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Abstract
Introduction—The advent of high throughput technologies capable of comprehensive analysis
of genes, transcripts, proteins and other significant biological molecules has provided an
unprecedented opportunity for the identification of molecular markers of disease processes.
However, it has simultaneously complicated the problem of extracting meaningful molecular
signatures of biological processes from these complex datasets. The process of biomarker
discovery and characterization provides opportunities for more sophisticated approaches to
integrating purely statistical and expert knowledge-based approaches.

Areas covered—In this review we will present examples of current practices for biomarker
discovery from complex omic datasets and the challenges that have been encountered in deriving
valid and useful signatures of disease. We will then present a high-level review of data-driven
(statistical) and knowledge-based methods applied to biomarker discovery, highlighting some
current efforts to combine the two distinct approaches.

Expert opinion—Effective, reproducible and objective tools for combining data-driven and
knowledge-based approaches to identify predictive signatures of disease are key to future success
in the biomarker field. We will describe our recommendations for possible approaches to this
problem including metrics for the evaluation of biomarkers.
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1. Introduction
In one sense, the practice of medicine has been dependent on biomarkers since its inception,
even though historic biomarkers have been externally visible indicators of fundamental
physiological processes, such as fever, swelling, tenderness or rash. With the advent of
molecular biology and the fundamental understanding of information flow from gene to
transcript to protein, biomedical scientists have been searching for the unique molecular
markers associated with disease processes with the goal of improving early detection,
determining prognosis, monitoring the response to therapy or selecting those treatments
most likely to be efficacious. The molecular species targeted have included genes,
transcripts, proteins, metabolites, and recently non-coding, regulatory RNAs. Yet despite a
decade of intense effort and significant investment of labor and funds, the number of
clinically validated biomarkers approved by the FDA is embarrassingly modest: fewer than
30 in the most recent published compilation [2]
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BOX

DEFINITION OF BIOMARKER TYPES [1]

Feature

A measurable biological component (e.g. protein, gene, metabolite) or state of a
component (e.g. proteolytically cleaved protein, methylated gene) that can be analyzed as
a candidate biomarker

Biomarker

A feature that is indicative of a disease state, response to therapeutic treatment, or other
relevant biological state.

Biosignature

A collection of features, which together defines a biomarker.

Risk biomarkers

• Identify patients who are likely to develop disease

Diagnostic biomarkers

• Detection of early disease state

• Classification into disease subtypes

• Characterization of response to treatment

Prognostic biomarkers

• Prediction of disease progression

• Prediction of disease recurrence

• Identification of patients who are likely to respond to a treatment

The search for biomarkers has always tended to focus on one of two basic styles:
hypothesis-based or discovery-based. Biomarker identification through hypothesis-based
methods is essentially a by-product of the ever-increasing mechanistic understanding of
disease processes. For example, knowledge that diabetes mellitus produces a sustained
elevation of blood glucose levels led to the identification of glycosylated hemoglobin as a
biomarker for diagnosis of diabetes [3]. Similarly, understanding of the mechanisms of
growth regulation in mammary epithelial cells led to the use of estrogen receptor status [4]
and HER2/neu amplification [5] as independent prognostic markers in breast cancer. In
contrast, discovery-based approaches have focused on identifying changes in the presence or
relative abundance of molecular species that are tightly associated statistically with the
disease state of interest. This type of study can also be hypothesis-generating, in that
observations of differential expression that are closely tied to a disease outcome often lead
to intense investigations of the function of the candidate biomarker. A case in point is the
breast and ovarian cancer-associated gene BRCA1, which was initially identified by
positional cloning of a region on chromosome 17 that is frequently deleted in breast cancer
[6]. Subsequent studies of BRCA1 function led to the current detailed understanding of
BRCA1’s role in facilitating DNA repair [7, 8].
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BOX

CURRENT FDA APPROVED BIOMARKERS

[2]
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The advent of high throughput omic technologies in the past decade has fueled the
discovery-based approach by providing ready access to large, relatively quantitative datasets
of differentially expressed mRNAs, microRNAs, and proteins from case control studies.
Despite the application of a wide variety of sophisticated approaches for statistical analysis
of these large datasets, the results have been disappointing overall. To date, the FDA has
approved only two biomarker panels for breast cancer prognosis (OncoType Dx and
MammaPrint) and one for ovarian cancer (Ova1).

As a case in point, the Ova1 In Vitro Diagnostic Multivariate Index Assay was derived from
a comparison of differentially abundant plasma proteins from women with ovarian cancer,
compared to women with benign gynecological diseases, using artificial neural network
(ANN) modeling to derive a panel of 5 biomarkers that surpassed the currently available
ovarian cancer biomarker, CA125 [9], in the ability to discriminate between invasive
ovarian cancer and benign lesions [10][11]. It should be noted that one factor contributing to
the successful FDA approval of the Ova1 panel was its restriction to a very narrowly
defined, but clinically important diagnostic application, that of triage of women at high risk
of ovarian cancer for referral to a gynecological oncologist for primary surgery [12]. This
highlights the importance of matching the experimental strategy for biomarker discovery
and identification to the intended use of the biomarker. Biomarkers for early detection of
disease must possess the specificity to distinguish between clinically significant cancer and
related but benign conditions, with the sensitivity to detect very small tumor masses, ideally
before clinical symptoms. This is an extremely high bar. Single biomarkers with sufficient
sensitivity [e.g., CA125 or prostate specific antigen (PSA)] often lack the specificity
required for clinical utility[13, 14]. Thus many investigators have turned to combinations of
biomarkers in hopes of attaining both sensitivity and specificity sufficient for true clinical
utility.

