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Abstract

The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection.
Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no
recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally
different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that
mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural
selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci
represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investi-
gations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from
empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting
mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite
mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at micro-
satellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich’s ataxia. We
characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation,
and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models
and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of
microsatellites and other multiallelic variants.
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Though SNPs are the most common type of polymorphism,
several mutationally complex structural variants—including
micro and minisatellites, copy number variants (CNVs), and
transposable elements—are abundant in genomes (Ellegren
2004; Korbel et al. 2007; Huang et al. 2010). Reliable detection
of natural selection across the full complement of mutation-
ally heterogeneous loci will require models (mutational and
selective) appropriate to each non-SNP variant.

Here, we focus on microsatellites. Found throughout
the genomes of prokaryotes and eukaryotes, microsatellites
are defined as sequential repeats of a 1-6 nucleotide motif.
The mutation rate at microsatellites generally exceeds that of
point mutation by several orders of magnitude (Bhargava and
Fuentes 2010), which leads to recurrent mutation that
violates the ISM on which much of the theoretical work

Introduction

Genomic scans for natural selection are now ubiquitous and
target a variety of subject species (Oleksyk et al. 2010;
Strasburg et al. 2012). Despite their promise, however, positive
results from separate scans of the same species can show
limited overlap (Biswas and Akey 2006; Akey 2009) and a
relatively small number of unambiguously positive results
have been gathered (eg, LCT and G6PD in humans;
Tishkoff et al. 2001; Bersaglieri et al. 2004). Indeed, the preva-
lence of genomic scans has revealed a number of biological
and demographic factors that complicate the intuitive sim-
plicity of the selective sweep model (Maynard Smith and
Haigh 1974) and are likely to confound statistical tests for
selection that assume a homogeneous genome. For example,
statistics like Tajima’s D (Tajima 1989) may fail to identify

selection targeting standing variation (Innan and Kim 2005;
Przeworski et al. 2005), yet produce false positives in response
to demographic change (Nielsen et al. 2005; Li 2011).

A complication that has received little attention is the role
diverse mutational mechanisms play in the dynamics and
signatures of selection. This oversight is noteworthy because
a large fraction of genetic variation is of a fundamentally dif-
ferent mutational nature than a single nucleotide polymorph-
ism (SNP), which is assumed to arise from a single, unique
mutation under the infinite sites model (ISM; Kimura 1969).

regarding SNP-based selection is based (Maynard Smith and
Haigh 1974; Hermisson and Pennings 2005). Thanks to their
early adoption in forensic analysis (Hampikian et al. 2011),
genetic map construction (e.g, Broman et al. 1998; Kong et al.
2002), and population genetic inference (e.g, Navascués et al.
2009; Goldberg and Waits 2010), more is known about micro-
satellite mutation than other non-SNP variants. For these
reasons, microsatellites provide a model system for studying
the effects of non-ISM mutation on the inference of natural
selection.
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Microsatellites have long been used as markers in popu-
lation genetics and forensic analysis because they are often
highly variable (Oliveira et al. 2006). An implicit assumption
underlying the use of microsatellites as diagnostic markers is
that they evolve neutrally. However, recent studies have
identified functional microsatellites that affect the fitness
of an individual (Kashi and King 2006; Gemayel et al.
2010). Putatively (dys)functional microsatellites are primarily
located in or near genic regions, where a change in the
number of times the motif is repeated (hereafter referred
to as allele size) is hypothesized to modify gene expression or
change protein sequence (Wren et al. 2000; Li et al. 2004;
Gemayel et al. 2010). Synthesizing the results of more than
500 individual experiments, Rockman and Wray (2002) con-
cluded that as much as 20% of cis-regulation in humans is
mediated by variation in repetitive elements including micro-
satellites. More recently, Vinces et al. (2009) provided strong
experimental evidence for eukaryotic gene regulation via
microsatellites. In Saccharomyces cerevisiae, the authors
demonstrated rapid and effective selection for change in
gene expression that was mediated by concomitant
change in the allele size of a promoter microsatellite. In
exons, changes in protein sequence caused by microsatellite
mutation can drive rapid morphological evolution. For ex-
ample, profound evolution of the snout morphology of do-
mestic dog breeds was accomplished in less than a century
through artificial selection acting on the length of a com-
pound microsatellite in the gene Runx2 (Fondon and Garner
2004). The presence of microsatellites in coding regions can
also present substantial hazard for organisms. For example,
most mutations of nontriplet microsatellites in protein
coding regions cause frame shifts, which can eliminate pro-
tein function. Furthermore, hyperexpansion of trinucleotide
repeats in genic regions cause numerous human diseases
such as Fragle X syndrome (Kremer et al. 1991),
Friedreich’s ataxia (Durr et al. 1996), and Huntington’s dis-
ease (Huntington’s Disease Collaborative Research Group
1993).

Though these empirical examples show that repetitive
elements can be functional, a few authors have suggested
that repetitive variants including microsatellites may be ubi-
quitous agents of efficient adaptive evolution (Trifonov 1989;
King 1994, 1999; Kashi et al. 1997; King et al. 1997; Fondon and
Garner 2004; Trifonov 2004; Kashi and King 2006, King and
Kashi 2009). In general, they argue that if small changes in
allele size at a microsatellite correspond to incremental
changes in the value of a quantitative trait such as gene ex-
pression, then high mutation at a microsatellite should gen-
erate a reservoir of quantitative trait variation to be drawn on
in times of ecological stress. Although theoretical and empir-
ical studies have focused on the use of microsatellite markers
to detect selective sweeps targeting linked variation (Wiehe
1998; Schlotterer 2002; Nair et al. 2003; Rockman et al. 2005), a
paucity of research addresses the topic of direct microsatellite
selection. An objective, inferential framework to test the
neutrality of microsatellites is absent.

