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Abstract
In cardiac muscle, a number of posttranslational protein modifications can alter the function of the
Ca2+ release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor
(RyR). During every heartbeat RyRs are activated by the Ca2+-induced Ca2+ release mechanism
and contribute a large fraction of the Ca2+ required for contraction. Some of the posttranslational
modifications of the RyR are known to affect its gating and Ca2+ sensitivity. Presently, research in
a number of laboratories is focussed on RyR phosphorylation, both by PKA and CaMKII, or on
RyR modifications caused by reactive oxygen and nitrogen species (ROS / RNS). Both classes of
posttranslational modifications are thought to play important roles in the physiological regulation
of channel activity, but are also known to provoke abnormal alterations during various diseases.
Only recently it was realized that several types of posttranslational modifications are tightly
connected and form synergistic (or antagonistic) feed-back loops resulting in additive and
potentially detrimental downstream effects. This review summarizes recent findings on such
posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a
perspective for future work trying to understand the ramifications of crosstalk in these multiple
signaling pathways. Clarifying these complex interactions will be important in the development of
novel therapeutic approaches, since this may form the foundation for the implementation of multi-
pronged treatment regimes in the future.
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1. Introduction
In cardiac muscle, ryanodine receptors (RyRs) serve as Ca2+ release channels of the
intracellular Ca2+ store, the sarcoplasmic reticulum (SR). Thereby, they provide a large
fraction of the Ca2+ required to initiate muscle contraction from beat to beat. They are
normally activated by a small amount of Ca2+ entering into cardiac muscle cells from the
extracellular space, via voltage-dependent Ca2+ channels. This Ca2+-induced Ca2+ release
(CICR) from the SR is the mechanism which amplifies the Ca2+ signal and governs
excitation-contraction (EC) coupling by activation of RyRs (for review see [1]).

Research on the RyR, both on its structure and function, has been carried out over the last
decades using multiple experimental approaches and techniques to overcome the difficulty
of examining a channel that is located intracellularly and therefore not easily accessible.
This includes assays using isolated SR vesicles (e.g. [2,3]), single RyR channels
reconstituted into lipid bilayers (e.g. [4–9]), permeabilized cardiomyocytes [10,11], but also
various biochemical techniques (e.g. see [12,13]). Cellular ultrastructural and co-localization
information has been obtained with immunocytochemistry and electron tomography [14,15]
and structure on the molecular level has been assessed with cryo-electron microscopy
[16,17].

Many of these studies have confirmed the potential of RyRs to undergo several of the
numerous known posttranslational modifications and a number of reports have provided
evidence for functional consequences resulting from some of these modifications. These
data were frequently obtained in artificial experimental systems and under conditions far
away from the natural environment of the RyRs. Therefore, it often remained unclear
whether and how these observations on or near the molecular level would translate into
intact and living cardiomyocytes and into the entire organ or organism [18].

Some time ago it became practical to closely examine RyR function in-situ and within its
native environment, which means inside living cells. This has become possible because of
groundbreaking developments of technologies to faithfully image subcellular and
microdomain Ca2+ signals with appropriate spatial and temporal resolution. These
developments were significantly driven by the chemical synthesis of bright and kinetically
fast fluorescent Ca2+ indicators [19,20] and the simultaneous advancements of laser-
scanning confocal microscopy combined with digital image acquisition and processing [21].

Since several excellent reviews cover many aspects of RyR posttranslational modifications
on the biochemical and molecular level [22–30], here we will concentrate mainly, but not
exclusively, on recent findings that have been obtained by examining RyR activity and
cardiac Ca2+ signaling on the cellular level, where the channels can be examined under
conditions not far from their native environment. In particular, we will focus on the
consequences of a combined impact of several posttranslational modifications and their
mutual interactions during physiological regulation of RyRs and during the development of
cardiac diseases affecting RyR function.

2. The ryanodine receptor
2.1. The RyR macromolecular complex

In mammals three RyR isoforms are known: the skeletal muscle form RyR1, the cardiac
RyR2 and the more broadly expressed brain form RyR3. The cardiac RyR2 is a large
macromolecular complex consisting of a homo-tetramer with 4 subunits comprising a
molecular mass of 565 kDa each, totaling 2.2 MDa (for review see [31]). This complex is
regulated and modulated in numerous ways by ions (e.g. Ca2+, Mg2+, H+), by small
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molecules (e.g. ATP, cADPR) and by proteins (e.g. sorcin, calstabin2, junctin, triadin).
Important for this review, the macromolecular complex is also connected to protein kinase A
(PKA), phosphatases (e.g. phosphatase 1 and 2A) and phosphodiesterase (PDE4D) which
are tethered to the channel and held near their target sites by means of anchoring proteins
[32,33]. This allows for a tight and spatially confined homeostatic regulation of the balance
between PKA-dependent RyR phosphorylation and phosphatase dependent
dephosphorylation. Ca2+/calmodulin dependent kinase II (CaMKII) was also found to be
associated with the RyRs, but the nature and target specificity of this connection are less
clear [34]. On the RyR itself, a number of phosphorylation sites have been identified (see
chapter 3). Furthermore, the RyR complex comprises several free cysteines that can be
subject to reversible oxidative modification (see chapter 4).