The most general approach for assembling biomarker panels has centered on the use of
sophisticated statistical models on large quantitative datasets, as exemplified by Correlogic’s
OvaCheck and LabCorp’s OvaSure assays for early detection of ovarian cancer. Although
both groups started with well-defined, appropriately sized sample sets comprising patients
with ovarian cancer, as well as healthy controls, the two groups differed substantially in
their approach to statistical analysis [15] [16]). The Mor group (LabCorps/OvaSure) relied
on fairly standard classification tools –support vector machines (SVMs), k-nearest neighbor,
and classification trees, resulting in a panel of four markers: leptin, prolactin, osteopontin,
and IGF-II [17]. A secondary analysis of these markers on an independent and larger
sample, which included women with stage I/II ovarian cancer, was reported to achieve a
sensitivity of 95.3% and a specificity of 99.4% when CA-125 and macrophage inhibitory
factor (MIF) were added to the panel.

In contrast, Correlogics developed their own algorithm, Knowledge Discovery Engine-VS, a
refinement of the random forest approach, to analyze their high-dimensional data [15].
Candidate biomarkers were not evaluated independently, but as part of a pattern, resulting in
an 11 analyte panel providing sensitivities and specificities approaching 90% [18].
Interestingly, only CA-125 and C-reactive protein had significant discriminatory power
when used alone, and several of the best–performing individual markers did not make it into
the final multi-analyte panel [18]. In yet a third example, Lokshin and colleagues applied
Metropolis algorithms with Monte Carlo simulation to arrive at a candidate panel for early
detection of ovarian cancer, down-selecting from an original set of 96 candidates to a four
member panel of CA-125, HE4, CEA, and VCAM-1 [19]. The emphasis in their training set
was on discriminating early stage ovarian cancer from benign pelvic diseases and other
common cancers (breast, colorectal, and lung). Despite marked differences in statistical
approach among those searching for early detection markers in ovarian cancer, CA-125 and
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HE-4 consistently emerge as the two most discriminating markers [18–21], implying some
underlying biological commonality.

A similar comparison of the two FDA-approved transcriptome signatures for prognosis of
node negative breast cancer, the 70 gene MammaPrint [22] and 21 gene OncoType Dx [23]
assays, reveals no overlap at the level of specific genes [24]. However, a number of meta-
analyses of these two classifiers have identified proliferation-associated, cell-cycle regulated
genes as the predominant source of discriminatory power in both of these prognostic assays
[25–27]. In fact, when proliferation-associated genes are removed from these prognostic
gene signatures, the remaining genes are no better at predicting outcome than are random
gene signatures mechanistically unrelated to cancer [27].

These observations raise some very fundamental questions about the ability of purely
statistical approaches to identify specific and predictive signatures of outcome in the
absence of a weighting or evaluative process provided by relevant domain experts.
Developing an approach to biomarker identification and characterization that successfully
infuses expert knowledge into data-driven statistical analyses requires a solid foundation in
the current practice of each approach in isolation.

2. Data-driven approaches to biomarker identification
Data-driven approaches make use of now-prevalent high throughput datasets that facilitate
the elucidation of underlying structure. We discuss a sampling of these techniques under
three categories: data reduction, classification and visualization. We note that many of these
approaches fall into more than one of our categories (Table 1), and discuss this for specific
examples.

2.1. Data Reduction
There is often a need in bioinformatics analysis to reduce the complexity of datasets to a
manageable size. Data reduction can make complex biological datasets easier to understand
by the expert but can also help eliminate the noise inherent in these kinds of measurements.
The increased understanding of the underlying trends in data that reduction can provide can
assist researchers in focusing biomarker studies on the most relevant biological areas.

Trend analysis involves implementation of simple regression techniques to reveal
statistically relevant patterns in data such as gene expression profiles. For example, trend
analysis can be used to identify a positive association between expression levels of a
particular gene, such as the AD1 and AD2 isoforms of tenascin C, and a separate variable
that trends with tumor aggressiveness, e.g., tumor grade [28]. In addition, trend analysis can
be applied to population data such as disease incidence to discover underlying patterns, as in
a published trend analysis of the WHO database for breast cancer mortality in paired
European countries over time; this study indicated that declining breast cancer mortality
preceded, and was independent of, widespread implementation of population-based
screening by mammography [29].

Clustering is a broad term referring to any attempt to group data according to interactions
among elements in the data. Clustering efforts may focus on any of multiple goals, such as
grouping patients with similar cancer subtypes, finding genes with similar expression
patterns to identify regulatory units and pathways, or inferring function of unannotated
genes [30, 31].

For biomarker discovery, clustering can be used as an initial screen to determine if the data
sufficiently separates the samples into appropriate classes [32]. If clustering the data shows
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good class segregation, then further analysis can be reasonably undertaken to identify the
data elements that best characterize the separation. Additionally, clustering can be used after
biomarker discovery to verify that the markers identified can separate the samples
effectively into distinct clusters [33].

Clustering methods generally fall into two categories: hierarchical, in which a dendrogram is
built that represents the partitions of the data at all possible cluster levels, or partitional,
where optimal clusters are found for a single k number of clusters [34].