Natural selection at a microsatellite is perhaps best con-
sidered in the context of mutation-selection balance.
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Although the action of natural selection tends to increase
mean fitness of the population, mutation acts in constant
opposition to this increase by producing less fit alleles.
Previous theoretical treatments of mutation-selection dy-
namics at loci with multiple alleles make assumptions that
limit their application to inference from microsatellite data.
Both Crow and Kimura (1970) and Clark (1998) assume the
infinite alleles model of mutation (Kimura and Crow 1964),
which is inappropriate to microsatellite mutation unless the
selective event of interest is recent enough or mutation rate is
low enough to limit recurrent mutation and resultant homo-
plasy. Several studies have investigated mutation-selection
balance at a locus mutating according to the stepwise muta-
tion model (SMM) (Moran 1976; Kingman 1977; Moran 1977;
Blirger 1988, 1998); the SMM is a simple but appropriate
model for microsatellite mutation (Ohta and Kimura 1973).
However, these studies make several assumptions that limit
their practical use: haploidy, deterministic evolution, and,
often, that a single allele is most fit.

The models of selection and mutation presented here
empower exploration of diverse selective and mutational
dynamics at microsatellites in diploids. We also describe a
rapid simulation algorithm, which makes it simple to gener-
ate thousands of sample data sets. Together, models and
simulation provide a reasonable framework to: 1) test the
neutrality of individual microsatellite loci, which is simply
assumed in most studies that use microsatellite markers;
2) evaluate claims regarding the importance and prevalence
of selection targeting microsatellites; and 3) investigate the
population-level consequences of selection targeting micro-
satellites. Although we focus on microsatellites as a molecu-
lar model system, our models and simulation algorithm
should be portable to other classes of multiallelic loci such
as CNVs assuming a variant-specific mutational matrix can
be constructed.

Models and Simulation

Modeling the Fitness Surface of a Microsatellite

We present four models for the fitness surface of a micro-
satellite locus: additive, multiplicative, dominant, and reces-
sive. Using four parameters—key allele size (x), threshold
effect (8), and lower and upper gradient effects (g and
g.)—the fitness surface is constructed in two steps.
Regardless of model, the first step is to calculate a vector
of allelic fitness. Let a; represent an allele of size i and let
w(a;) be its fitness. Initially, set w(a;)) =1, i =2,3,4...
Then, a detrimental effect of allele a; on fitness is indicated
by w(a;) < 1. The sign of threshold effect § determines
which set of alleles are subject to its effect. When negative,
it reduces the fitness of all alleles <x equally; when positive,
it reduces the fitness of all alleles >x equally. More specific-
ally, when § is negative add § to w(a;) for all a; where i < x.
When § is positive subtract § from w(a;) for all a; where
i > x. Gradient effects g and g, affect the fitness of alleles of
size i <x and i > x, respectively. When negative, these par-
ameters decrease fitness as distance from x increases and vice
versa. To realize these effects, add gj|x — i| to w(a;) for all g;
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Fic. 1. Modeling mutation and selection at a microsatellite. (A) The diploid fitness surface is constructed in two steps. First, allelic fitnesses are
calculated by combining the threshold and gradient effects associated with the values of parameters §, g, and g,.. Second, the vector of allelic fitnesses is
used to compute the fitness surface (genotypic fitnesses) in a model-specific manner. (B) Allele-specific mutation rate is defined as a basic logistic
function modified by three parameters whose values control the allele size where mutation rate begins to increase (), the slope of increase (y), and

the maximum mutation rate (¢).

where i<x and g,|x —i| to w(a;) for all a; where i> x.
Finally, lethal alleles are represented by a relative fitness of
zero. For all i considered, set w(a;) = 0 if w(a;) < 0 after the
previous calculations are performed. The second step is to
construct the diploid fitness surface in a model-specific
manner. Let w(aja;) be the fitness of the diploid genotype
containing alleles of size i and j. Under additive and multi-
plicative models, w(aja;) equals the sum or product of the
fitnesses w(a;) and w(a;), respectively. Under the dominant
model, deleterious effects are dominant. Thus, genotypic
fitness is calculated as the minimum fitness of the two com-
ponent alleles: w(aja;) = min(w(a;), w(a;)). Under the
recessive model, deleterious effects are recessive. Thus,
genotypic fitness is equal to the maximum fitness of the
component alleles: w(aja;) = max(w(a;), w(a;)). For all
four models, the fitness surface is normalized by dividing
each w(aja;) by max(w(aia;)). Figure 1A shows a schematic
of fitness surface construction.

Modeling the Microsatellite Mutation Matrix

A positive correlation between allele size and mutation rate
is supported by mutational studies (Goldstein and Clark
1995; Wierd| et al. 1997; Brinkmann et al. 1998; Schlotterer
et al. 1998; Vigouroux et al. 2002; Leopoldino and Pena 2003;
Henke L and Henke ] 2006; McConnell et al. 2007; Seyfert
et al. 2008; Marriage et al. 2009; Sun et al. 2012), analyses of
polymorphism data (Ellegren 2000; Legendre et al. 2007;
Brandstrom and Ellegren 2008; Kelkar et al. 2008; Payseur
et al. 2011), and model-based inference (Aandahl et al.

2012). Several studies have modeled this size-dependent
aspect of microsatellite mutation rate using a linear or poly-
nomial function of allele size (Kruglyak et al. 1998; Calabrese
et al. 2007; Sibly et al. 2001). However, genome-wide analyses
of polymorphism data further suggest that mutation rate
increases rapidly over a short range of allele sizes after
which mutation rate appears to asymptote (Brandstrom
and Ellegren 2008; Payseur et al. 2011). This characteristic
suggests that a logistic function might be a reasonable alter-
native model for allele-specific mutation rate. We use three
parameters to modify the logistic function and control
allele-specific mutation rate: ¥ controls the position of the
upward inflection point of mutation rate on the allele-size
axis, ¢ controls maximum mutation rate, and y controls the
slope of increase in mutation rate (fig. 1B). Following the
general formula for the logistic function, allele specific mu-
tation rate [ is

(1 —e®)

-7, =2 (1
1+10Ve¢ } &= )

w(g, v, ¢, y) =10 EXP[

where g is current allele size. Recent studies suggest a linear
increase in mutation rate with allele size (Aandahl et al. 2012;
Sun et al. 2012). A linear model of mutation rate requires only
two parameters, slope b and intercept a:

a+bg

if a+b 0
M(g,a,b)={o ! § =

otherwise g>2.
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Note that negative values of a can lead to & =0 for small
allele sizes. Indeed, based on human mutation data and
assuming a linear model of allele-specific mutation rate,
Sun et al. (2012) infer negative intercepts for di- and
tetranucleotide microsatellites and therefore 1 =0 for small
alleles. Although 1 is likely minimal for small allele sizes at
most microsatellite loci, it is almost certainly nonzero.
Therefore, we use the logistic model in the remainder of
this study because it allows realistic, nonzero mutation rates
for the smallest allele sizes and can recapitulate mutation
curves derived from the linear model for larger allele sizes
(supplementary fig. S1, Supplementary Material online).
We note, however, that any previous mutational model trans-
lated into a stochastic matrix may be used in the algorithm
detailed later.