2.2. The Ca2+ signaling microdomain in the vicinity of the RyRs
In cardiac muscle, a large fraction of the RyRs are organized in dyads, where the SR
membrane contains a cluster of 30–250 RyRs [35] and comes in close contact (gap of ~15
nm) with the T-tubular membrane, which harbors the voltage-dependent L-type Ca2+

channels. Opening of one or more L-type channels can activate CICR via several RyRs
within a cluster. The tiny SR Ca2+ release generated by these few opening channels gives
rise to a Ca2+ spark, an elementary Ca2+ signaling event, which can be detected and
analyzed using confocal imaging of Ca2+ sensitive fluorescence indicators (for reviews see
[36,37]). During each heart beat, a large number of Ca2+ sparks is activated simultaneously,
summing up to form the cardiac Ca2+ transient for the activation of contraction. Ca2+ sparks
and even smaller Ca2+ release events, Ca2+ quarks, can also occur spontaneously, for
example during diastole [38,39]. Spontaneous Ca2+ sparks and Ca2+ quarks are considered
to occur accidentally and partly underlie the SR Ca2+ leak. Accidental spontaneous Ca2+

sparks do not normally trigger larger Ca2+ signals, such as Ca2+ waves, and are therefore not
arrhythmogenic. Eventless or “quarky” SR Ca2+ release through single (or very few) RyRs
was recently proposed to contribute substantially to the leak [38–42]. However, under
conditions of SR Ca2+ overload and in circumstances which sensitize the RyRs, single Ca2+

sparks can initiate Ca2+ waves traveling along the myocytes in a saltatory fashion from
sarcomere to sarcomere [43–46]. These Ca2+ waves have a substantial arrhythmogenic
potential, since they are able to initiate Ca2+ activated currents, such as the Na+-Ca2+

exchange current (INCX), which in turn may depolarize the cardiomyocyte to generated a
delayed afterpotential (DAD) and even trigger premature action potentials.

2.3. Ca2+ dependent activation and inactivation of the RyRs
The open probability of RyRs depends steeply on the cytosolic Ca2+ concentration, whereby
Ca2+ is thought to bind to the RyR activation site [47]. The increase of the RyR open
probability subsequent to openings of L-type Ca2+ channels and entry of Ca2+ into the
dyadic cleft is the main mechanism for activation of CICR during physiological activity.
The Ca2+ concentration prevailing in the dyadic cleft can only be estimated with computer
models at present [48], thus we use “Ca2+ sensitivity” of RyRs as a descriptive term. In any
case, the Ca2+ sensitivity of the RyRs in-situ is low enough to ensure independent activation
of adjacent Ca2+ spark sites, to allow for the regulation of cardiac Ca2+ signals by virtue of
local control and recruitment of Ca2+ sparks. The Ca2+ sensitivity of the channels for this
type of activation is known to depend on a number of modulators as mentioned above, but
also on several regulatory or disease-associated posttranslational protein modifications (see
chapters 3 and 4). Inactivation of the RyRs and termination of the Ca2+ sparks in-situ is less
well understood and is the focus of significant ongoing research efforts. One proposed
mechanism is based on regulation of the RyRs by the Ca2+ concentration inside the SR.
Thereby, lowering the SR Ca2+ concentration during a spark would make the RyRs
insensitive for Ca2+ on the cytosolic side of the channels, which causes their deactivation.
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Based on observations in SR vesicles, RyRs in lipid bilayers and cells overexpressing
calsequestrin, deactivation has been suggested to occur via a retrograde signal mediated by
allosteric interactions between calsequestrin (acting as the Ca2+ sensor) and junctin and/or
triadin and the RyR [2,8,49,50]. This mode of spark termination could be stabilized by a
reinforcing mechanism that has been proposed recently based on model predictions. The
local SR depletion and subsequent decay in Ca2+ release flux from the SR during a Ca2+

spark may contribute to the self-termination, because of the resulting decline of the dyadic
Ca2+ concentration [51]. Other proposed mechanisms for spark termination include Ca2+

dependent inactivation of the RyRs [52], but up to 100 µM cytosolic Ca2+ no RyR
inactivation was observed in permeabilized cardiomyocytes [53]. Another mechanistically
attractive possibility is stochastic attrition, where the probabilistic simultaneous closure of
all RyRs in one cluster would interrupt their mutual activation by CICR within the dyadic
cleft [54]. When all channels close, the very high dyadic Ca2+ concentration drops to low
cytosolic levels within a few milliseconds [48]. However, the probability of all channels to
be closed simultaneously is quite low given the estimated number of RyRs in a cluster [35],
unless their gating is partly coupled [55].

The Ca2+ release termination mechanism mediated by lowering of the SR luminal Ca2+

concentration and deactivation of the RyRs could also be important under conditions of SR
Ca2+ overload, the opposite of the depletion during a Ca2+ spark and CICR. By sensitizing
the RyRs for Ca2+ on the cytosolic side, elevations of intra SR Ca2+ could initiate or
facilitate store-overload induced Ca2+ release (SOICR) and arrhythmogenic Ca2+ waves
[46,56].