Variations on classical concepts of clustering can be effectively utilized in certain contexts.
Fuzzy clustering, in which genes are assigned multiple weighted cluster memberships, is one
approach that may be ideal for gene expression clustering, since some genes likely
belonging to multiple functional groups [35]. Biclustering is a beneficial approach for
situations where some genes exhibit relationships over only a subset of conditions, such as is
the case with tumor datasets with heterogeneous tumor subtypes [36].

2.3. Classification
One important application of bioinformatics is to predict class membership of unknown
samples based on data gathered from previously characterized samples. For example, a well-
studied problem is the classification of tumor samples by malignant potential using gene
expression data. A simplistic approach to this problem is to select expression and
significance thresholds for determining whether a gene is changed, then use those thresholds
to identify genes that are differentially expressed between tumor types [37]. Another basic
approach is to look for genes whose expression correlates with tumor-related phenotypes,
such as tumor size, serological markers, or metastasis; the selection of candidate biomarkers
based on correlated gene expression is very common [38].

Here we discuss a few of the many classification tools that address these problems, but do so
in more sophisticated ways.

2.3.1. Regression—Selection of a small, highly predictive set of markers is a universal
problem in classification studies. Regression is a common method for selecting the best set
of markers. For univariate regression, markers are selected according to their predictive
power regardless of the influence of other markers, while multivariate regression estimates a
small set of markers that in concert with one another can effectively classify new samples
[39]. Methods that include a penalty component in the selection process, resulting in smaller
selection sets, have demonstrated superior performance [39]. Many instances of successful
application of this technique exist in the literature. Two recent examples include the use of
multivariate regression on 953 proteins identified in nasal fluids to identify 3 proteins that
discriminated between high and low responders to glucocorticoid treatment for allergic
rhinitis [40]. Similar approaches were used to identify a gene expression signature for
lymphoid stem cells, and determine its association with adverse outcomes in acute myeloid
leukemia [41].

2.3.2. Support Vector Machine (SVM)—This approach is generally focused on binary
classification where training data are mapped onto multidimensional space via a kernel
function, and a hyperplane is chosen that separates the two classes. The major benefit of a
SVM is that the kernel function allows separation even under non-linear circumstances by
choice of the kernel function. The algorithm maximize the margins between the hyperplane
(a dividing line in high-dimensional space) and the closest correct data point on each side,
while minimizing the distance to any misclassified elements. With this hyperplane in place,
new data can be classified simply by determining on which side of the division they fall
[42].
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SVM has become a very popular tool for selection of candidate biomarker panels from high
density datasets, including both proteomic, transcriptomic, and microRNA data sets. Recent
examples include an SVM-driven classification for ranking ovarian cancer proteomic data,
to select the most discriminating spectra for candidate biomarkers [43], use of serum
microRNA profiles to train an SVM for classification of early stage breast cancer [44], and
use of SVMs to confirm the classification utility of biomarkers identified by other means,
such as ANOVA and PCA [45].

2.3.3. Decision trees and random forest—This learning approach builds a tree of
questions such that the terminal leaves represent the correct classification of the test
samples. The tree is built (training stage) as questions are chosen that minimize the impurity
(i.e. heterogeneity) of the resulting subgroups at each level of the tree. Ideal trees will
correctly classify all the data using a minimal structure. While a single decision tree can
provide accurate classification, compiling an ensemble of related trees using a random
sampling of training data and data features can confer additional accuracy to the
classification.

For approaches of this kind, termed random forest methods, each tree is built separately as
only a subset of the available features is considered when forming the question at each split
of each random tree as it is grown [46]. Marker selection is accomplished as the impact of
each feature (i.e. gene profile, for gene expression data) is assessed in the forest as a whole
for its power to effectively discriminate samples [47]. Recently, a random forest algorithm
was applied to serum proteomic data to identify clusters of proteins significantly associated
with Alzheimer’s disease [48], and elevated body mass index [49] in an effort to identify
early markers of these two diseases.

2.3.4. Artificial neural networks—Artificial neural networks (ANNs) are machine
learning approaches inspired by biological neural networks. They consist of nodes (neurons)
that have associated values, and links between the nodes that have weights. In the standard
implementation, ANNs are trained on data and the error that arises from comparing the
output of the ANN with the known value for the observation is fed back to modify the
weights of the relationships. ANNs have been used to identify a panel of ovarian cancer
tumor markers from serum that could significantly outperform the best single biomarker
[11]. An advantage of ANNs is that they can identify nonlinear relationships between
variables, but they are prone to overfitting of data and produce ‘black-box’ models with
minimal interpretability.

2.3.5. Relative gene expression analysis—One notable issue in identification of
robust biomarkers is that the genetic and regulatory networks for individual patients will
differ significantly. Thus consistent changes in particular genes, proteins or pathways may
not be evident if compared against a non-specific background. For many diseases patient-
specific control samples (from non-diseased tissue, for example) may not exist. One way to
address the patient-to-patient background variability is to use relative expression analysis
methods [50]. These methods examine the differences in expression levels between pairs of
genes or proteins in diseased and non-diseased patients, identifying consistent relationships
between features in diseased samples that reverse in non-diseased samples. One such
approach, the top-scoring pairs (TSP) method, was used to identify gene signatures that
could classify breast, prostate, and leukemia cancer patients using a minimal number of
features [51]. Accuracy of this approach was comparable to other approaches using a much
larger number of features.
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2.4. Visualization
Bioinformatics studies often require a way to summarize data and analysis results in a way
that is easily interpreted. This generally takes the form of visualization, thus allowing a user
to look at an image and extract conclusions that would not be evident otherwise. An
additional benefit is that the process involved in summarizing data and generating the
images often becomes an analysis in itself, thus yielding novel results.