Under the SMM, transition probabilities for mutation
from size g to size h are

n/2 ifh=g=£1
Pjpp=91—n ifh=g
0 otherwise, g>2,h>2,

where w is determined using equation (1). To model depart-
ures from the SMM, we specified two additional parameters.
First, we used parameter c to control contraction bias—the
empirically observed tendency for longer alleles to contract
more frequently than expand (Amos et al. 1996; Xu et al.
2000). Let Z(c,g) = P(contraction) = 1 — 1/(2cg*+2),
0.5<Z7Z<1.0, where g is current allele size and
0 < ¢ < o0 (though for most loci, reasonable values of ¢
will not exceed 0.01). Z has a horizontal asymptote at 1.
When Z=05 (c=0), there is no contraction bias; when
Z is near one, most mutations reduce allele size. Second,
we used parameter m to model multi-step mutation.
Specifically, step size k ~ Geometric(m), where m is the
probability of single step mutation. When ¢=0 and m=1,
mutation reduces to the standard SMM.

Finally, a stochastic matrix M comprising transition
probabilities {Pyy,} from size g to h is computed as follows:

MUZ x P(k = |g —h|) =
wuZ x m(1—m)e=h=1 ifg>h
Py = | 1(1=2) x P(k = |g — h|) = @)
n(1—2)xm(1—m)E"=" ifg<h
1—u if g =h,

where © is computed using equation (1) and
Yo, Py =1,g>2

Rapid Forward Simulation of Natural Selection,
Mutation, and Drift at a Microsatellite

Using a Recursion Equation

Edwards (2000) corrected Wright's equation for the change
in allele frequencies at a multiallelic locus in response to
natural selection (Wright 1937). This difference equation
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specifies the change in allele frequencies after one generation
of natural selection:

p1
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where p; is the frequency of allele a, w is mean fitness, and
the partial derivative g—z is equal to twice the marginal fitness
of allele a;, w*(a;).

We express the vector of allele frequencies after one gen-
eration of selection and mutation as a recursion equation:

- . C__
Pt+1 = MT(pt"' W Vw), (4)

where M is the transpose of the mutation matrix (eq. 2), p; is
the vector of current allele frequencies, C is the covariance
matrix on the RHS of equation (3), and Vw is the gradient
vector of partial derivatives on the RHS of equation (3). In the
following algorithm, we use repeated application of equation
(4) with multinomial sampling to simulate evolution of
microsatellite allele frequencies subject to mutation, selection,
and drift:

AO: Set t=0 and p, to the starting vector of allele
frequencies.

A1: For each allele g; calculate marginal fitness w*(a;)
and ow/dp; = 2 x w*(a)).

A2: Calculate w and C.

A3: (Selection and mutation) Use equation (4) to

find F)H"I‘

A4: (Reproduction and drift) Use multinomial sampling
to draw a sample of size 2N, based on probabilities
Pe+1, Where N, is effective diploid population size.

A5: Use the sample from [A4] to recalculate p;4 .

AG6: Repeat steps [A1]-[A5] for the number of gener-
ations desired.

If steps [A4] and [A5] are skipped, thereby disregard-
ing drift, steps [A1]-[A3] may be repeated until
[Pe+1) — Po| < € where € is an appropriately small thresh-
old (we used € = 1/2N,). Then, current p(,, provides an ap-
proximation of the allele frequencies at mutation-selection
balance.


http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss247/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss247/-/DC1

Microsatellites as Targets of Natural Selection - doi:10.1093/molbev/mss247

MBE

To assess accuracy, we compared the outcome of simula-
tions using algorithm A with the outcome of forward,
individual-based simulations. In forward simulations, all 2N,
copies of the allele were followed; each generation consisted
of selection on diploid individuals, mutation of the surviving
alleles, and reproduction by random sampling of surviving
alleles until 2N, copies were obtained. For the comparison
of recursion and forward simulations, we used a representa-
tive set of parameter values: dominant model, &=0.05,
g=—0001,g,=0,¢=35%=15y=015m=1,and c=0.
We performed the comparison for two distinct population
sizes: N. =500 or 10,000.

Results
Picturing Mutation-Selection-Drift Equilibrium at a
Microsatellite

Forward simulations following algorithm A generated sam-
ples highly similar to those produced using much slower

A 2 B <2
©
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> >
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individual-based  simulations  (supplementary fig.  S2,
Supplementary Material online). The contour plots in
figure 2A—C each summarize the frequency distribution of a
single allele over time and across 1,000 replicate simulations
using algorithm A. Equilibrium between mutation, selection,
and drift eventually becomes apparent across replicates. The
frequency of the key allele at mutation-selection balance (ob-
tained by a single simulation in the absence of drift) was
0.9864. For a diploid population size of N, = 10,000, the key
allele slowly approaches mutation-selection equilibrium in all
1,000 replicates (fig. 2A). The effect of drift is minimal, but
does cause key allele frequency to oscillate about its equilib-
rium frequency at mutation-selection balance. When
N, =500 (fig. 2B), however, the effect of drift dominates. In
a large fraction of simulations (31%), frequency of the key
allele at 4,500 generations is <0.2. Figure 2C shows the fre-
quency distribution of the next-most-fit allele (size 7) across
the same 1,000 replicates shown in figure 2A. Comparing