3. RyR phosphorylation
As mentioned above, the mechanism and functional consequences of RyR phosphorylation
has attracted much recent attention. Fig. 1. shows a summary of the involved pathways.
Interest in this issue was inspired by a report suggesting that PKA dependent
“hyperphosphorylation” of RyRs could occur during heart failure (HF) thereby aggravating
this condition. Hyperphosphorylation was proposed to promote the Ca2+ sensitivity of RyRs
resulting in elevated open probability. This in turn would cause a substantial diastolic SR
Ca2+ leak, which could contribute to low SR Ca2+ content, smaller Ca2+ transients and
hence weak heart beat [12]. Using mainly biochemical and molecular biology approaches,
serine 2808 and 2030 on the RyR have been identified as possible phosphorylation sites for
protein kinase A (PKA), and serine 2814 for CaMKII. However, the specificity of these sites
for the mentioned kinases remains a disputed issue [12,57–59] and additional sites are likely
to exist [60]. Moreover, a fierce controversy revolves around the functional consequence
and pathophysiological relevance of the phosphorylation at these sites [61,62]. This debate
may result from differences in experimental approaches, methods and tools, but also from
variations of the particular animal and disease models.

3.1. Phosphorylation by CaMKII
The picture which emerges from the literature seems to be more clear for the consequences
of CaMKII activation which leads to phosphorylation of serine 2814 on the RyR and
possibly other sites [60,62], among many collateral targets. CaMKII activity seems to
produce quite consistent functional changes of the RyRs that are reconcilable with the
general prediction over a wide range of experimental settings and approaches, extending
from single channel experiments to cellular Ca2+ signaling and a variety of transgenic
animals. In single channel experiments the open probability of the RyRs was generally
found to be increased upon phosphorylation by CaMKII [63] (but see [64,65]). In isolated
cardiomyocytes activation of CaMKII was associated with an increase of the Ca2+ spark
frequency [66]. Transgenic mice overexpressing the cardiac isoform of CaMKII showed a
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marked hypertrophy, altered expression and phosphorylation levels several proteins
involved in Ca2+ signaling. Despite lower SR Ca2+ content, the cells also showed elevated
Ca2+ spark frequencies, leading to pronounced SR Ca2+ leak and a susceptibility for
arrhythmias [67,68]. Ablation of CaMKII resulted in a protection of the animals from
cardiac hypertrophy, possibly mediated by the unavailability of CaMKII signaling in the
pathways of excitation-transcription coupling [69,70]. To obtain further insight into the
functional role of serine 2814 on the RyR several mouse models were engineered to
specifically scrutinize this site. In one animal serine 2814 was replaced by an alanine, which
removes its capability to become phosphorylated by CaMKII (S2814A mouse). Hearts of
these animals and cardiomyocytes isolated from them showed blunted force-frequency
relationships [71] and the mice were protected from arrhythmias induced by tachypacing
after being subjected to transverse aortic constriction (TAC) to induce hypertrophy and
failure [72]. Conversely, the S2814D RyR, where serine is replaced by aspartic acid, mimics
constitutive CaMKII dependent RyR phosphorylation and increases the open probability of
the channels in bilayer experiments. Cardiomyocytes isolated from S2814D mice showed
elevated Ca2+ spark frequencies that could not be further increased by CaMKII activation
[72] and the mice developed a propensity for arrhythmias and sudden cardiac death when
stressed with catecholaminergic challenges or tachypacing subsequent to TAC.

Taken together, these and numerous other studies draw a picture whereby in the short-term
CaMKII dependent phosphorylation substantially modifies RyR function, cardiac Ca2+

signaling and EC-coupling. Overall, these signaling systems seem to become boosted, more
active and Ca2+ sensitive but less well controlled, from the molecular to the cellular and
organ level. Thus, CaMKII has been considered as a treatment target for multiple short term
and long-term cardiac conditions that are associated with disturbances of Ca2+ signaling and
CaMKII activation [73–76].

3.1. Phosphorylation by PKA
PKA dependent phosphorylation and “hyperphosphorylation” of the RyRs at serine 2808
during heart failure (and in a transgenic mouse model overexpressing the catalytic domain of
PKA in the heart) has been proposed to dissociate the stabilizing protein calstabin 2 (a.k.a
FKPB-12.6) from the RyR macromolecular complex, a sequence of events that is suggested
to be followed by major functional changes of the channels resulting in diastolic Ca2+ leak,
SR Ca2+ depletion and weak heart beat [12,77]. Obviously, this mechanism could be very
important both for the physiological regulation of the channels during stress as well as for
their pathophysiological malfunctioning. Therefore, it has attracted substantial research
efforts from several laboratories. While in general phosphorylation of the S2808 site has
been confirmed by various laboratories, specificity for PKA of this site, the conditions under
which phosphorylation would occur and whether or not this leads to calstabin 2 dissociation
have remained equivocal [57]. An additional PKA site has been identified at serine 2030
[58,78]. On the single channel level, functional changes after PKA-dependent
phosphorylation have been described some time ago [79,80]. On the cellular level, the
consequences of PKA-dependent RyR phosphorylation have been more difficult to pinpoint,
partly because of the complex adjustments of multiple signaling networks downstream the
activation of PKA in intact or permeabilized cells. Changes of Ca2+ spark parameters indeed
were observed upon application of cAMP in permeabilized mouse cardiomyocytes, but were
entirely attributable to the concomitant SERCA stimulation resulting from PLB
phosphorylation, as they were not present in cells isolated from PLB ablated mice, where
SERCA is already maximally stimulated [11]. Two-photon photolysis of caged Ca2+ to
artificially trigger Ca2+ sparks suggested changes of RyR gating after β-adrenergic
stimulation, since in resting Guinea pig myocytes larger Ca2+ release events were observed
despite a decline of SR content [81]. However, when analyzing the frequency of
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spontaneous Ca2+ sparks at rest, this was later found to most likely depend on CaMKII
activation [82].