2.4.1. Principal component analysis (PCA)—This method is used to reduce the
dimensionality of complex datasets, so that the important influences can be identified. As
such, PCA is both a data reduction and a visualization method. In PCA, data is plotted along
axes that represent orthogonal linear combinations of the original variables. In this way,
components of the data that represent as much of the variance as possible are brought to
light [52]. PCA is commonly used to determine if data classes are well separated when
plotted on two to three principal components, thus demonstrating plausibility of successful
biomarker identification. The resulting graphical representation often assists in visualizing
the strength of the separation.

A recent application of PCA involved visualizing the expression pattern of kidney
microRNA in the presence and absence of ischemic reperfusion injury in mice. The study
demonstrated a strong separation in the expression patterns of injured vs. non-injured mice,
thus justifying further studies to identify miRNA biomarkers of ischemic reperfusion injury.

A caveat to PCA is that a complete data matrix is required to compute the components. In
many cases missing values can be imputed using straightforward model-based approaches
[53–55], which works well for microarray data. However, with newer omic technologies,
such as mass-spectrometry based proteomics and metabolomics, the data is left-censored
and thus imputation of the missing data can cause a severe bias in the components due to the
misrepresentation of the variance structure of the data. Methods such as projection pursuit
[56] can be used to overcome the missing data challenge. Figure 1 displays a principal
component analysis (PCA) when performed using a limit-of-detection (LOD) imputation
(Figure 1A) versus a PCA analysis using an alternate approach, such as Sequential
Projection Pursuit (SPP), that does not require imputation (Figure 1B) [57] In this example
proteomics dataset there are two factors as associated with eight C57BL/6 mouse lung tissue
samples as previously described [58] The first is diet induced obesity described as regular
weight (RW) and obese (OB) and the second includes sham controls (SC) and exposure to
lipopolysaccharide (LPS). Figure 1 is color coded to highlight the clear distinction in the
obesity factor. Both the imputation-based PCA and SPP approaches appear to separate the
obesity factor well, although the SPP approach visually shows a clearer pattern. The plots
are overlaid with red triangles that represent all mouse samples that had >28% of the
observed peptides categorized as missing (not detected in that sample). The LOD imputation
approach shows a severe bias based on missing data, the red triangles are all clustered to the
top and left of the plot. Furthermore, the scales of the axes are extreme in comparison to the
SPP approach showing that the missing data is driving this separation, not a biological
mechanism. Thus even common tasks such as PCA can be more accurately interpreted when
expert knowledge is applied to the underlying the data structure.

2.4.2. Network analysis—The results of many data-driven techniques for analyzing large
scale datasets are often best represented in network form. Using similarity measures such as
Pearson’s correlation, Euclidean distance, or mutual information, computational approaches
can reveal similarity between entities’ expression profiles, thus implying some kind of
relationship. These kinds of networks can provide a very intuitive way of visualizing
complicated data that reflects the underlying structure of the dataset. Figure 2A shows a
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coexpression network inferred from this gene expression analysis in macrophages
responding to application of nanoparticles [59]. Since the system proceeds through a series
of steps over time, the network arranges nodes (genes) in a temporal arrangement, finally
ending at a state very similar to its starting state. This elucidation of temporal relationships
contrasts with the results shown in Figure 2B. This example of a standard heatmap
visualization of gene expression data, with a number of modules identified by color to the
right (as defined using hierarchical clustering) fails to reveal the temporal relationship
between the clusters.

As discussed above, structural analysis can include identification of clusters or communities
in the network, which can suggest mechanisms of regulation. Analysis of network structure
can also identify nodes with high centrality, as determined by metrics such as degree
(number of edges connected to a given node), or betweenness (number of shortest paths
between all nodes that pass through a given node) [60]. Nodes with high centrality,
particularly betweenness, have been shown to be enriched for critical regulator function [59,
61, 62]; thus construction of a network that represents biological relationships of some kind
can lead to discovery of new regulatory mechanisms.

Data-driven network analysis was used in one study designed to identify novel markers for
chronic lymphocytic leukemia (CLL). Networks based on correlation-derived connectivity
revealed a cluster containing several known CLL markers. A set of new candidate
biomarkers from this cluster was isolated by identifying genes whose expression was
predictive of IgVH mutation, which is a known diagnostic tool for CLL [38]. In another
approach termed SVM-RCE (Recursive Cluster Elimination), clusters from gene expression
networks are iteratively screened for classification ability using an SVM. Clusters with low
predictive power are removed and the network is rebuilt with the remaining genes. This
process is repeated until a target number of clusters remains in the rebuilt network. Yousef
et al, applied this approach to pre-existing published datasets from cutaneous T-cell
lymphoma and from airway epithelial cells in smokers with and without lung cancer,
comparing the predictive power of SVM-RCE to the original signatures published for the
chosen datasets. In both cases there was a significant improvement in accuracy [63],
illustrating the power of iterative analyses.