Relative Density

+5

1000 2000 3000 4000
time (generations)

allele size 1

Fic. 2. Mutation-selection-drift equilibrium for a microsatellite under selection. (A) The joint distribution of key allele (size = 8) frequency versus time
for 1,000 replicates at a selected microsatellite locus. In this case, the key allele is also the most fit and its frequency at mutation-selection equilibrium is
0.9684 (dashed line). The simulated selective regime was dominant model with x = 8, § = 0.05, g = —0.001, and g, = 0. Simulated mutational parameters
were ¢ =35, =15 y=0.15 m=1, and ¢=0. Diploid population size N.=10,000. (B) The same as (A) for 1,000 simulations where N, =500.
(C) Derived from the same simulations as (A), the joint distribution of the frequency of allele size 7 versus time is shown. This allele is the next
most-fit allele according to the modeled selective regime. (D) The fitness surface used in the simulations underlying (A-C).
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Fic. 3. The demographic model for FRDA inference. Outer trees indicate population size. Inner shaded trees represent the frequencies of LN and E class
alleles. Parameters t;, (bottleneck time) and t,. (time of LN class origin) were drawn from uniform prior distributions before the start of each simulation.
The relationship between these parameter values distinguished between two historical possibilities. When t, > ty, (left), the bottleneck occurred before
the emergence of the first LN allele. In this case, the LN and E alleles observed in Northern Africa on the same haplotypic background as European LN
and E alleles can only be explained by back-migration to Africa (arrow). When t. < t;, (right), LN emergence takes place in Africa and is subsequently
carried to Europe by members of a founding population. Note that only simulations where LN alleles survived to modern day (t = 0) were retained and
that the postdivergence African population was not simulated. Coalescent simulation was used to simulate starting distributions of genetic variation;
forward simulations as detailed here were used to progress from time t. to t=0.

figure 2A and G, we can intuit the chronology of selective
effects resulting from the topology of the multiallelic fitness
surface (fig. 2D). Initially, the frequencies of both alleles
increase because the large fitness penalty imposed on alleles
of size >8 by threshold effect § = 0.05 rapidly eliminates these
alleles from the population. After ~ 50 generations, how-
ever, only alleles of size <8 remain and the gradient param-
eter g = —0.001 begins to slowly eliminate alleles of size < 7.

The Evolution of Friedreich’s Ataxia and Its Causative
Microsatellite

To demonstrate the utility of the fitness models described
here, we applied the recessive model to inference of param-
eters concerning the origin and selective regime of the human
disease Friedreich’s ataxia (FRDA). FRDA is caused by the
hyperexpansion of a GAA repeat in the first intron of the
autosomal gene frataxin (FXN; Campuzano et al. 1996) and is
the most common inherited ataxia among individuals of
Western European ancestry (Pandolfo 2008). Four size-based
classes of GAA allele are generally identified: short normal
(SN) with allele size <12, long normal (LN) with allele size
between 12 and 33, premutation (P) with allele size between
34 and 60, and expanded (E) with allele size >60. Affected
individuals are homozygous for an E allele; age of onset and
severity of the disease increase with the size of the smaller
allele in affected genotypes (Durr et al. 1996). Patterns of
linkage disequilibrium (LD) with nearby SNPs support the
hypothesis that a single 18-repeat allele (and the LN class
with it) originated from a rare doubling mutation of a
9-repeat allele (Cossee et al. 1997; Monticelli et al. 2004).
Subsequently, LN alleles likely proliferated via ordinary muta-
tion (Montermini et al. 1997), eventually generating larger P
alleles that are vulnerable to hyperexpansion (size > 34).
E-class alleles mutate ~85% of the time and while the expan-
sion/contraction ratio is even in females, nearly all mutations
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of E alleles in males are contractions (Pianese et al. 1997). The
geographic distribution of non-SN alleles and analyses of LD
suggest that a unique SN-to-LN mutation took place in Africa
(Colombo and Carobene 2000). Based on measures of LD in
modern Europeans, one study dated the origin of the first LN
allele at 682 + 203 generations ago (Colombo and Carobene
2000). However, the authors acknowledge this may be an
underestimate. Their method assumed equilibrium popula-
tion dynamics, but migration from Africa to Europe incurred
a population bottleneck that would have slowed decay of LD,
thereby skewing the estimate of allele age towards more
recent times. In our simulation-based inference, we allowed
both African and European origins of the LN class to be
simulated (fig. 3).

Posterior point estimates and 95% credible intervals for all
parameters of interest are found in table 1, whereas graphical
comparisons of prior and posterior distributions for each es-
timate are shown in supplementary figure S3, Supplementary
Material online. Our median estimate of the age of the anom-
alous SN-to-LN doubling event is 1,494 generations ago with a
credible interval of 840-2,593 generations ago. Figure 4 shows
the estimated fitness surface of the causative GAA repeat
assuming median values of § and g, from posterior distribu-
tions. After normalizing the fitness surface by assigning a fit-
ness of 1.0 to all genotypes with at least one allele less than 34
in size, the relative fitness of the most deleterious genotype
(1,500/1,500) is 0.105. All genotypes in which both alleles are
of size > 34 have relative fitness < 0.984. Despite very low
fitness of affected genotypes, the low frequency of E alleles in
the observed Western European population and the recessiv-
ity of the disease suggest that the selective toll of FRDA is
minimal. This expectation was confirmed by additional simu-
lation; across 1,000 simulations using median parameter esti-
mates, maximum realized genetic load was only ~1.2e—04
(supplementary fig. S4, Supplementary Material online).
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Table 1. Prior Distributions and Posterior Estimates for Parameters Relevant to the Microsatellite Causative of Friedreich’s Ataxia.

te ty, Selection Mutation Population Growth
g 5 ¢ v v o
Prior (—4,000, —475)  (—4,000, —1,000)  (—0.0015, 0) (0, 0.04) (45, 7) (15 4) (0.05 0.4) (—0.003, 0)
Posterior
Median —1,494 —2,645 —0.0006 0.0157 6.27 2.74 0.17 —0.0016
2.5 percentile —2,593 —3,705 —0.0012 0 5.66 1.98 0.1 —0.003
97.5 percentile —840 —1,656 0 0.028 6.93 3.7 0.31 —0.0001

Note—All prior distributions were uniform on the specified interval. In addition, the listed priors are narrower than those used for the first 10,000 simulations.

Relative Fitness

1500 1

1000

500 -

34 | : E—
| [
34 500 1000 1500

Fic. 4. Estimate of the fitness surface for the GAA repeat that causes
Friedreich’s ataxia. This estimate is based on median selective parameter
values from their posterior distributions. The solid black lines are drawn
at allele size 34. We assumed that all genotypes with at least one allele of
size <34 had a relative fitness of 1. The least fit genotype on the graph,
1,500/1,500, has an estimated fitness of only 0.104.