Because of these difficulties to dissect the consequences of β-adrenergic stimulation on RyR
function, transgenic animals have been engineered specifically targeting the serine 2808 site.
Several animal models have been created where this serine is replaced by alanine, resulting
in S2808A channels which can no longer be phosphorylated at this site [59,83]. Another
model are the S2808D mice, which have a modification which corresponds to constitutively
phosphorylated RyRs. Unfortunately, the generation of these animals has not fulfilled the
expectation to clarify the open issues, as the results published in several reports have again
been controversial. Initial studies with the S2808A mice showed that the modification was
very subtle, did not disturb normal cardiac function and the animals had no overt phenotype.
However, after myocardial infarction (MI) these mice were protected from developing heart
failure and from arrhythmias induced by phosphodiesterase inhibition [59]. Reconstituted
S2808A channels did not show elevated open probability after MI, in contrast to those from
WT mice (an observation which is puzzling by itself, because the CaMKII phosphorylation
site on these RyRs should still be functional [72]). This difference on the molecular level
was proposed to be the underlying mechanism preventing SR Ca2+ leak, weak heartbeat and
the susceptibility to arrhythmias in S2808A mice.

In a different laboratory, a further S2808A mouse was engineered and these animals were
subjected to a pressure overload heart failure model after TAC [83]. In this study, no
obvious cardioprotection was conferred to the animals by ablating the 2808 phosphorylation
site. Furthermore, no substantial differences between WT and S2808A RyRs were present in
the open probability and gating kinetics of reconstituted channels. This study then examined
Ca2+ signaling and EC-coupling on the cellular level, including an analysis of Ca2+ sparks
and waves. Again, no significant differences were found between the two groups of animals.
These observations led the authors to conclude that the serine 2808 site only has a limited
role in the pathogenesis of heart failure.

At present it remains unsettled why these apparently similar studies led to essentially
opposite conclusions. One has to consider that the used disease models and the particular
pathomechanisms activated in each of them (e.g. pressure overload after TAC versus
ischemia / inflammatory disease without pressure overload but potentially more oxidative
stress [84]) could result in quite different outcomes, as has been observed in another study
investigating CaMKII dependent RyR phosphorylation [85], or that the RyRs of the two
engineered animals do not operate in a perfectly identical way [86]. Alternatively, some of
the resulting functional modifications may be rather subtle, and can be compensated by
auto-regulatory features of the cardiac EC-coupling machinery [87] and are therefore
difficult to detect.

Starting from the latter possibility, a detailed study was carried out to examine SR Ca2+

release kinetics, their spatial synchronization, and the improvement of this parameter by β-
adrenergic stimulation when the communication between L-type Ca2+ channels and RyRs
was challenged [88]. The reasoning for this approach was the notion that these events occur
at the very interface between the L-type Ca2+ channels and the RyRs and might therefore
reveal even subtle changes. When this communication was tested by using very small Ca2+

currents as triggers, substantial spatial desynchronization was observed. This was
resynchronized upon β-adrenergic stimulation in the WT [89] but not in the S2808A cells.
Furthermore, unlike WT cells, Ca2+ wave propagation was not accelerated upon β-
adrenergic stimulation in S2808A cells. Together with the long delays observed in the
release synchronization, this suggested the possibility of an intra-SR mechanism [46,56],
whereby SR Ca2+ loading via SERCA would lead to sensitization of the RyR from the
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luminal side, thereby pushing the channel over the trigger threshold. The possibility of an
intra-SR mechanism was then confirmed in reconstituted single RyR channels. At high SR
Ca2+ concentrations, and only under this condition, WT channels indeed responded with a
significantly larger increase in open probability upon PKA dependent phosporylation than
S2808A channels. Regarding the ongoing controversy, the main conclusion from these
studies is that the effects of serine 2808 phosphorylation are present but delicate and may be
difficult to detect when SR Ca2+ content is not controlled experimentally (e.g. in vivo, when
the auto-regulatory adjustments of SR Ca2+ content mentioned above may compensate for
small changes of RyR open probability).

Taken together it appears that the mechanisms and consequences of PKA dependent RyR
phosphorylation are less clear and potentially more subtle than those mediated by CaMKII.
Whether and how these delicate changes translate into the in vivo situation is difficult to
extrapolate and will require more research. In support for this expectation, a recent cross-
breeding experiment between dystrophic mdx and S2808A mice indicated that the RyR
mutation confers significant protection for cardiac disease manifestations and progression of
the dystrophic cardiomyopathy in these animals (see below) [90].