3. Knowledge-driven approaches to biomarker identification
The rapid maturation of genomics and proteomics technologies has overwhelmed scientists
with a prodigious amount of high-throughput experimental data in the last two decades. The
bottleneck for life science studies has shifted from generating the data to interpreting results
so as to derive insights into biological mechanisms. The increasing use of systems biology
approaches has prompted researchers to integrate heterogeneous data into existing
knowledge bases in order to facilitate the understanding of disease and biological process
mechanisms at a systematic level. In this section, we provide descriptions for several
common knowledge-based approaches used in cancer biomarker discovery and examples of
their latest applications.

3.1 Protein-Protein Interactions (PPI)
Protein-protein interactions (PPI), the physical binding interactions between proteins, play a
key role in many cellular processes [64]. To understand the mechanisms underlying
biological processes such as disease progression at a molecular level, it is critical to identify,
characterize and interpret PPIs. Most PPI studies have focused on two areas: experimental
identification and characterization of protein interactions (including populating protein and
domain interaction databases based on experimental data); and application of computational
approaches to predict protein and domain interactions based on the experimental findings.
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In this section, we focus on the applications that integrate the available knowledge of protein
interaction networks with experimental data sets in order to facilitate biomarker discovery.
Although the complete interaction map of proteins from any species does not yet exist, some
studies have estimated that the total number of protein interaction types (classes of distinct
interactions in terms of structure) is limited to a rather small number, around 10,000 [65].
Considering that protein interactions are highly specific [66] and that our knowledge of PPIs
has been rapidly increasing, it will be possible in the near future to predict and/or interpret
new interactions based on existing interaction networks, which will have important
implications to understanding the cellular networks that give rise to biomarkers.

Increasingly, knowledge-based approaches, including the integration of PPI networks with
experimental and clinical datasets, have been applied in biomarker discovery. For instance,
Xiong et al, applied PPIs to biomarker identification for lung cancer by extracting
synergistic gene pairs from a microarray dataset of 66 samples [67] Specifically, the logic
status of a PPI was determined by the relative expression of the corresponding gene pair,
which was used in the assessment of cancer phenotype via a SVM as a classifier. A total of
16 gene pairs were identified with strong association with the phenotype for human lung
cancer, and three of them (Pafah1b1-Ndel1, Cav1-Src and Nos3-Cav1) displayed a skewed
distribution in cancer samples. In addition, a novel potential PPI between Src and Cav-1 was
identified, contributing new insights into potential mechanisms of lung cancer. Ideker, et al.
have combined decision trees with PPI networks allowing identification of subnetworks and
combinatorial logic that relates them to cancer [68]. Though its application to biomarkers is
not explicit, this study in particular demonstrates the value of combining statistical
approaches with existing knowledge to derive enhanced biomarkers.

3.2. Pathway Analysis
Pathway analysis, i.e., the analysis of expression data for functionally related genes, is
another form of knowledge that can be integrated into biomarker identification studies.
Pathway analysis focuses on the identification of differentially expressed functionally
related genes (pathways), rather than single genes, from gene expression data. The ultimate
goal of this approach is to develop a comprehensive understanding of disease-related
mechanisms at a molecular level [69]. Despite the varieties of methods available for specific
pathway-based analysis, all have adopted a fairly similar perspective. In general, pathway-
based analysis strategies consist of the following three components: i) choosing sets of
genes, generally using a data-driven process (for example, differential expression); ii) asking
a biologically relevant question (formulating a hypothesis) about functions that may be
involved; and iii) choosing an effective statistical test to answer the question [70].

At the stage of choosing gene sets, the choice is made whether or not to pre-select sets of
genes. Pre-selected sets of genes can be used to test specific hypotheses about whether
specific pathways are significantly differentially expressed between phenotypes. Many
conventional statistical tests can be used to answer this question (e.g. Fisher’s exact test and
Chi-square test). However, this simple and straightforward approach suffers from several
shortcomings, such as the inflation of the probability of Type I error in multiple hypothesis
testing, and has lost popularity in large-scale data analysis [71].

One of the major disadvantages of an analysis that focuses on pre-selected gene sets is that it
ignores all genes not included in the pre-selected list. Therefore, the current trend is to use
global strategies that investigate all expressed genes without pre-selection. Among the
approaches that avoid the use of pre-selected gene sets, Gene Set Enrichment Analysis
(GSEA) has been widely accepted since its appearance [72, 73]. It essentially compares the
difference in expression of a set of genes against the remainder of the genes between two
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phenotypes; this is also referred as a competitive approach. We will discuss it separately in
the next section.

Many approaches available for pathway analysis can be viewed as self-contained tests,
which try to answer the question; “Is one gene set differentially expressed between distinct
phenotypes?” Self-contained tests can be categorized into either univariate or multivariate
tests. In general, these tests are easy to interpret and are often favored over tests that
compare one set of genes against a larger set, so-called competitive tests, like GSEA [74].
Pathway analysis approaches can also be used to compare differential expression of
functional groups when individual genes may not be shared between two systems being
compared. We have recently described one such approach in which significantly enriched
functional groups in different systems were used to compare the responses of these systems
to infection with influenza over time [75].