Approximate posterior densities on the mutational par-
ameters ¢, ¥, and y were relatively narrow (table 1; supple-
mentary fig. S3, Supplementary Material online). Using the
median estimates of these parameters to calculate
allele-specific rates of pstr, we estimate that alleles <size
12 mutate at rates < 1e — 03. However, alleles of size >12
were inferred to be extremely mutable, peaking at p1sr 2>~ 0.1
for alleles of size >24. These results suggest that modeling
allelic-specific mutation rate is an important part of charac-
terizing selection targeting microsatellites.

Population-Level Characteristics of Microsatellite
Selection

We quantified distance between the starting distribution of
allele frequencies and those at mutation-selection balance as
A nsac (see Material and Methods). For all selective regimes
tested (table 2), regression of d on A s, and cost of selection
C on A e Were significant (P < 1e — 05). Values of r* asso-
ciated with regression analyses (table 2) suggest that A, is
an important determinant of both the cost and duration of
selection in a population. Interestingly, the influence of A ¢,

Table 2. Simulated Selective Regimes and Coefficients of
Determination for Regression of C and d on A e

Regime Model X g 8u 0 s

Con don

Amsat Amsat

Al Additive 11 —-0.01 -0.01 0 0.74  0.56
A2 Additive 11 —-0.05 -0.05 0 059 0.29
M2 Multiplicative 11  —0.05 —0.05 0 0.64 038
D1 Dominant 1 —0.01 —0.01 0 036 043
R1 Recessive 1 0 —0.01 —0.025 074 0.77

on the cost of selection is largely independent of selective
strength. Comparing additive regimes A1 and A2, the rate
at which C increases in response to increases in A, is
identical for both scenarios, despite 5-fold greater values of
g and g, in regime A2 (P =0.915; analysis of covariance: H:
slopes identical; fig. 5A). Although the intercepts of the
best-fit lines for regimes A1 and A2 are significantly different
(P=0.021), it is visibly evident that the average increase in C
associated with regime A1 is very minimal (fig. 5A). These
results agree with those for diallelic loci, where, except for very
strong selection, increases in selective strength do not affect C
(Haldane 1957). Different models of microsatellite selection
can lead to selective events with very different characteristics
(fig. 5B). For example, dominant and recessive selective re-
gimes produced selective events of greater duration than
those of additive and multiplicative selection regimes. In add-
ition, populations evolving under the multiplicative regime
M2 obtained mutation-selection equilibrium in roughly half
the time of populations evolving according to selective
regime A2, despite identical parameter values. Finally, for all
selective regimes simulated, greater than 70% of replicates fell
to the left of the hard sweep line in figure 5B. This region of
the graph corresponds to soft selective sweeps on SNPs,
where the starting frequency of the beneficial variant is
>1/2Ne.

Discussion

The Role of Mutational Complexity in Genomic Scans
for Selection

Standard genomic scans for selection assume that natural
selection is the only locus-specific force active in the
genome. The effects and/or rates of mutation, recombination,
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Fic. 5. Cost and duration of microsatellite selection. (A) Regression of log C on A . for additive regimes A1 and A2 (table 2). The results of 250
deterministic simulations are shown. The only difference between replicates of the same regime was the starting distribution of allele frequencies, which
was generated using neutral coalescent simulation. A, quantifies the difference between starting allele frequencies and those at mutation-selection
balance. Best fit lines for both regimes are drawn. (B) Duration of selection versus cost of selection for regimes R1, D1, A2, and M2; 250 deterministic
replicates each. The dashed line is drawn from deterministic simulations of a hard, SNP-based selective sweep (dominance coefficient h = 0.5). The line is
interpolated but based on thousands of simulations, each with a different value of s. Two values of s are indicated on the dashed line.
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Fic. 6. Results from 250 independent simulations each of additive
selection on a microsatellite, a soft sweep (po, on the interval [0.1,
0.2]), or a hard sweep (po = 1/2N.), where py is the starting frequency
of the beneficial SNP variant. The y-axis plots g/ Tinia, Where final
nucleotide diversity () was calculated from a sample of n=100
chromosomes either at the time of fixation of the beneficial variant
(SNP selection) or when mutation-selection-drift equilibrium was
achieved (microsatellite selection). In all selection scenarios, the target
of selection was located at the center of a 1Mb sequence. Box plots
summarize the results from simulations of microsatellite selection in
non-overlapping 10 kb windows (rectangles are interquartile distances).
Colored lines plot the mean value of 7wgna/Tinikal across simulations for
soft sweep (orange) and hard sweep (blue) simulations.

and demography are assumed to be homogeneous across the
genome. This paradigm is attractive because it implies that
anomalous patterns of genetic diversity must be attributable
to the action of natural selection. However, although genomic
scans have identified a handful of loci clearly subject to
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natural selection in humans, meta-analyses of genomic
scans in humans do not yield ready consensus (Akey 2009).
One reason for this is likely the characterization of genomes as
a monolithic sequence. Methods that ignore interlocus het-
erogeneity caused by factors other than natural selection bear
reduced statistical power to detect selection and could suffer
elevated false positive rates. In particular, studies that differ in
terms of sample, sample size, markers, and so forth will often
yield distinct or conflicting results.

Here, we focused on a common source of heterogeneity
that is seldom considered: frequent, recurrent mutation.
We used microsatellites as a model form of variation for
this purpose. Implementing our models of direct selection
on microsatellites revealed the danger in assuming that
high-density SNP data are capable of detecting selection at
non-SNP variants. In figure 5, the majority of simulated
selective events targeting microsatellites fall to the left of
the line denoting a starting frequency of 1/2N. for SNP
selection. In other words, selective events targeting microsat-
ellites will frequently resemble soft sweeps on SNPs, which are
nearly impossible to detect using statistics based on the site
frequency spectrum (Pennings and Hermisson 2006b).
Indeed, simulations of linked diversity in the case of direct
selection on a microsatellite corroborate the analogy to soft
sweeps; soft sweeps and direct microsatellite selection gener-
ate minimal selective footprints in their wake, at least as
measured by summaries of the site frequency spectrum
(fig. 6). In general, this is most likely due to the fact that
recurrent mutation causes an advantageous microsatellite
allele to become associated with a variety of haplotypic
backgrounds.

