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Abstract

Reconstruction of the past is an important task of evolutionary biology. It takes place at different points in a hierarchy of
molecular variation, including genes, individuals, populations, and species. Statistical inference about population histories has
recently received considerable attention, following the development of computational tools to provide tractable approaches to
this very challenging problem. Here, we introduce a likelihood-based approach which generalizes a recently developed model for
random fluctuations in allele frequencies based on an approximation to the neutral Wright—Fisher diffusion. Our new framework
approximates the infinite alleles Wright—Fisher model and uses an implementation with an adaptive Markov chain Monte Carlo
algorithm. The method is especially well suited to data sets harboring large population samples and relatively few loci for which
other likelihood-based models are currently computationally intractable. Using our model, we reconstruct the global population
history of a major human pathogen, Streptococcus pneumoniae. The results illustrate the potential to reach important biological
insights to an evolutionary process by a population genetics approach, which can appropriately accommodate very large

population samples.
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Introduction

Phylogenetic analysis has become a central component of
biology, maturing from simple analyses of presences and
absences of morphological characters in the early days to
today’s sophisticated mathematical and computational ma-
chinery that aims to infer the course a particular evolutionary
process has taken place, from molecular observations.
Because evolutionary processes happen at various levels of
a hierarchy of molecular variation, including genes, individ-
uals, populations, and species, the models need to be adapted
to the specific purpose at hand. In contrast to standard
models for phylogenetic inference, models for reconstructing
population histories from molecular data have remained
somewhat overshadowed, at least partly due to the compu-
tational challenges associated with a likelihood-based
inference in this context. These challenges arise from a multi-
tude of processes, including genetic drift, mutation, and mi-
gration, that shape the genetic variation in present-day
populations.

When attempting to reconstruct population histories, the
focus is on the need to model population trees, which might
differ considerably from gene trees (Pamilo and Nei 1988;
Maddison 1997; Degnan and Rosenberg 2009). From a popu-
lation genetics perspective, coalescent theory provides in
principle the necessary framework for specification of prob-
abilities to the observed outcomes of combined evolutionary

and demographic process (Ewens 2004; Hein et al. 2005).
However, despite considerable computational advances,
coalescent-based likelihood inferences remain in practice in-
tractable when large population samples are observed
(Wilson et al. 2003; Cornuet et al. 2008; RoyChoudhury
et al. 2008; Heled and Drummond 2010; Bryant et al. 2012).

Alternatively, the population tree inference may be carried
out by approximating changes in allele frequencies using dif-
fusion approximations (Ewens 2004). Because the sufficient
statistics emerging under such a model correspond to the
counts of alleles observed in different populations, instead
of individual genotypes, even very large samples from the
populations can be efficiently handled in terms of computa-
tional complexity. The first such methods were introduced
in the 1960s and 70s (Edwards and Cavalli-Sforza 1964;
Cavalli-Sforza and Edwards 1967; Felsenstein 1973;
Thompson 1975; Felsenstein 1981). They are based on
approximating the diffusion limit of a Wright—Fisher model
with Brownian motion after a suitable transformation of the
frequencies. A similar model was introduced also by
Nicholson et al. (2002) for assessing the level of differentiation
in structured population, but it considered only star-shaped
trees for the history of populations.

A related diffusion-based approximation for inferring the
demographic history of multiple populations was proposed
by Gutenkunst et al. (2009). They compute numerically
the expected joint frequency spectrum with a biallelic
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Wright—Fisher diffusion, extending earlier work by Williamson
et al. (2005) to multiple populations. The numerical approxi-
mation to the diffusion is computationally intensive and lim-
ited to at most three populations.