4. Redox modification of RyR
4.1. RyR oxidation by ROS

Changes of the cellular redox state give rise to another category of posttranslational RyR
modifications, which do not only have a modulatory function but also play an important role
in the development of various cardiac diseases. The term “intracellular redox potential”
broadly describes the balance between reduced and oxidized proteins within cells, which in
turn is determined by the level of generation and buffering of cellular reactive oxygen and
reactive nitrogen species (ROS/RNS). There are multiple sources of ROS/RNS within the
cell (see figure 2). They include but are not limited to NADPH oxidase (NOX), xanthine
oxidase (XO), mitochondria and nitric oxide synthase (NOS). On the other end there are
various cellular antioxidant defense components such as catalase, superoxide dismutase,
thio- and glutaredoxins, glutathione peroxidase, glutathione, vitamins A, C and E, etc. Under
physiological conditions, the extent of ROS/RNS accumulation is finely controlled by these
scavenging and reducing mechanisms, and at low concentrations ROS/RNS serve as
important intracellular messengers. An imbalance between generation of ROS/RNS and the
efficiency of cellular defense systems can lead to a transient or persistent oxidative/
nitrosative stress resulting in redox modifications of various cellular proteins, including
those involved in Ca2+ homeostasis. The RyR is an important example, since it is known to
be very susceptible to redox modifications. Each cardiac RyR tetramer contains a total of
364 cysteines [91]. In the presence of a physiological concentration of one of the major
cellular “redox buffers” glutathione (5 mM) about 84 of these cysteines are free. The
sulfhydryl groups of these cysteines are subject to reversible cross-linking, S-nitrosation
(often referred to as S-nitrosylation) and S-glutathionylation. Numerous studies of RyRs
incorporated in lipid bilayers convincingly showed that reversible redox modifications
significantly affect the activity of RyR channels. Oxidative conditions generally increase the
RyR open probability, while reducing agents do the opposite (e.g. [91–94]). Therefore, the
functional consequence of a moderate cellular oxidative/nitrosative stress could be
immediate enhancement of Ca2+ release from the SR in response to a given physiological
trigger. This possibility has been supported by experiments with isolated SR vesicles (e.g.
[91,95]). The increased Ca2+ sensitivity of RyRs and subsequently larger Ca2+ transients
could have a positive inotropic effect on the cardiac function [96]. However, severe
oxidative stress can cause irreversible and sustained activation of RyRs [91], increased Ca2+

leak from the SR, decreased SR Ca2+ load and finally a decline of beat-to-beat cellular Ca2+

transients with contractile dysfunction. Such conditions are usually associated with or even
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caused by the development of various cardiac abnormalities. Therefore, the role of RyR
redox modifications in cardiac pathophysiology is currently under intensive investigation in
multiple laboratories around the world.

When the experimental gear was shifted from molecules and vesicles towards studies of
cells, organs and organisms, it became obvious that the findings obtained from isolated RyR
channels cannot be translated to more complex biological systems without a critical
reevaluation. Besides the presence of various cellular sources for ROS, redox modification
targets multiple intracellular sites including major proteins involved in EC coupling and all
of them need to be considered in order to identify the link between each modification and
the resulting changes of RyR function [97]. To discriminate between correlative, adaptive
and causal posttranslational RyR modifications is often a daunting task.

Cardiac muscle has a substantial NOX activity (for reviews see [98,99]). It has been
reported that NOX2 is the predominant isoform expressed in T-tubular and SR membranes
of mature cardiomyocytes. Therefore, it is strategically positioned to modulate the activity
of the RyRs. NOX is an enzyme that utilizes NADPH to produce superoxide anion. NOX2
was found to be overexpressed and/or its activity increased in dystrophic hearts [100,101], in
hearts of patients with a history of atrial fibrillation [102], and in hearts subjected to
tachycardic preconditioning [103]. Although the exact mechanisms of NOX activation under
these pathological conditions remain unclear, it was shown that ROS produced by NOX
stimulates SR Ca2+ release via at least two pathways: 1) direct oxidation or S-
glutathionylation of RyRs or 2) indirectly through CaMKII activation [104] followed by
phosphorylation of the RyRs. Reducing or ROS scavenging compounds could generally
mitigate or prevent the consequences of oxidative stress in these experimental models.
Another widely recognized source of ROS production in cardiac myocytes are mitochondria
[105,106]. Mitochondria always generate a small amount of ROS through leakage in the
electron transport chain during respiration. Under some pathophysiological conditions, such
as ischemia/reperfusion, ROS produced by mitochondria become the main contributors to
cellular oxidative stress. In this situation mitochondrial Ca2+ overload and subsequently
ROS overproduction may trigger mitochondrial permeability transition, which in turn boosts
ROS production via ROS-induced ROS release mechanisms [107,108]. There are also
several reports indicating upregulation of XO activity in experimental models of heart
failure [109]. Furthermore, contractile function and myocardial efficiency in HF could be
improved by the treatment the animals with the xanthine oxidase inhibitor allopurinol
[110,111]. Overall, regardless of the source of their generation, ROS and subsequent
oxidative modifications of RyRs have been directly held accountable for augmented stretch-
induced Ca2+ responses and hypersensitive EC-coupling in dystrophic cardiomyocytes
[101,112–115] as well as in impaired Ca2+ signaling in failing [116,117] and diabetic hearts
[118,119].

4.2. RyR modifications by RNS
The two major isoforms of NO synthase (NOS) in cardiac myocytes are eNOS and nNOS.
They have a specific sub-cellular localization and are possibly aimed at different targets in
their microdomains, due to the short range of NO diffusion. The eNOS isoform is localized
in the plasma membrane in caveolae through interaction with caveolin-3. In healthy cardiac
muscle nNOS is mainly located in the SR membrane, linked to the RyRs. In failing or
diseased hearts nNOS may partly redistribute to the sarcolemma. Normally, the iNOS
isoform is not present in significant amounts, but this may be different during the
development of cardiac diseases. NO produced by these enzymes can bind to free thiol
groups on various proteins, including RyR, causing S-nitrosation and conformational
changes. Alternatively, NO can act via the cGMP dependent pathway and activated PKG, a
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protein kinase which is thought to phosphorlyate the RyR at the S2814 CaMKII site, at least
in vitro [60]. However, whether this occurs in vivo is presently unclear.