The ability of pathway analysis approaches to identify common functional elements in noisy
data sets is illustrated by a recent analysis comparing the results of plasma protein-based and
cell line-based proteomic analyses [76]. Mass spectrometry based analysis of plasma
samples from 40 women diagnosed with breast cancer and 40 healthy controls identified 254
statistically differentially expressed proteins, of which 25 were further classified as
“activated” plasma proteins based on the pathway analysis and literature curation to serve as
pathway biomarker candidates. The top three enriched pathways included complement and
coagulation cascades, regulation of actin cytoskeleton and focal adhesion. Cross-validation
against two proteomics studies using breast cancer cell lines showed that there was a higher
degree of similarity between cell lines and plasma at the level of pathways, compared to
individual proteins. [62].

3.2.1. Gene-Set Enrichment Analysis (GSEA)—Gene Set Enrichment Analysis
(GSEA) is a strategy for gene expression data analysis based on pathway knowledge that has
had a significant influence on the general framework for analyzing high-throughput gene
expression data. This computational method focuses on finding statistically significant
differences between two biological states, e.g., phenotypes, using sets of functionally related
genes (chosen from prior biological knowledge, i.e., knowledge-based), rather than
individual genes [72, 73]. The three key elements involved in this method are: 1) ranking all
genes in a dataset according to their expression differences between two biological states,
and calculating an enrichment score (ES) for each gene set; 2) estimating the significance
level of each ES using a permutation test procedure; 3) adjusting for multiple hypothesis
testing.

Since its appearance, the gene-set-based strategy has been widely applied to many types of
datasets and has demonstrated significant advantages, including robustness and biological
relevance. Besides changing the focus from individual genes to groups of genes, another
underlying advantage of this approach is its ability to extract common features from datasets
derived from different platforms at the level of the functionally related gene-set rather than
the single-gene. Using GSEA, two independent studies in lung cancer were compared and
showed a strong correlation and a large overlap of the significantly enriched gene sets
between the two studies [72]. This is significant because traditional analyses comparing
differentially expressed genes found no significant similarities between the two datasets,
highlighting the power of using knowledge-based approaches for noisy and multi-source
data.

To extend the range of applicability of GSEA, several modifications have been made to its
basic framework. For example, parametric analysis of gene set enrichment (PAGE) was
developed for larger datasets and to address the need to decrease computation time [77];
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Jiang et. al, have proposed a method that allows for adjustments based on other covariates
[78]; and Woolf and colleagues have extended this approach to a generally applicable gene
set enrichment (GAGE) for handling pathway analyses for datasets with different sample
sizes and experimental designs [79]. However, some researchers have challenged the
sensitivity of the GSEA approach and shown that in some cases two simple procedures
based on the one-sided z-test and the χ2 test outperform GSEA [80].

Here we describe two recent studies that used GSEA and GSEA-related approaches to
discover biomarker candidates. In a lung cancer study testing the hypothesis that increased
angiogenesis was related to decreased survival in non-small cell lung cancer, GSEA
approaches identified a panel of regulatory microRNAs (including miR-155, miR-21, and
miR-106a) that were significantly associated with both angiogenesis and decreased survival
[81]. In another study, GSEA was used to identify signaling pathways associated with the
response of cervical tumors to chemoradiation therapy, as monitored by glucose uptake.
GSEA analysis identified over-expression of the P13K/Akt pathway in association with an
incomplete metabolic response to therapy. Since an incomplete metabolic response is known
to be associated with poor survival, these results suggested that targeted inhibition of the
PI3K/AKT pathway may improve patient response to chemotherapy [82].

3.3. Text Mining
Text mining has a long and varied history outside of the bioscience field. This technique
started to appear in biomedical literature in the late 1990s and has experienced a surge in
popularity over the last decade [83, 84]. Biomedical text mining refers to the use of
automated methods to explore the prodigious amount of knowledge available in the existing
biomedical literature to benefit researchers. In contrast to other fields of application, the
most popular text mining tools used in both bioscience and medical fields have been
developed by bioscientists, rather than text mining specialists. Examples include the
applications Chilibot, Textpresso, and PreBIND [85].

In general, there are three major steps involved in biomedical text mining: i) recognizing
terms, ii) looking for relationships between these terms, and iii) discovering new
relationships. The task of recognizing various terms, also referred to as named–entity
recognition, is a process by which information is retrieved from selected and/or relevant
documents/literature by computer scanning. A variety of entities, such as protein name, cell
type, gene mutation, and disease, can be recognized during the process [86]. Some
algorithms and machine-learning tools can be designed to consistently recognize an
individual entity under different names, synonyms, homonyms, and acronyms [87, 88].

The second step is looking for relationships between terms, i.e., information extraction. The
simplest and most intuitive way to identify relationships is by using co-occurrence-based
methods. This type of method looks for concepts occurring in the same unit of text (for
example, a sentence or an abstract) under the assumption that terms that show up in the same
place are most likely related to each other, e.g., a gene mutation and a disease are often
mentioned in the same abstract [89]. However, two other sophisticated methods, consisting
of knowledge-based and statistical approaches, are more commonly employed. Knowledge-
based methods are self-explanatory and involve integrating a general knowledge of
linguistics and biology at certain levels in order to recognize a relationship between terms.
In contrast, the statistical approaches apply classifiers at different levels of text. In practice,
the three approaches can be fruitfully combined. For example, co-occurrence can be used as
an initial baseline before the statistical process step, followed by knowledge-based post-
processing.
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At the third stage, text mining is used to unearth previously undiscovered relationships that
are hidden in the literature. These relationships can be used to prioritize biomarkers by
highlighting important biological links between proteins and known pathways of
importance, for example. The explosion of scientific data has made it virtually impossible
for life scientists to read everything related to their research projects from either a historical
or contemporary perspective. The use of text mining techniques can significantly reduce the
time required for searching relevant literature, and dramatically increase the chances for
discovering new connections.

