microtubule cytoskeleton is also
polarized, displaying different dynamics,
posttranslational modifications and dis-
tinct sets of associated proteins between
protruding and retracting regions of the
cell.'"®"” These asymmetries contribute to
deliver cell-intrinsic cues from MTs neces-
sary to reinforce and maintain cortical
polarity, as well as to reduce adhesiveness
by disassembly of focal adhesions and to
remodel focal contacts at the rear and at
the leading edge of the cell.*
post-translational modifications, tubulin
subunits become acetylated in the stable
subset of MTs arranged in the lamella

Regarding

region, while highly dynamic, “pioneer”

MTs facing the lamellipodium are
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de-acetylated.””*® The extent of tubulin
acetylation in such different MT subsets
has been suggested to be involved in the
regulation of MTs dynamics and migra-
tion,”* although the underlying molecular
mechanism has not been convincingly
defined. Tubulin deacetylation is actively
performed by HDACG, a class Ila cyto-
plasmic histone deacetylase, which over-
expression stimulates the migration of
different cell types in response to a variety
of signals.***

Our group has recently identified a
novel pathway by which GRK2 regulates
HDACG6  activity during
migration and cell spreading.”® This find-
ing adds a new, GPCR-independent
component to the relevant GRK2 inter-
actome involved in epithelial cell migra-

chemotactic

tion, and also strengthens the functional
link between tubulin acetylation and
migration. We have found that GRK2
directly interacts with and phosphorylates
HDACG at defined serine residues. This
phosphorylation ~ enhances both  the
extent and kinetics of HDACG6-mediated
o-tubulin deacetylation, and is required
for full HDACG6-tubulin deacetylase acti-
vity in situ. Moreover, expression of
HDAC6 mutants with impaired phos-
phorylation by GRK2 fails to mimic the
enhanced chemotactic motility promoted
by wild-type HDACG in cells migrating
toward fibronectin, similar to the effect of
a tubulin-deacetylase inactive mutant.
These data strongly suggest that HDAC6
phosphorylation by GRK2 plays a relevant
role in the positive modulation of cell
motility by these proteins.

In turn, the modulatory effect of GRK2
on HDACG is dynamically regulated by
the phosphorylation status at serine 670 of
GRK?2 itself, which is rapidly upregulated
in response to pro-migratory stimuli
in parallel to tubulin de-acetylation.
Particularly interesting is our observation
that GRK2-S670A (a mutant defective in
phosphorylation at this regulatory site)
showed a reduced ability to phosphorylate
HDACG6 compared with wt-GRK2, des-
pite phosphorylation of other canonical
substrates (GPCR or tubulin) and binding
to HDACG were not significantly affected.
Therefore, this modification of GRK2 acts
as a key switch that specifically modulates
the ability of GRK2 to catalyze the
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phosphorylation of HDACG. Interestingly,
both phospho-5670-GRK2 and HDACG6
are specifically co-recruited to chemoat-
tractant-induced pseudopodia and both
proteins co-localize in the leading edge of
polarized, motile epithelial cells, a region
that is devoid of acetylated MTs. Thus, we
propose that the dynamic GRK2 phos-
phorylation at the leading edge triggered
by different pro-migratory stimuli would
translate into dynamic, local HDACO-
mediated de-acetylation of tubulin at the
plus-ends of MTs, thus helping to main-
tain the cortical polarization underlying
psecudopodia  extension and  directed
migration.

In addition to tubulin, HDACG is also
able to trigger de-acetylation of cortactin
and Hsp90 in order to modulate cell
migration.””** Unexpectedly, GRK2 does
not stimulate the capacity of HDACG to
de-acetylate cortactin, being the positive
HDACG6-mediated effect of GRK2 in
migration independent of the acetylation
status of cortactin.”® These data suggest
that tubulin is the relevant target of
HDACG6 underlying the effects of GRK2
in migration. However, it remains an open
question whether de-acetylation of other
HDACG6 substrates such as Hsp90, a
chaperone with
GRK2% and that promotes actin remodel-
ing during cell migration,”® or even

known to interact

catalytic-independent functions of
HDACSH6 involved in motility,”® could also
be altered by GRK2 in a kinase- or
scaffold-dependent manner.

A better understanding of how different
substrate/partners of HDAC6 contribute
to migration in a given cellular context, as
well as of the impact of regulatory factors
able to modulate precise HDACG6 acti-
vities, may have important implications
(see below).
Interestingly, while in certain cell types
such as fibroblasts or epithelial cells the
control of cell motility by HDACG clearly
relies on the regulation of tubulin acetyla-
tion and actin remodeling by inducing
deacetylation of cortactin®” and Hsp90**?'
in endothelial cells tubulin deacetylation
doesn’t seem to play a role” (Fig.1).
Remarkably, we have observed that in the
latter cell type enhanced GRK2 expression

in pathological contexts

does not support migration in response
to a variety of chemotactic stimuli
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(unpublished data). Therefore, our data
suggest that the positive role of GRK2 in
the migration of adherent cell types would
depend on the relevant HDACG inter-
actome involved in a given cell type or
physiological situation.