Pennings and Hermisson (2006a, 2006b) developed a
model of positive selection that did include recurrent muta-
tion (following an infinite alleles model) and found that
resultant soft sweeps were detected with high statistical
power using measures of LD. The authors attributed this
power to the fact that each individual mutation to the
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beneficial allele was likely to bring with it a distinct ancestral
haplotype whose genetic associations (LD) were unlikely to
decay during the selective period. Though it warrants further
investigation, there are several reasons to suspect that the
encouraging results of Pennings and Hermisson (2006b)
may not hold for the detection of microsatellite selection:
1) favored microsatellite alleles will frequently be drawn
from standing variation, suggesting that selected alleles will
already lie on genetic backgrounds of partially decayed LD; 2)
the population mutation rate of microsatellites, 0 = 4N,
will generally be much higher than the values considered by
Pennings and Hermisson (20062, 2006b), leading to very
frequent recurrent mutation; 3) back mutation, ignored by
Pennings and Hermisson (2006a, 2006b), will be common at
microsatellites, and 4) considerable variation in allelic fitness
may often exist at non-neutral microsatellite loci, which can
undermine the effectiveness of tests for selection based on LD
(Pennings and Hermisson 2006a).

In general, lessons learned from studies based on the
infinite sites or infinite alleles models of mutation will not
hold for microsatellites and other genetic variants created by
complex mutation. Therefore, it seems prudent to develop
models of selection and mutation tailored to the peculiarities
of these variants. Otherwise, even strong instances of selec-
tion on many forms of genetic variation that are less com-
monly considered will be difficult or impossible to detect.

Detecting Microsatellite Selection

The complex nature of multiallelic selection makes detecting
evidence of natural selection at microsatellites a challenging
task. As discussed earlier, the standard genomic scan for
selection will generally be a poor approach for detecting
microsatellite targets of selection. Furthermore, the absence
of genome-wide microsatellite data currently precludes full
genomic scans for microsatellite selection [though see
Gymrek et al. (2012)]. Yet, we believe testing candidate micro-
satellites for evidence of selection provides one way forward.
In this sense, testing for microsatellite selection may actually
prove an easier task, since microsatellite loci are well defined
while genomic scans for positive selection proceed under
the assumption that all nucleotides could be of adaptive
consequence. Also, a locus-specific test of microsatellite neu-
trality should be helpful to empiricists, where the presumed
neutrality of microsatellite markers is rarely tested.

One approach to testing candidate microsatellites for
selection is to embrace their potential complexity and use
simulation based inference procedures. We have demon-
strated that a simple implementation of ABC inference
using our models and simulation algorithm was sufficient
to provide novel insights regarding evolution of the micro-
satellite underlying Friedreich’s ataxia (discussed later).
However, direct selection on a microsatellite and selection
on a tightly linked SNP both cause reductions in microsatellite
variation (Slatkin 1995). Thus, full implementation of our
models in the inference of microsatellite selection requires a
means to distinguish between direct and linked selection.
One possibility is to examine levels of linked diversity in
sequence flanking the subject microsatellite. Since most

instances of microsatellite selection appear most similar to
selection on standing SNP variation (fig. 5), direct microsat-
ellite selection should most often reduce variance at the
microsatellite while leaving a minimal selective footprint in
linked sequence diversity (fig. 6).

The Cost and Duration of Microsatellite Selection Are
Dependent on Several Factors

A recent study of experimental evolution unequivocally
demonstrated that rapid adaptive responses are possible
when the selected target is a repetitive element with high
mutation rate (Vinces et al. 2009). This result supports
hypotheses that microsatellites provide reservoirs of poten-
tially adaptive alleles and that frequent recurrent mutation
provides the opportunity for rapid adaptive response to
environmental change (Kashi et al. 1997; King et al. 1997;
Trifonov 2004; Kashi and King 2006; King and Kashi 2009;
Gemayel et al. 2010). Yet, it is premature to claim that re-
petitive elements such as microsatellites are truly ubiquitous
agents of efficient adaptive change; their capacity as drivers
of adaptive change appears contingent on several factors.
First, the efficiency of adaptive response is dependent upon
the selective regime imposed by ecological change. We
found that 99% of the replicates of microsatellite selection
under regime A1 take longer to reach equilibrium than those
of regime A2. Yet there is not a significant difference be-
tween initial variance in allele size in the A1 and A2 repli-
cates (P =0.643). In other words, the difference in efficiency
of adaptive responses demonstrated by A1 and A2 replicates
is not due to insufficient accumulation of standing variation
at the selected locus but the relatively flatter fitness surface
under scenario A1. As another example, consider the sub-
stantial difference in the efficiency of selection between re-
gimes R1 and M2. While the duration of selection is <200
generations for all replicates of M2 selective events, it can
take >1,500 generations to obtain mutation-selection bal-
ance under the R1 regime (fig. 5B). Second, efficiency of
the selective response of a microsatellite is dependent on
the starting distribution of allele frequencies. For both A1
and A2 scenarios, replicates with the highest selective costs
(fig. 5A) and longest durations of selection were also among
the set of replicates with the highest values of A, (fig. 5A).
In many of these cases, the most fit allele was not present
in the population at the start of selection. Thus, the accu-
mulation of standing variation at a microsatellite prior to
environmental change will only lead to a more efficient
selective response if the new selective regime selects for al-
leles in the vicinity of the current allele distribution. Some
hypotheses that advocate the efficacy of selection on repeti-
tive elements do make this very assumption, such as the
“tuning knob” model of Trifonov (2004). Finally, as shown in
figure 2B, small population size can lead to an appreciable
probability that a population will segregate the most bene-
ficial allele at near-zero frequency despite high rates of
mutation. This suggests that potential efficiencies of adap-
tation via microsatellite will be difficult to obtain in small,
imperiled populations.
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Inferring the Origin and Selective Regime of
Friedreich’s Ataxia