In biomarker discovery studies, text mining can be used as a powerful discovery and
validation tool. For example, Deng et al, have developed a multi-platform strategy, link-test,
to cross-link experimental datasets at both transcriptomic (microarray data) and proteomic
(mass spectrometry data) levels in an effort to discover new prostate cancer biomarkers
which could outperform the current biomarker, prostate specific antigen or PSA. Cross-
validation results showed high prediction accuracy using the identified biomarker
candidates, which were further validated by text mining of prostate-cancer-related genes
from OMIM (Online Mendelian Inheritance in Man) [90]. Another example, PubMeth, is a
freely accessible cancer methylation database that combines a text mining approach with
manual reviewing and annotation. It can be used as an efficient way to discover novel
methylation markers of cancers. The earlier version of this approach was first reported in
2008 [91]. More recently, the authors have been able to combine experimental data with
literature results with a co-occurrence-based method [92].

4. Evaluation of biomarker identification approaches
Development of approaches to identification of robust biomarkers requires careful attention
to methods to evaluate performance. A common problem with many of the approaches
discussed above is that use of an inappropriate evaluation scheme can result in vastly
overstated performance results [43]. In terms of biomarker identification, this has certainly
been a source of many problems contributing to the lack of robustness of identified
biomarkers [93].

Common approaches used to evaluate the quality of biomarker signatures include the
determination of Receiver Operating Characteristics (ROC) and the measurement of the area
under the curve (AUROC). This is accomplished by varying some stringency parameter (p-
value cutoff, for example) and plotting the specificity versus 1-sensitivity. The AUROC is
equal to 1.0 if the method classifies all positive and negative examples correctly, and 0.5 for
random class assignment. This metric has the advantage of combining two important
components, the type I and type II error rates, or i.e., the portion of false positive predictions
and false negative predictions that are made by the method.

Proper evaluation of a biomarker identification method involves establishing a set of
experimental data that will be used to parameterize the method and a separate, independent
data set that can be used to test the predictions made for consistency. Evaluation of the
performance of the method on the independent test set is referred to as cross-validation, and
is commonly repeated with different partitions to arrive at an estimate of performance.
Experimental validation of identified biomarkers in a completely independent data set
representing an appropriate experimental system can provide very good evaluation, but is
generally prohibitive in terms of time and money, and thus is rarely performed in a
comprehensive fashion. In many cases approaches based on either cross-validation or
bootstrapping are used to evaluate data sets [94].

Bootstrapping refers to the process of repeatedly dividing a single data set into training and
testing sets that can be used to assess the overall performance of the classification method.
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The bootstrapping paradigm, and other resampling techniques, can provide estimates of
classification performance on ‘independent’ data, but can suffer from unknown or
unaccounted for relationships in the data. That is, if different observations are not
independent, bootstrapping methods can still provide overstated results [94]. However, the
down-selection of biomarkers can be effectively performed in this manner if the
bootstrapping algorithm is employed within the feature selection. This is computationally
expensive, but can dramatically improve the identification of potential candidate biomarkers
when independent test data is not available [94]. In addition, a particular problem for
biomarker identification is that individual datasets often are themselves biased, for example,
by selection of subjects. This means that biomarkers identified from one set of subjects may
not work in another set of subjects selected using different criteria [43]. Meta-analysis of
data from multiple independent studies is one way to address this issue, but requires that the
measurements taken by each study be comparable, a very difficult proposition given the
plethora of platforms for data generation and the wide variety of data processing pipelines.
These issues can be partially solved by employing non-parametric versions of gene pair
expression methods, such as the top scoring pairs algorithm (see above).

5. Expert Opinion
The amount of thought and effort devoted to the identification and characterization of
biomarkers has exploded over the past decade, accompanied by a substantial increase in the
number and sophistication of analytical tools available for selecting candidate biomarkers
from complex datasets. Our review has focused on describing the fundamental tool sets
currently available, and the development of increasingly sophisticated approaches. With
over 3000 publications on ‘biomarker discovery’ listed in PubMed for the past 5 years, and
461 in 2011 alone, it would be impossible to comprehensively review each individual effort.
Yet despite this well-documented effort, the FDA has been approving only 1 to 3 new
biomarkers for clinical use each year [10]. Clearly, the current procedures for identifying
biomarkers that can withstand a rigorous validation process and subsequently demonstrate
true clinical utility are not working.

