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Abstract We have recently shown that fluorescence spec-

troscopy of plasma samples has promising abilities regarding

early detection of colorectal cancer. In the present paper, these

results were further developed by combining fluorescence

with the biomarkers, CEA and TIMP-1 and traditional meta-

bolomic measurements in the form of 1H NMR spectroscopy.

The results indicate that using an extensive profile established

by combining such measurements together with the bio-

markers is better than using single markers.
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1 Introduction

Colorectal cancer is one of the most frequent malignant

diseases in the Western part of the world. In order to

improve patient outcome, there is a strong need for novel

methodological developments allowing for early detection

and proper monitoring of the disease. State-of-the-art tools

are direct colonoscopy, which however has limited appli-

cations due to high costs and inadequate capacity, and

fecal occult blood tests, which, due to limited compliance,

only identifies \30 % of those with large bowel lesions

(Nielsen et al. 2011b). Use of serological biomarkers (BM)

only requires minimally-invasive procedures, blood is easy

to obtain and allows for repeated sampling. Moreover,

measurements of serological BM, e.g. proteins, are most

often inexpensive (Jenkinson and Steele 2010). The only

accepted protein serum biomarker presently being used in

the treatment of colorectal cancer is carcinoembryonic

antigen (CEA). CEA has no value as a stand-alone bio-

marker for early detection of primary colorectal cancer, but

is recommended as a monitoring tool for early detection of

disease recurrence allowing for surgical interventions

(ASCO, EGTM and NACB recommendations).

In an earlier paper, we have proposed measurements of

autofluorescence of human blood plasma as a potential

useful tool for detecting colorectal cancer (Lawaetz et al.

2012a, b). The idea behind this approach was based on

earlier findings by Leiner et al. amongst others (Leiner

et al. 1983, 1986a; Nørgaard et al. 2005; Wolfbeis and

Leiner 1985). They have shown that for example, a blue-

shift in tryptophan fluorescence, a changing NADH emis-

sion and increasing levels of porphyrin emission can all be

fluorescence detectable indicators of cancer (Kalaivani

et al. 2008; Masilamani et al. 2004).

While fluorescence based cancer diagnostics may be

useful and as good as current BM, it would be of interest to

see if it is possible to provide significant improvements of

this technology by combining different sources of infor-

mation. Data fusion or multiblock modeling is an approach
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for combining data sources. Using this type of

mathematical modeling, the combination of fluorescence

spectroscopy and traditional and new BM, CEA and

TIMP-1 (Nielsen et al. 2008), was investigated to evaluate

whether there could be advantages in terms of early

detection of colorectal cancer. Furthermore, it was evalu-

ated whether additional diagnostic power could be obtained

by adding NMR spectroscopic data.

2 Materials and methods

2.1 Samples

Human plasma samples (sodium citrate anticoagulant)

were used for the experiments. The samples are part of a

larger sample set from a multi-centre cross sectional pro-

spective, population based study conducted at six Danish

hospitals (Approved by The Ethics Committee #01.080/03

and The Danish Data Protection Agency #2003-41-3312).

This study included patients undergoing large bowel

endoscopy due to symptoms which could be associated

with CRC (Lomholt et al. 2009; Nielsen et al. 2008). For

the present study, we selected one case group (group 1:

verified colorectal cancer), one control group (group 2:

colorectal adenomas) and one additional control group

(group 3: no findings (healthy). The cases and the two

control groups were matched by age, gender, and location

of tumor/adenoma. In the present study the cancer samples

and one control group (group 2) were used for building

classification models. In addition, the sample set of no

findings (group 3) was used for correcting biomarker

measurements (see below). All matched samples that had

been measured by all relevant techniques (biomarker,

fluorescence and NMR) were included leading to 47 cancer

and 47 non-cancer samples being available in total. Of

these 94 samples, 78 were used for building a classification

model while 16 were set aside for final validation of the

resulting model.