On top of that, an important question
to be addressed is how GRK2-mediated
regulation of HDACG intertwines with
that of GIT-1 in order to orchestrate cell
polarity and adhesion dynamics in differ-
ent cell types. Since the relative extent of
actin- and microtubule-rich regions varies
with cell type, it is reasonable to assume
that their contribution to the migration
machinery will also be different.'” For
instance, microtubules have no role in the
activity
whereas they are prominently involved in

protrusion of  keratinocytes,
the migration of astrocytes. In the context
of such “locomotion” heterogeneity, the
contribution of the regulatory actions of
GRK2 mediated by GIT and HDACG6 on
actin cytoskeleton and MT, respectively,
might be differently balanced according to
the migratory stimuli and protrusion
forces involved (i.e., interplay between
actin  polymerization and microtubule
dynamics). In this regard, we have recently
observed that concurrent regulation of
GIT-1 and HDACG6-dependent activities
by GRK2 takes place in the migration of
Hela cells toward fibronectin. By using
specific inhibitors of HDAC6-mediated
tubulin deacetylation and the overexpres-
sion of a GIT-1 mutant unable to mediate
the stimulatory effects of GRK2 on
chemotactic signaling, we have estimated
that GIT-1 and HDACG6 components
account in an additive manner for 30—
40% and 35-45%, respectively, of the
overall positive effect of GRK2 in the
migration of this particular cell type.”®
Consistently, migration is reduced ca.

60-70% when both GRK2-mediated
migratory components (GIT-1 and
HDACG6/tubulin)  are  simultaneously

downplayed by silencing GRK2 expres-
sion.'”” Based on these observations, we
propose a model to integrate these differ-
ent pro-migratory functions of GRK2
(Fig.1). Upon receptor
activation, GRK2 would be recruited in a

chemotactic
Gpy-dependent manner to the lamellipo-

dium plasma membrane. At such specific
locations, chemokine receptor stimulation
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would promote the transient interaction
of GRK2 with GIT-1 in a phosphoryla-
tion-regulated manner. An initial c-Src-
mediated tyrosine phosphorylation of
GRK2 enhances its binding to GIT-1,
whereas subsequent phosphorylation at
S670 by MAPK disrupts this interaction.'?
In turn, MAPK phosphorylation switches
on the ability of GRK2 to phosphorylate
HDACG6 co-localized at the lamellipo-
dium, what would result in a higher local
HDACG6 de-acetylase activity toward tubu-
lin.** The presence of hypo-acetylated
MTs at the lamellipodium together with
GIT-1 signalosomes would
stimulate cortical Rac and F-actin poly-
merization, as well as dynamic focal

functional

adhesion turnover in order to favor cell
migration.

HDAC6 and GRK2 as New
Potential Pharmacological Targets
to Halt Cell Migration:

Two are Better than One

In sum, both GRK2 and HDACG6 seem to

modulate diverse molecular processes
involved in motility (gradient sensing,
adhesion,  polarity and  cytoskeletal

reorganization) in a multifaceted way, by
engaging in a variety of signaling routes
and through the regulation of different
partners, with the involvement of both
their catalytic and scaffolding activities.
Therefore, it is likely that altered activity/
expression of these proteins might criti-
cally contribute to deregulate cell migra-
tion in relevant pathologies such as chronic
inflammation or cancer. In line with this
notion, overexpression of HDACG6 has
been reported in ovarian carcinomas,
breast tumors, oral squamous carcinomas
and primary acute myeloid leukemia,*
while altered levels of GRK2 have been
found in rheumatoid arthritis, multiple
sclerosis and diverse neoplastic diseases as
human granulosa cell tumors, thyroid and
prostate cancer or some breast tumors.**
One of the more life-threatening aspects
of cancer is the invasive migration and
metastasis of malignant cells. Therefore, it
is tempting to speculate that the reported
interplay of GRK2 and HDACG6 might
also be implicated in invasive migration. In
this regard, GRK2 was found upregulated
in different malignant mammary cell lines
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that display aberrant migration compared
with normal cells,”> and GRK2 inhibition
by expression of a peptide derived from
the carboxyl-terminus of GRK2 (GRK2ct
or BARKIct), suppressed both tumor
formation and growth® as well as invasive
migration of tumor breast cells.”
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Opverall, these data suggest that concur-
rent HDACG6 and GRK2 upregulation in
human tumor malignancies may favor
migration and invasion, and point to
HDAC6 and GRK2 as new potential
therapeutic targets for suppressing cancer
growth and metastasis. In fact, several
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inhibitors with different profiles of selec-
tivity toward distinct classes of HDAC:s are
already in early phase clinical trials for a
broad range of liquid and solid tumors.”®
The hydroxamic acids tubacin and tubas-
tatin-A>>*’ and the naphthoquinone ana-
log NQN-1% have been described to elicit
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a potent and selective HDACG inhibition.
Interestingly, some of these compounds
seem to act as “partial” HDACG inhibi-
tors, blocking deacetylation of only some
substrates. While NQN-1 induces hyper-
acetylation of Hsp90 and tubulin,
tubacin and tubastatin-A only prevent
tubulin-deacetylation, without altering
the extent of cortactin®® or Hsp90 acetyla-
tion.®**"  Such biased inhibition of
HDAC6 must be taken into account
when used as a tool to investigate the
involvement of HDACSG in a given cellular
response. On the other hand, it should be
possible to take therapeutic advantage of
the specificity of these HDACG6’s inhibi-
tors. For instance, it could be predicted
that HDACG6 inhibitors similar to tubacin
would be less effective than NQN-1-like
compounds in inhibiting angiogenesis,
since HDACG preferentially de-acetylates
cortactin in migrating endothelial cells.*
On the contrary, the identification of
specific GRK2 pharmacological inhibitors
with sufficient potency/selectivity has not
been reported to date. Most of kinase
inhibitors target the ATP-binding site,
which is highly conserved among different
GRKs subfamilies and very similar to other
kinases of the AGC family. The catalytic
domain of GRK2 is in contact with
the two other domains of the kinase,
the N-terminal RH domain and the
C-terminal PH domain.”* Interestingly,
structural analysis of different kinases in
complex with balanol, a general AGC
kinase inhibitor, that banalol
recognized-conformations could differ in
different GRK isoforms and these diver-

gences could be exploited to develop more

reveals

selective inhibitors.®® A recent study
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