We propose a new synthesis of data-driven and expert knowledge-based approaches to
concurrently mine the power of statistical algorithms for selection while guiding the process
to include weighting factors derived from expert-knowledge. Bayesian approaches have
always included weighting factors by assigning prior probabilities, but there are many
different ways to accomplish this. This is both a problem of quantifying expert knowledge
and of identifying the appropriate knowledge bases to utilize that capture expert knowledge
pertinent to the question being posed. Expert knowledge exists in the form of existing
experimental data, previous information from experts in the field, and community-
assembled knowledge sources such as functional annotation. Integrating these kinds of
knowledge with powerful statistical approaches has the promise of identifying more robust
and clinically relevant biomarkers. One potential benefit of this combination is that expert
knowledge can be used to filter out spurious or low-quality biomarkers to yield genes,
proteins, or metabolites that are able to more accurately and confidently predict, diagnose, or
quantify disease. A second benefit is that this kind of analysis can help identify higher levels
of abstraction, for example groups of genes related in a pathway, that serve as improved
biomarkers, by virtue of their ability to capture many variants of an adversely affected
disease-related process. Many approaches using Bayesian models that employ standard
priors without specifying particular variables fail to truly capture the diversity of biological
information [95]. One relatively recent approach has developed an empirical Bayes method
in which prior information about pathways and networks is selected and weighed in an
automated objective process [96].
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The development of a semi-automated, iterative process that can be optimized around a
metric of biomarker quality offers a potential solution for testing the effects of different
expert parameters. The metric used for evaluation should reflect the fidelity of the biomarker
with standard measures of binary classification performance: accuracy, sensitivity,
specificity, and especially positive predictive value. Ground truth for these studies is the
phenotypic expression of each subject under study, for example survival times or other
clinical indicators of disease. The metric should also incorporate the risk associated with the
measurement. For mature diagnostic tests, this would account for the consequences of
incorrectly predicting the onset (or non-onset) of a disease. It is also useful to incorporate an
element of cost in the assessment. The cost factor must be appropriate to the stage of the
test. While out-of-pocket cost to the patient is an appropriate cost element for a mature
clinical test, it must be remembered that experimental verification and validation also
includes costs for sample acquisition and sample analysis.

We are currently developing an approach that relies predominantly on the use of expert
knowledge to determine the structure of the statistical analyses, and to combine the results of
statistical analyses in a manner that incorporates the known complementarity of the
underlying biological functions. An example of this process would involve the initial
application of a data reduction approach, such as PCA or supervised clustering, on an
unselected global dataset (such as a transcriptomic or proteomic analysis). The features
identified as discriminatory between the desired phenotypes would then be subjected to a
functional analysis, such as GSEA, to identify the functional components underlying the
statistical separation. Once the functional groups responsible for discrimination have been
identified, statistical approaches are used to identify those features within a functional group
that were the most robust surrogate for the behavior of the group using a signature quality
metric defined for the clinical application, as described above. This process can be iterated
to optimize the signature quality metric until the desired performance had been obtained.

Iteration might proceed by first identifying groups of genes (e.g., from broad functional
groups), that provide the best classification between control and disease samples. These
groups could then be broken into successively more detailed and informative subgroups, and
classification methods re-parameterized. In this way groups of genes could be identified that
were optimally informative from the standpoint of disease classification as well as the
underlying biological functions. For many disease processes, including cancer, this approach
could provide biomarkers that are more robust than traditional approaches.

While the overall focus of this process is to improve the performance of biomarkers for the
specific category of intended use (such as early detection, prognosis, or response to therapy),
the melding of statistical and expert-driven approaches also ensures that there is a
discernible biological rationale underlying the choice of biomarkers. This direct link to
biological function has the potential to drive the development of improved therapeutic
strategies by identifying the complementary and/or parallel biological functions that
contribute most strongly to discrimination between cases and controls.
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HIGHLIGHTS

• Despite a decade of research, the translation of biomarker studies into FDA
approved clinical tests has been low

• More effective integration of data-driven and expert-driven strategies for
biomarker discovery and identification is seen as key to improved success

• Data-driven approaches to biomarker discovery focus on data reduction, data
classification, and data visualization

• Expert knowledge-driven approaches feature curated knowledge of protein-
protein interactions, pathways, gene function, and ontologies

• Objective metrics for evaluating biomarker performance are key to using a
iterative approach for improving performance

• Integrating data-driven and knowledge-based approaches for biomarker
identification has the potential to improve performance and leverage
translational applications
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Figure 1.
PCA-based visualization of a proteomics data biomarker study. (A) PCA was performed on
a proteomics dataset with a simple limit-of-detection based imputation of missing data and
(B) no imputation using Sequential Projection Pursuit. The axes in both plots represent the
first principal component (X axes) and the second principal component (Y axes).
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Figure 2.
A. Coexpression network of macrophage response to nanoparticle exposure showing the
progression of functional modules through time. B. Standard heatmap of macrophage
transcriptional response to nanoparticle exposure with modules defined using hierarchical
clustering.
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Table 1

Statistical methods applied to the data-driven analysis approaches.

Categorya Statistical Methods* Applications Concerns

Data Reduction (R) Trend analysis (C) Extracting underlying patterns Unsupervised learning; good for
the initial step of data analysis

Clustering (V) Subgrouping data; biomarker verification

Classification (C) Regression Simple and straightforward

Support vector machine High dimensional data; can be applied to
nonlinear data

Work best for binary
classification; requires good kernel
function

Decision trees and random
forest

Recursive partitioning; effectively discriminate
data

Overfitting training set

Artificial neural networks An adaptive approach, Model relationships in
large complex datasets

Overfitting training set; non-
intuitive models

Gene relationship analysis Comparison between patients, normalization
between datasets

Visualization (V) Principal component analysis
(R)

Visualize key patterns in a reduced dimension Imputation required

Network analysis (C) Reveal similarity and relationships among
clusters, recognize hubs in networks

a
Some methods are relevant to multiple categories, as indicated: R, data reduction; C, classification; V, visualization

Expert Opin Med Diagn. Author manuscript; available in PMC 2013 January 18.