Our estimated date for the anomalous SN-to-LN mutation
is more than double that of a previous estimate (Colombo
and Carobene 2000), which was calculated as a simple func-
tion of LD and recombination fraction at several linked loci
(Risch et al. 1995). As the authors discussed, however, their
estimate may be biased toward more recent estimates.
Indeed, we believe a substantially more ancient estimate
of LN emergence is supported by a variety of evidence.
First, near-perfect LD with nearby variants (Cossee et al.
1997; Monticelli et al. 2004) and a noticeable gap between
observed frequency distributions of SN and LN alleles
(Monticelli et al. 2004) support the hypotheses that: 1) the
current pool of LN, P, and E class alleles is derived from
a single, anomalous mutation of an SN allele and 2) broaden-
ing of the SN allele range by standard mutation has
not contributed to the current pool of LN alleles. We incor-
porated these hypotheses in our inference procedure by
rejecting any simulation in which all descendants of the
single, initial LN allele were lost. In this case, we found that
it is nearly impossible to generate LN and E frequencies
comparable with empirical frequencies in less than 1,000
generations, even when mutation rate of LN alleles was
very high. Only two of the 500 best simulated samples
used to compute posterior distributions had t. > —1, 000.
Second, E class alleles are limited to Northern Africa,
the Middle East, and Western Europe. Coupled with the
hypothesis of a single LN origin, this fact recommends the
parsimonious hypothesis that LN emergence took place
somewhere in Northern Africa and subsequently spread
with immigrants to the Near East and Europe. If a
Northern African origin of the LN class is true, it necessitates
that the mutation occurred >2,000 generations ago, as the
Eurasian expansion likely took place on the order of 40 kya
(Liu et al. 2006). On the other hand, we interestingly
found that 93% of the best fitting simulations had
te > t,—that is, LN emergence took place in the bottle-
necked European population (supplementary fig. S3,
Supplementary Material online). If true, this historical hy-
pothesis necessitates the back-migration of LN class alleles
to Africa (fig. 3).

To our knowledge, the fitness surface presented in
figure 4 is the first estimate of its kind for a microsatellite
that causes a human trinucleotide disorder. The topography
of this surface agrees with clinical observations. First, decreas-
ing fitness with increasing size of the smallest E allele in a
genotype (i.e, negative g,) agrees with the observation that
decreased age of onset and increased severity of symptoms
are correlated with the size of the smaller allele in affected
individuals (Durr et al. 1996). Second, a positive value of &
agrees with the fact that all individuals with two E alleles
experience some impairment. Relative fitnesses of genotypes
in which both alleles are >1,100 repeats are very low
(<0.35). However, the occurrence of these genotypes in
nature must be very rare. Using standard formulas for
expected homozygosity and conditional probability, the
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probability of a 1,100+/1,100+ genotype is only

E{freq. 1,100+ /1,100+ genotype}
= P(size > 1,100)
= {P(size > 1,100|E) P(E)}2
= (0.095 x 0.01)> = 9e — 07,

where P(E) is the marginal probability of an E class allele. Thus,
we expect only one in 1.1 million people of European ancestry
to carry these highly deleterious genotypes. Although natural
selection acts upon variation at the GAA repeat in FXN, it has
had very minor impact on the evolution of the microsatellite
relative to mutation and drift (supplementary fig. S4,
Supplementary Material online).

We inferred remarkable heterogeneity in mutation rates
for the FXN microsatellite. Although SN alleles are predicted
to mutate within the range of mutation rates generally cited
for microsatellites (107% to 10~%), the median estimate of
w for larger LN alleles was on the order of 10~". The absence
of empirical examples of LN alleles on more than one haplo-
typic background as well as the discontinuity in the observed
frequency distribution between SN and LN class ranges sup-
port the idea that SN alleles mutate quite slowly. If SN alleles
mutated at very high rates, they would likely invade LN allele
space thereby linking LN alleles to a diversity of haplotypic
backgrounds. Also, our simulations indicate that a very high
mutation rate of LN alleles is required for the rapid increase in
frequency of LN alleles from 1/2N, to 0.1675 (even in 1,000+
generations).

Although the qualitative patterns implied by our param-
eter estimates seem reasonable, the absolute quantitative es-
timates presented here should be treated with caution. For
example, these estimates possess little value if the seemingly
well-supported assumption that there was a single LN origin
does not hold. Furthermore, our model of the European
bottleneck (fig. 3) overlooks the fact that the colonization
of Europe and other regions likely included serial bottlenecks
(Liu et al. 2006; DeGiorgio et al. 2009). Our main motivation
for including this example was to point out the potential
value of our models and simulation algorithm to population
genetic inference. Indeed, we believe that the analysis of
the FXN locus that used African and Eurasian samples as
well as more detailed summary statistics could provide a
high-resolution portrait of the evolution of Friedreich’s
ataxia and its causative locus.

Extending Models of the Fitness Surface to Other
Multiallelic Variants

Our models could be applied to other multiallelic variants.
CNVs are polymorphisms in the number of repeats of 1kb to
1 Mb DNA segments. Recently, CNVs have been implicated in
disease and other phenotypic variation (Cooper et al. 2007;
Nair et al. 2008), most likely due to differences in dosage of
genes contained within the repeated segments (Stankiewicz
and Lupski 2010). The mutational mechanism leading to the
generation and variation of CNVs is far from settled (Hastings
et al. 2009). Nevertheless, CNVs resemble microsatellites in
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several ways. They are repetitive elements that mutate
in a complicated manner and whose allele size may affect
fitness. CNV analogs to the models reported here could
similarly be used in inference regarding selection on these
variants, which are of increasing interest to the human
genetics community. Although selective models could be
ported directly, construction of a realistic mutational model
would likely be difficult. However, a variety of mutational
models could be combined with the selective models
reported here to enable simulation-based investigation of
the population-level consequences of different mutational
mechanismes.

Materials and Methods

Modeling Friedreich’s Ataxia and Inferring Parameters
of Interest

In modeling FRDA evolution, we assumed the following:
1) recessive model of natural selection; 2) key allele x = 34;
3) effective population size of the affected, modern day
Western European population is N = 10,000; 4) an historical
demographic model in which an African population of
N, = 10,000 gives rise to a bottlenecked founding population
that undergoes exponential population growth at rate «
(fig. 3; parameter ty, specifies the time of the bottleneck);
5) no selection against allele sizes <34; 6) g, < 0, that is,
the fitness of alleles of size greater than 34 (key allele size)
could only decline with increasing allele size; 7) single origin
of an LN allele at size 18; 8) mutation of SN and LN alleles
follows the mutation model outlined earlier; 9) gender-
specific differences in hyperexpansion mutations follow a
50/50 mixture model of male and female mutational distri-
butions (Pianese et al. 1997); 10) P and E alleles hyperexpand
with probability 0.85; and 11) with probability 0.15, E alleles
undergo no change and P alleles are subject to normal
mutation probabilities.