2.2 Biomarker measurements

Determinations of plasma levels of TIMP-1 and CEA have

been described previously (Nielsen et al. 2008) and data

analysis of these BM for diagnostic purpose is described by

(Nielsen et al. 2011a, b). Due to very large variation in the

biomarker values in the cancer patients, data were log2

transformed prior to data analysis. We have adopted this

transformation in the present paper in order to represent the

orders of magnitude differences in concentrations ade-

quately. TIMP-1 and CEA levels are known to change with

age and gender (Lomholt et al. 2009). To correct for

this, the biomarker concentration of the matched control

(group 3) was subtracted from the corresponding cancer

(group 1) and adenoma (group 2) samples. The two mat-

ched groups (group 1 and group 2) are thus dependent as

they are corrected using the same value from the corre-

sponding no-finding sample. This, however, is of no con-

sequence statistically because the samples are left out

simultaneously during statistical validation.

2.3 Metabolomic profiles

The methods used for fluorescence measurements are

described in detail by Lawaetz et al. (2012b). In the present

paper, the fluorescence data is represented as seven pseudo-

concentrations determined using PARAFAC modelling

(Bro 1997). The NMR profiles were acquired on a Bruker

Avance III 600 spectrometer operating at 600.13 MHz for
1H, equipped with a double tuned cryo-probe (TCI) set for

5 mm sample tubes and a cooled autosampler (SAMPLE-

JET) that allowed the automatic analysis of large sample

sets. Due to the large amount of water present in plasma

samples, the water signal was suppressed using presatura-

tion pulses during acquisition. However, remainders of the

water signal can still be found as a large distorted peak at

4.6–4.7 ppm. For each sample two different experiments

were recorded: (i) CPMG edited spectra in which the short

proton relaxation times related to the larger molecules

(macromolecules, proteins) are filtered out resulting in a

flatter baseline and enhancing the contributions from

smaller molecules and (ii) 1D NOESY-Presat edited

spectra which gives the best overview of all types of

molecules present in plasma and assure a better suppres-

sion of the water signal. NOESY-Presat edited spectra also

present broad unresolved signals arising from the contri-

bution of the larger molecules resulting in a non-flat final

baseline (Beckonert et al. 2007). All spectra were acquired

at 310 K and with a fixed receiver gain (RG), which was

assessed as being adequate through several initial tests.

Data were collected into 128 k data points resulting in two

data matrices with 128 k chemical shift variables, one for

each type of NMR experiment.

The NOESY-Presat and CPMG NMR profiles were

treated separately, but both according to the following

common concept: Initially, four samples were removed

due to the presence of ethanol—presumably because the

patients had been drinking alcohol. Two samples were

removed due to the absence of citric acid, which should be

present when using sodium citrate anticoagulant. Upon

removal of the water peak in the phase-corrected, nor-

malized NMR spectra, the start and end point of the indi-

vidual peaks were manually determined and peaks

displaying shifts were aligned individually using icoshift

(Savorani et al. 2010). These peaks were subsequently

integrated using principal component analysis (PCA) in the
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following way: For each peak and using all samples, a one

component PCA model was fitted to the peak, resulting in

(i) a loading vector describing the shape of the peak and

(ii) a score vector giving the relative magnitude of the peak

area for each sample. This way, the 254 identified peaks of

the NMR NOESY-Presat spectrum were represented as 254

magnitudes for each sample. Correspondingly, 201 peak

integrals of the NMR CPMG spectra were represented. The

CPMG and NOESY peak integrals were then concatenated

to give a total of 455 NMR ‘‘discrete’’ NMR variables.

It is quite likely that for some of the peaks, there may be

more than one underlying chemical and hence more than

one PCA component could be necessary to fully describe

the variation. There are many ways to extract such addi-

tional information either ‘manually’ or in an automated

fashion. Either way, allowing for such extra information

inevitably leads to a risk of including too much informa-

tion. That is, including PCA components that do not

represent real variation. Due to the low number of samples,

it was decided to rather go for the risk of losing bits of

information than to risk including non-relevant variation

that would increase the statistical uncertainty of the sub-

sequent models. Additionally, it was anticipated that such

‘lost’ chemicals could likely still be represented by

other peaks more easily detected or indirectly from other

covarying chemicals.