An important role for direct RyR nitrosation in cardiac EC-coupling and Ca2+ signaling was
suspected already some time ago (for review see [96]), when it was found that the stretch-
induced enhancement of cardiac Ca2+ signals and elevation of Ca2+ spark frequency was
blunted in the presence of L-NAME, an unspecific inhibitor of all NOS isoforms [120]. The
effect of stretch could be mimicked by adding the NO donor SNAP, which nearly doubled
the Ca2+ spark frequency. Additional studies reported that NO could have diverse actions,
depending on the preexisting extent of β-adrenergic stimulation. NO donors increased the
Ca2+ spark frequency in a cGMP independent way at low (10 nM) concentrations of ISO,
presumably by RyR nitrosation (but other mechanisms were not excluded) [121]. At 1 µM
ISO a decrease of the spark frequency was observed, however this was accompanied (or
caused) by a reduction of the SR Ca2+ content. In nNOS−/− mice, but not in eNOS−/− mice,
hyponitrosation of the RyRs was observed, indicating that the structural proximity between
nNOS and RyR may be functionally relevant. Interestingly, these RyRs exhibited more
extensive oxidative modifications, thought to lead to elevated SR Ca2+ leak [122]. Thus,
constitutive RyR S-nitrosation in WT animals may confer some protection of the channels
against more severe oxidative modifications. This may be important in various diseases,
where changes of the nitrosation have been implied in their pathology, but also in conferring
some cardioprotection [123]. However, in another study with myocytes from nNOS−/− mice,
Ca2+ spark frequencies and the SR Ca2+ leak at a given Ca2+ load were found to be reduced,
and both could be normalized (i.e. increased) by exposure to an NO donor [124]. In line with
these findings, RyRs were hypernitrosated in cardiomyocytes with upregulated nNOS
activity and this was paralleled by increased SR Ca2+ leak and elevated fractional Ca2+

release [125]. Taken together, and considering the caveats when interpreting experimental
data obtained from transgenic animals, these findings indicate that, depending on the
conditions (e.g. on the extent of oxidative stress), nNOS signaling can also increase RyR
activity in cardiac muscle, either directly or indirectly.

In one disease related study the extent of RyR nitrosation was quantified in mice with
dystrophic cardiomyopathy and found to be increased around 4–5 fold [126], while PKA
dependent RyR phosphorylation was not significantly elevated. This was accompanied by a
doubling of the frequency of spontaneous Ca2+ sparks and a propensity for arrhythmias. The
extent of RyR oxidation and CaMKII-dependent RyR phosphorylation was not assessed
directly, but the protective effect of N-acetyl cysteine (NAC) suggests an important role of
oxidative stress in dystrophic cardiomyopathy, as reported earlier ([100,101].

The general concept which emerges from these partly controversial studies, although rather
diffuse, suggests that the reciprocal interactions between RyR modifications resulting from
ROS and RNS and their functional outcome are very complex and not yet fully understood.
While some observations suggest quite synergistic actions, in other experimental settings
more competitive effects between ROS and RNS modifications become apparent.
Interactions between ROS and RNS are possible in various ways, for example through their
tightly connected chemistries (e.g. superoxide and NO can combine to form peroxynitrite
[127]) or by competing for the same thiols on the RyR. A further complication in the
interpretation of the experimental data may arise from the finding that RyR2 is nitrosated via
S-nitrosoglutathione (GSNO) and not by NO directly [94]. Further, most experiments were
carried out at ambient oxygen pressure (~150 mmHg), but in the tissue there is much less
oxygen (~10 mmHg). The degree of oxidation and the function of the cardiac RyR is
modified by ambient O2 [94]. In any case, it seems that the precise balance between ROS
and RNS is important, and that a NO/ROS disequilibrium can lead to abnormal RyR channel
behavior [128].
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5. Cross-talk between redox modifications and phosphorylation in disease
Recently, a number of studies have been carried out in a variety of cardiac disease models,
focusing on modifications of RyR function and the conceivably underlying posttranslational
modifications. A common finding in many of these studies was a sequential (i.e. during
disease development) or simultaneous presence of several posttranslational RyR
modifications. While such a pattern could result from parallel but unrelated changes of the
involved pathways, it seems more plausible that these modifications are not independent
from each other. There are numerous possibilities for significant cross-talk and synergisms
among these signaling pathways such as ROS/RNS, phosphorylation and Ca2+ signals, from
the origin (receptor or source of the signal) down to the target, the RyR itself (for reviews
see [129,130]). In one scenario, boosting the Ca2+ transient by phosphorylating various Ca2+

signaling proteins may elevate mitochondrial Ca2+ content, followed by an increased
mitochondrial metabolism and ROS production [105]. Mitochondrial ROS can further
augment the Ca2+ signals by oxidizing multiple Ca2+ signaling proteins, as described above,
but also by activating CaMKII via redox modification. This occurs in addition to the
stimulation by the larger Ca2+ transients themselves and will lead to extra protein
phosphorylation [104], thereby establishing multiple and coupled positive feed-back loops,
which further amplify these signals [131]. Moreover, receptors and enzymes involved in the
generation, modulation and termination (e.g. phosphatases, phosphodiesterases, ROS
scavengers, SNO reductases) of these associated signals are often regulated via other
functionally interconnected pathways. For example, β-adrenergic responsiveness is
regulated by NO, creating a link between NO, phosphorylation and Ca2+ signals [132]. In
turn, the activity of NOSes is Ca2+ sensitive [133]. The eNOS isoform (but not nNOS) is
stimulated by ROS [134]. Most likely, many more direct and indirect possibilities for cross-
talk between these pathways exist within cells.