We used approximate Bayesian computation (ABG;
Beaumont et al. 2002) to estimate parameter values of inter-
est. Frequencies of SN and LN alleles were estimated from
400 chromosomes sampled from Europeans in two studies
(Montermini et al. 1997; Monticelli et al. 2004), while E fre-
quencies were estimated from 332 chromosomes sampled
from Europeans in two separate studies (Durr et al. 1996;
Pianese et al. 1997). Following the ABC paradigm, we esti-
mated parameter values by comparing empirical frequencies
to those generated by simulation.

For each simulation, we drew random values of parameter
te—the emergence time of the first LN allele—as well as seven
other parameters: ty, @, g, 6, ¢, ¥, and y. Constant values of
¢=0 and m=0.95 were used. All prior distributions were
uniform (table 1). Note that the prior distributions for t,
includes more recent time points that that of t,. This allowed
the emergence of the first LN allele to occur in the founding
European population rather than the ancestral African
population. Although haplotype data indicate that this is a
less parsimonious hypothesis, we allow simulation of this
hypothesis because it is possible that the first LN allele
emerged in the European population and back-migrated to

Northern Africa (fig. 3). To increase the efficacy of simulation
effort, we refined initial prior distributions based on the re-
sults of 10,000 pilot simulations. These narrower priors are the
ones listed in table 1. We ran 100,000 total simulations with
these priors. Each simulation began with a coalescent phase
(fig. 3). At time t,, a single SN allele was converted to a size 18
LN allele. Then, forward simulation following algorithm A
proceeded until t=0 (modern day); note, however, that N,
changed through time and that the postdivergence African
population pictured in figure 3 was not directly simulated. At
t=0, a sample of n =400 chromosomes was taken from the
population. 100,000 total simulations were run. We restarted
a replicate whenever all descendants of the single size 18 allele
were lost. Thus, all results are conditioned on survival of this
lineage as supported by linkage analysis (Cossee et al. 1997;
Monticelli et al. 2004). Empirical and simulated samples were
summarized using six summary statistics: total frequencies of
LN and E alleles and the proportion of E-class alleles found on
the size intervals (60, 500], (500, 700], (700, 900], and > 1,100.
Observed values of these summary statistics were 0.1675, 0.01,
0.146, 0.17, 0.293, and 0.095, respectively. We retained all
simulated samples and used weighted local linear regression
(Beaumont et al. 2002) with a tolerance of 0.005 (0.5% of
simulations) as implemented in the R package abc (Gsillery
et al. 2012) to estimate approximate posterior distributions
for the parameters of interest. Parameters were
log-transformed  for regression and back-transformed
postregression.

Characterizing the Effects of Microsatellite Selection at
the Population Level

To compare population-level consequences of microsatellite
selection, we simulated representative selective regimes for
each of the four models described earlier (table 2; 250 repli-
cates each). Each replicate of a given selective regime began
with a random starting distribution of allele frequencies, gen-
erated using neutral coalescent simulation in MARKSIM
(Haasl and Payseur 2011). Simulations were deterministic
and mutation parameters were constant across all simulated
regimes: ¢ =5, =2, y=0.3, c=0, m=0.95. For each repli-
cate, we calculated the following: 1) the duration of selection,
d, which was the time in generations from the onset of
selection until mutation-selection equilibrium was achieved
(defined as the first generation when the sum of allele
frequencies at the selected locus was less than 1/2N, [al-
though these were deterministic simulations, this definition
of equilibrium implicitly assumes N, =10,000]); 2) the cost
of selection, C = Z‘:ﬂ 1 —w (Haldane 1957); and 3) the
distance between starting allele frequencies and those at
mutation-selection equilibrium, A, The last metric was
calculated as:

A = Z Z Ix — y|IDxI0y, (5)
xeS ye&

where S is the set of starting allele sizes, £ is the set of equi-
librium allele sizes, and p is allele frequency. Thus, A e
weights the distance between each starting and equilibrium
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allele by the product of their frequencies, pyp,, which can be
thought of as the probability that a starting allele of size x will
be replaced by an allele of size y by the time of equilibrium.
Finally, for comparison, we calculated d and C for hard select-
ive sweeps, where the beneficial single nucleotide variant
started at a frequency of 5e—05 (although these were deter-
ministic simulations, this starting frequency implicitly
assumes N, =10,000). In all simulations of SNP selection,
the dominance coefficient h=0.5. We simulated values of
the selection coefficient s ranging from 0.001 to 0.1 in incre-
ments of 0.001.

Comparing the Selective Footprints of Selection
Targeting SNP Variants versus Microsatellites

We ran 250 independent simulations each for three different
selective scenarios: 1) additive selection on a microsatellite
(g = gy = —0.05,8 = 0.);2) a soft sweep (p, on the interval
[0.1,0.2]); and 3) a hard sweep (po = 1/2N.), where py is the
starting frequency of the beneficial SNP variant. For each type
of selection, the 250 simulations started with an array of in-
dependently generated SNP variation along a 1 MB sequence
using MS (Hudson 2002) embedded in MARKSIM (Haasl and
Payseur 2011). We then added the beneficial SNP variant or
microsatellite to the exact center of the 1 MB sequence.
Next, we used forward simulations, in which the order of
events was selection, reproduction and recombination, and
mutation. Simulations finished when fixation of the beneficial
variant occurred (SNP-based selection) or the selected micro-
satellite reached mutation-selection-drift equilibrium. To
simulate reproduction and recombination, two chromo-
somes from those remaining after selection were chosen
at random to represent the “father” and two to represent
the “mother”. For each of these two pairs, we then tested the
pair for recombination (rate 1.25 cM/Mb). If recombination
was indicated, we then tested to see if a recombinant chro-
matid was inherited. If so, we chose the position of the break-
point at random. From each parent, then, an offspring
inherited a random recombinant or nonrecombinant chro-
mosome. Reproduction continued until the constant popu-
lation size of N, = 10,000 was reached. During the mutation
phase, new SNPs arose at random positions at a Poisson-
distributed rate of 00125 (10° bases x u = 1.25e — 08).
Microsatellites mutated according to the logistic model
described in this article with ¢ =5, =2, y=0.3, c=0, and
m = 0.95. For both soft and hard sweeps, selection parameter
s =0.05 and dominance parameter h =0.5.

Supplementary Material

Supplementary figures S1-54 are available at Molecular Biol-
ogy and Evolution online (http://www.mbe.oxfordjournals.
org/).
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