We recently introduced an approximation to the neutral
Wright—Fisher diffusion model for allele frequencies at un-
linked single nucleotide polymorphism (SNP) loci using a
Bayesian hierarchical modeling approach (Sirén et al. 2011).
It is based on the univariate Balding—Nichols model, which
was originally developed in the context of equilibrium under
migration and genetic drift in island populations, but cur-
rently widely used for modeling the effects of genetic drift
on allele frequencies in subdivided populations (Balding and
Nichols 1995; Falush et al. 2003; Gaggiotti and Foll 2010). The
model applies to situations where the main source of vari-
ation between populations is genetic drift, that is, random
fluctuations in allele frequencies occurring through demo-
graphic processes. It was therefore explicitly assumed that
the genetic variation observed in the current populations
had been present already in the common ancestral popula-
tion, and consequently, the possibility that novel mutations
have arisen following the split of the ancestral population was
ignored.

Here, we generalize the pure drift model to account for the
effect of mutations by deriving a corresponding approxima-
tion to the infinite alleles Wright—Fisher model (Kimura and
Crow 1964; Ewens 2004). The model is derived for situations
where genetic drift is the main source of genetic variation
between populations, but the effects of mutations can not be
ignored. As a special case of the model, a multi-allelic version
of our earlier pure drift model for SNP loci arises, when the
mutation rate is set equal to zero. To make statistical infer-
ence about the model parameters and the evolutionary dis-
tances between populations, we have implemented an
adaptive Markov chain Monte Carlo (MCMC) algorithm to
generate samples from the posterior distribution. Using the
introduced framework, we reconstruct the global population
history of a major human pathogen, Streptococcus pneumo-
niae. This illustrates well the potential of our approach to
provide important biological insights to an evolutionary pro-
cess by a population genetics approach that can appropriately
accommodate very large population samples.

Materials and Methods

Statistical Model

We consider a setting where individuals are sampled from
K distinct populations and genotyped at L unlinked loci to
allow for inference about the history of the populations. The
genetic relatedness of the populations is described by a
rooted bifurcating tree topology T representing the order of
divergence from a common ancestral population. The leaves
of the topology T correspond to the K populations, whereas
the inner nodes correspond to ancestral populations. Each
branch c of T is associated with two parameters characterising
the population between split events: number of generations t,
and effective population size N.. When written without the
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subindices, we refer to these two quantities in general, with-
out reference to a particular pair of populations.

Let x denote the n x L matrix of genotypes of the
sampled individuals at L unlinked loci, where n is the
sum of the sample sizes from the K populations.
Throughout this work, we consider only haploid organisms,
but our model can equally well handle any ploidity with
the parameters transformed accordingly. We let x; € Z
denote the allele observed at locus | on row i in
X,i=1,...,n; I=1,...,L. Presence of alleles missing at
random in x will be appropriately taken into account in the
likelihood introduced later, however, in order not to unneces-
sarily complicate the notation, we abstain from an explicit
specification of the locations of any missing data elements.

We assume that the genetic variation within each locus
can be modelled with a neutral infinite alleles model (Kimura
and Crow 1964). The main consequences of this are that the
alleles are represented by positive-valued integer codes in-
stead of sequence level variation and that every mutation
event creates a novel allele. The model is based on a diffusion
approximation to the transition density of a neutral infinite
alleles Wright—Fisher model, whose properties have been the
subject of extensive study (Watterson 1976; Griffiths 1979b;
Ethier and Kurtz 1981). However, most of the research has
concentrated on the unlabeled version of the diffusion, where
the allele frequencies are ordered in descending order, and
which is less suitable for the analysis of multiple populations.
Griffiths (1979a) derives exact sampling distributions for a
number of scenarios, including a transient population and
two populations having a common ancestral population.
The results under the latter scenario have later been general-
ized by Watterson (1985) and Padmadisastra (1987). These
results could in principle be generalized to any number of
populations, but the exact formulae are complicated even for
three populations.