Interactions between RyR oxidation and phosphorylation have been studied in dystrophic
cardiomyopathy, a disease that combines a high degree of oxidative stress and excessive
Ca2+ signals after mechanical stress, resulting from the lack of the protein dystrophin [101].
In one example, a cross-breeding approach has been applied to test for rescue from this
disease by eliminating not the main pathomechanism, but another step in the vicious cycle
[90]. Dystrophic mdx mice were crossed with RyR-S2808A mice, which carry RyRs that
cannot be phosphorylated at this site. Ablation of this phosphorylation site protected these
animals, even though not the main pathomechanism was targeted, but rather one of the other
steps in the positive feed-back loop. Unlike mdx mice, these animals did not develop cardiac
hypertrophy with fibrosis and showed improved cardiac function. Further, they were
protected from isoproterenol-induced arrhythmias and SR Ca2+ leak. These findings suggest
that PKA dependent RyR phosphorylation contributes to the abnormal Ca2+ homeostasis in
dystrophic cardiomyopathy. Interestingly, and in apparent contrast to these findings, another
study was not able to detect significant PKA dependent RyR phosphorylation in mdx mice
[126]. However, more recent studies suggest that the disease phenotype and the pattern of
RyR posttranslational modifications change in the course of dystrophic cardiomyopathy, and
other diseases as well. Unlike oxidative stress and CaMKII activation, RyR phosphorylation
by PKA seems to become important only at later stages of the disease, and is associated with
elevated SR Ca2+ leak and reduced Ca2+ content [115].

6. Possible clinical relevance
A multitude of cardiac diseases are accompanied by acute or chronic hyperadrenergic states
and/or oxidative cellular stress which can initiate vicious cycles and pathomechanisms
involving RyR posttranslational modifications similar to those described above. Since
phosphorylation, as well as oxidation and elevated Ca2+ concentration will increase the RyR
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open probability, the CICR mechanism may become very sensitive and unstable. To what
extent these multiple changes and the concomitant posttranslational RyR modifications exert
additive effects and whether they progress rapidly or slowly during the development of a
given disease is not yet established and remains to be investigated. However, a number of
recent experimental studies on the cellular level are in line with this possibility. Examples
for diseases where posttranslational RyR modifications have been reported are congestive
heart failure [116], dystrophic cardiomyopathy [101], diabetes [119], ischemia/reperfusion
[135] and atrial fibrillation [136]. However, the clinical relevance of the presented
experimental findings in general and the impact of the identified pathomechanisms and
suspected cross-talk pathways in particular can ultimately only be confirmed in clinical
trials. In such future pilot studies multipronged therapeutic strategies would need to be
compared with established treatments targeting only one mechanism. Nevertheless, some of
the animal studies carried out with various disease models are already fairly developed and
can provide a solid foundation on which to base future clinical trials, possibly with studies in
human cardiomyocytes and in larger animals as intermediate steps. Based on the available
data a few disease entities have been identified in which posttranslational RyR modifications
seem to make a substantial contribution to disease progression. One category of examples is
a variety of disease models leading to heart failure (e.g. myocardial infarction, transverse
aortic constriction (TAC), artificial tachypacing, dystrophic cardiomyopathy). In these
entities both, oxidative RyR modifications and CaMKII (and possibly PKA) dependent RyR
phosphorylation have been found to be present concurrently, but in various proportions
[85,115,116,126,137,138]. The concomitant destabilization of the RyRs may also favor or
underlie the occurrence of various forms of arrhythmias, initiated by diastolic Ca2+ release
leading to delayed afterdepolarizations and extrasystoles. Not unexpectedly, the
arrhythmogenicity of phosphorylated RyRs also appears to be instrumental in some forms of
atrial fibrillation [139–142].