2.4 Preprocessing the variables and blocks

When combining different blocks of data as is done in

traditional multiblock modeling, scaling of the individual

blocks is a major concern (Westerhuis et al. 1998).

Oftentimes, there can be orders of magnitude difference

between variations represented in different blocks. For

example, one chemical compound may be reflected in an

NMR peak represented by one hundred data points while

another piece of information may be represented in one

distinct unique variable. Such mismatch in magnitude of

variation can lead to biased models, especially as most

multivariate models favor high variation. In this work, all

data is condensed to individual concentrations and auto-

scaled. Hence, each chemical is represented with equal

weight. To a very significant degree this removes the

common scaling problem in multiblock modelling.

2.5 Classification models

It is difficult to build classification models with a relatively

small number of samples and a large number of variables as

being the case in the present study. Overfitting is to be

expected and several measures have been taken to monitor

and counter this. As mentioned above, the fluorescence and

NMR data have been reduced to their most basic chemical

representations as (pseudo-concentrations/peak areas). This

helps in avoiding overfit by lowering the number of vari-

ables. In addition, and as mentioned, a test set of 16 samples

was set aside and only used as one final evaluation of the

result. This test set is fairly small due to the few samples

available and hence, any resulting diagnostic will have a

high uncertainty and has to be assessed with caution. The

test set was selected as well-spread non-extreme samples

assessed from a two-component PCA model of all data.

The 455 NMR variables represent an untargeted pro-

filing of the samples. It is anticipated that most of the

variables are non-relevant in the context of predicting

cancer status. Including an excessive amount of irrelevant

variables will deteriorate the models and hence, variable

selection is needed to select the most relevant variables.

Variable selection has been implemented here in an auto-

mated fashion to avoid overfitting and to allow the effect of

variable selection to be evaluated by bootstrapping. A PLS-

DA model [partial least squares regression discriminant

analysis (Næs and Indahl 1998)] was built and all variables

with a VIP-score (Andersen and Bro 2010) below 0.5 were

removed. This procedure was repeated three times, reduc-

ing the number of NMR variables to approximately half

the original number. Normally, a more user-interactive

approach is taken to variable selection, but here the focus is

on making the variable selection automatic and objective.

A one-shot variable selection seldom provides good results

in practice which is why the ‘modest’ variable selection is

repeated three times. The rationale behind an iterative

approach is that some irrelevant variables may not be

identified as such in the initial non-optimal model. Upon

removal of the major irrelevant variation, more subtle

candidate variable may be identified.

The outcome of the variable selection is a cross-vali-

dated classification model, the quality of which is moni-

tored by the area under curve (AUC) from a ROC curve as

a measure of classification ability. This AUC value was

bootstrapped by repeating the whole process (variable

selection with cross-validation), one thousand times. The

bootstrapping was simply done by resampling with

replacement from the 78 calibration samples. Note, that the

test set was not re-selected but only selected once and for

all before bootstrapping.

All data analyses were performed in Matlab R2011�

(The Mathworks Inc.) and chemometric analyses were

performed in PLS_Toolbox v.6.5.2 (Eigenvector Research,

Inc).

3 Results and discussion

In Fig. 1, the results of bootstrapping various classification

models are shown. Each plot contains the results of using
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particular parts of the measured variables going from

individual BM (top), combining these, adding fluorescence

data to BM and adding the additional NMR data (bottom).

For each plot, the AUC is shown (red line) as well as a

histogram from bootstrapping that shows the variability in

AUC.

Many interesting observations can be made. First of all

it is important to realize that with the limited number of

samples available, there is a high variability. This is an

inevitable consequence of the few samples and a fact,

which implies that caution is warranted in the interpretation

of our data. The uncertainty is directly seen in the width of

the histograms indicating that any specific single model

may have widely different observed quality (AUC)

depending on individual samples being left out.

Overall, the results show that the two serological protein

BM, CEA and TIMP-1, also when used together, are able

to classify colorectal cancer with an AUC of around 0.7.