Another layer of complexity is added to the intricate mutual interactions of all the
posttranslational modifications discussed above in patients carrying a mutation of the RyR2
[143,144]. These mutated channels often exhibit destabilized gating behavior, possibly
arising from altered interaction (i.e. zipping) of RyR channel domains [145,146]. Many of
these patients are prone to stress-induced arrhythmias, manifesting themselves as
catecholaminergic polymorphic ventricular tachycardias (CPVTs), potentially leading to
sudden cardiac death. Cell lines and transgenic animals have been engineered expressing
RyRs harboring mutations that were identified in families with CPVT patients [147–150].
These animals replicate the human disease phenotype and serve as disease models to
investigate pathomechanisms arising from RyR mutations and to develop therapeutic
approaches. In these disease models, arrhythmias could be provoked by tachypacing and/or
by β-adrenergic stimulation. In cellular experiments, these cardiomyocytes exhibited
elevated Ca2+ spark frequencies, a propensity for diastolic Ca2+ waves with delayed
afterdepolarizations and reduced wave thresholds. These are all signs for disturbed channel
gating with a predisposition towards abnormal Ca2+ sensitivity (cytosolic or SR luminal) of
mutated channels. In summary, the phenotypes resulting from RyR mutations share many
features with the functional consequences of the posttranslational modifications discussed
above. While it is well established that physical or emotional stress can prompt CPVTs in
patients harboring cardiac RyR mutations, it is so far unknown how stress exactly triggers
these arrhythmias. Are they provoked by additional RyR sensitization originating from PKA
or CaMKII dependent RyR phosphorylation? Or are they the result of the concomitant
stimulation of the SERCA after PLB phosphorylation, leading to elevated SR Ca2+ loading?
Or is it the combination of these two possibilities which is particularly detrimental?
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7. Conclusion and outlook
While we start to understand the consequences of various posttranslational RyR
modifications on the molecular level, we also develop the awareness for the extraordinary
complexity of this issue on the cellular and organ level. This partly results from the multiple
crosstalks and interactions of the various signaling pathways and their intertwined positive
and negative feed-back loops. A large amount of research will thus be required to address
the question whether all the regulatory and / or pathophysiologically important mechanisms
changing RyR function behave in additive, competitive or mutually exclusive ways. To
answer these and many similar questions relevant for other cardiac conditions, it needs to be
understood in more detail, on the molecular level, how these modifications interact to bring
about functional change. These findings then need to be integrated into the more complex
situation of intact cells, organs and organisms, to determine their physiological and clinical
relevance. Based on the presently available literature, only partly discussed above, one is
inclined to predict that such interactions exist and are very important. Understanding these
interactions will lay the foundation for the development of mechanism based therapies,
potentially targeting several synergistically acting mechanisms simultaneously.
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Non-standard Abbreviations and Acronyms

cADPR Cyclic ADP ribose

CaMKII Ca2+/calmodulin-dependent protein kinase II

CICR Ca2+-induced Ca2+ release

CPVT Catecholaminergic polymorphic ventricular tachycardia

EC Excitation-Contraction

mdx Mouse model of muscular dystrophy

ROS Reactive oxygen species

RNS Reactive nitrogen species

NOX Nicotinamide adenine dinucleotide phosphate-oxidase

NOS Nitric oxide synthase

PKA Protein kinase A

PLB Phospholamban

RyR Ryanodine receptor

SERCA Sarco-(endo) plasmic reticulum Ca2+ pump

SR Sarcoplasmic reticulum

XO Xanthine oxidase
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Highlights

- Cardiac ryanodine receptor (RyR) function is affected by posttranslational
modifications

- These modifications of the RyRs contribute to cardiac regulation and disease

- RyR phosphorylation and oxidative/nitrosative modifications are relevant
modifications

- Various pathways of signaling crosstalk, antagonism and synergies are
involved
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Fig. 1.
Modulation of the ryanodine receptor (RyR) by Ca2+ and phosphorylation. Ca2+ influx via
the L-type Ca channel (LTCC) activates the RyR and triggers Ca2+ release from the
sarcoplasmic reticulum (SR), a process referred to as Ca2+ induced Ca2+ release or CICR,
leading to myocyte contraction. The levels of free cytosolic Ca2+ are tightly regulated by the
SR Ca2+ ATPase (SERCA) and the sarcolemmal Na+-Ca2+ exchanger (not indicated). After
CICR and contraction, the Ca2+ store is refilled by pumping Ca2+ back into the SR thereby
re-establishing diastolic Ca2+ levels. The sensitivity of RyR toward activating Ca2+ is
modulated by phosphorylation. Stimulation of the β1-adrenoreceptor (β-AR) leads to Gs-
protein-mediated activation of adenylyl cyclase (AC) and further cAMP-dependent
activation of PKA. PKA can directly phosphorylate RyR at several phosphorylation sites,
presumably at S2808, possibly inducing dissociation of calstabin 2, and at S2030, but also
modulates the LTCC and SERCA function, the latter by phosphorylation of phospholamban
(PLB). Increased cytosolic Ca2+ levels activate CaMKII, which directly phosphorylates RyR
at S2814. Similar to PKA, CaMKII also phosphorylates PLB and the LTCC leading to
global changes in myocyte Ca2+ homeostasis.
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Fig. 2.
Redox-modifications of RyRs. Changes in the redox potential of the myocyte have been
shown to have a serious influence on protein function, especially at the level of the RyR.
The main sources for the production of reactive oxygen species (ROS) in cardiomyocytes
are the sarcolemmal NADPH oxidase (NOX), the xanthine oxidase (XO) and the
mitochondrial electron transport chain (complex I through IV). ROS can glutathionylate free
cysteine residues on the RyR and also act in an indirect way via CaMKII activation and
subsequent RyR phosphorylation. Nitric oxide synthases (NOS) are mainly responsible for
the production of nitric oxide (NO) and reactive nitrogen species (RNS). In cardiomyocytes,
sarcolemmal endothelial NOS (eNOS), which co-localizes with caveolin-3 (Cav3) in
caveolae, and RyR-associated neuronal nNOS are primarily responsible for the production
of NO, causing S-nitrosation at free thiol groups of the RyR and many other proteins. Most
likely, these mechanisms work synergistically and induce parallel modifications of RyR
function.

Niggli et al. Page 23

Biochim Biophys Acta. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