Adding the fluorescence data leads to a better classification

albeit only slightly so with an AUC of 0.78. The fluores-

cence markers are primarily reflecting changes in overall

protein structure (Lawaetz et al. 2012b; Leiner et al.

1986b), which appear to add to the classification results.

Adding the NMR variables improves classification and

especially when irrelevant NMR variables are removed. An

AUC of 0.89 is obtained. In general, both the NMR CPMG

and the NOESY-Presat data contribute to the classification

model but in a different manner as a result of their

experimental features. CPMG data, which enhances the

signals of smaller molecules, shows several narrow and

sharp selected regions, mostly containing well defined/

resolved NMR signals. However, it is not trivial to assign

the selected signals to specific molecules without per-

forming further targeted experiments. Some contributions

can be found in the spectral region dominated by the proton

signals of carbohydrates (mainly glucose and derivatives)

between 4.5 and 3.0 ppm and in the region dominated by

amino acids and small organic acids between 3.0 and

0.9 ppm. Apparently, also the regions in which the signals

belonging to L-tryptophan are selected (3.7–3.6 ppm), but

the concentration of L-tryptophan itself is probably too low

to be detected by NMR here. For the CPMG data, it is

interesting that almost the whole large signal between 0.9

and 0.8 ppm, arising from the terminal –CH3 protons of the

lipids bound to lipoproteins, is important in the classifica-

tion. In the NOESY-Presat data the information from larger

CEA

TIMP

CEA+TIMP

BM+PF

BM+PF+NMR all

BM+PF+NMR VarSel

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Fig. 1 Resulting AUC values

from models on various parts of

the available data. The vertical

red line indicates the average

AUC while the histograms

indicate the uncertainty of the

AUC as determined from

bootstrapping. CEA and TIMP

are (BM), PF means

fluorescence concentration and

NMR the total set of 455 NMR

variables, whereas NMR VarSel

are the ones selected in variable

selection (Color figure online)
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proteins is kept and characterized by the broader ‘‘hilly’’

signals on top of which are the sharper signals of smaller

molecules. Indeed, the regions selected on the NOESY-

Presat data are dominated by the contributions of several

types of protons all belonging to the lipoprotein class, with

a tendency on preferring those with higher density (LDL

and HDL) (Ala-Korpela 1995). This is reflected e.g. in that

the broad signal originating from the lipid–CH2–chains

(between 1.4 and 1.1 ppm) have been selected only on the

more right-most side of the interval. In addition to that, also

the spectral region containing signals from valine on the

left shoulder of the broad peak representing the terminal

–CH3 protons, are selected. Interestingly, also the signal

arising from the terminal –CH3 of cholesterol (carbon no.

18) in the spectral region between 0.7 and 0.6 ppm is

selected.

In Table 1 it is shown how well the developed models

are working on the 16 left out test samples. The left out test

set is definitely on the small side, so the uncertainty of the

results is substantial as also indicated in the bootstrapping

of the calibration data. Nevertheless, the test set validates

that the developed models are adequate and that the ten-

dencies indicated above are real and worth elaborating on

in further studies.

While the results suggest that fluorescence and NMR

add useful information when paired with the biomarker

data, it is also of interest to investigate if the opposite is

true; whether the biomarker data adds to the spectroscopic

information. Building classification models from fluores-

cence data alone gives a bootstrapped AUC of 0.71 which

is slightly lower than the 0.78 (see Table 1) obtained when

including the BM. Building a classification model solely on

the selected NMR data provides a bootstrapped AUC of

0.87 which is only marginally lower than the 0.89 obtained

when BM (and fluorescence) is included. Hence, it seems

that the BM do add to the fluorescence data but only

marginally so for the NMR data.

4 Concluding remarks

We have shown that beneficial results are obtained by

combining relevant data from many sources of information.

By complementing traditional BM with fluorescence and

NMR based BM we were able to improve the classification

power. The uncertainty of the model also seemingly

improves as judged from the bootstrapping results. While

the results are promising and interesting, it is apparent that

the number of samples poses a limiting factor in the

investigation. We are therefore now validating the present

results in a larger clinical material.
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