A model for the change of the allele frequencies along the
population tree T is built by assuming that each locus evolves
independently of the other loci given the parameters t, N, and
a mutation rate u. As stated earlier, each branch c of the tree is
associated with parameters t, and N,, but the mutation rate u
is assumed to be common to all branches. This does not
constrain the model as only two parameters or combinations
of them are identifiable in each branch under the infinite
alleles Wright—Fisher model. We use the relative time
7. = t. /N, and effective mutation parameter m.=uN, for
each branch ¢ in our model. The effective mutation param-
eter is related to the mutation parameter 6 = 2uN (or 8 = 4uN
if the effective population size is 2N) commonly used in popu-
lation genetics, but we have chosen not to use 6 as it seems to
be only partially identifiable.

Later, we simplify the notation by omitting reference to
any particular locus, as the same processes are applied to the
frequencies at all loci. The model extends the model intro-
duced in Sirén et al. (2011) by allowing for loci with multiple
alleles and letting mutation change the allele frequencies in
addition to the genetic drift. For the details of derivation of
the approximation and the relation to the Wright—Fisher
model, see the Appendix.
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Let S denote the set of alleles that were present with a
positive frequency in the root population and let P denote
those alleles that are not shared and have been created by
mutation at some point in the tree. The alleles in S are shared
indicating that they can have a nonzero frequency in all of the
K leaf populations, whereas the alleles in P are private in the
sense that they may only be observed within a subtree of
T. Such a division of the alleles is motivated by the notion that
the frequencies of shared alleles contain all the information
about the divergence times between populations under the
infinite alleles model (Griffiths 1979a). Note that the division
of alleles into the sets S and P is unknown, because samples
are available only for the leaf populations, but here we build
the model conditionally on them. Different strategies to esti-
mate the division are discussed along with other computa-
tional issues.

Each population node c of T, either observed or ancestral, is
associated with the frequencies Vs, and Vp, of alleles in S and
P, respectively. Here s, = (W51, ..., Wse) is @ vector of
(relative) frequencies for the r alleles in S and ¥ is a scalar
of the total (relative) frequency of alleles in P, so that
Ype + 2;21 Vs = 1. Using the standard definition in popu-
lation genetics, Vs, and Vp, are referred to as allele frequency
parameters and allele counts will be used to denote empiric-
ally observed abundances of alleles within a population
sample. By definition, Y, equals zero for the root
population c,.

To approximate the dynamics of the Wright—Fisher diffu-
sion process, we use a two-step Beta-Dirichlet model for the
allele frequencies. For each node c except the root, the con-
ditional distribution of the frequency of the private alleles ¥/p,
given the frequency Vppa() in the parent node pa(c) is
defined as

Ype | pra(c) ~ Beta(¢pcbpc, Ppc(1 — [ipc)), (M

where p, is the expectation of the distribution and ¢p,
controls the variance, which is given by

/’LPC(1 - I'LPC)
¢Pc +1

The frequencies of the shared alleles 1. have the condi-
tional distribution

(1 - ch)_1wSc | sz:, pra(C)a wSpa(c)
~ Dirichlet(¢s, jtsc1, - -

Var(ch | pra(C)) =

)
o Bsclhsar)s
where again g is the expectation and ¢, controls the
variance. The Beta-Dirichlet model is a natural generalization
of the Dirichlet models widely used in the literature for mar-
kers without mutation (Falush et al. 2003; Gaggiotti and Foll
2010). The parameters of the earlier two distributions are
chosen as

Mpc = 1— eirmn(‘l - WPpa(c))a (36!)
Yspatcy
Ksg =— > (3b)
> 11— pra(c)

Pc
O = ——i —1,and (3¢)
e = (1= up)(1 —e7)
me+1)(1 — e
. = ( 4 )( MPC) (3d)

1 — e~ (Mc+Nzc

to yield the same expectation and covariance structure as
obtained under the Wright—Fisher infinite alleles model.
Unfortunately, the complicated form of the parameters
does not provide any clear intuition about the dynamics of
the model. See Appendix for the properties of these distribu-
tions and their relation to the Wright—Fisher model. For the
frequencies s, in the root population ¢, we assume a
uniform distribution.

It should be noted that the Wright-Fisher model we are
approximating is time-reversible, which implies that the
placement of the root along the branches of the tree is
not identifiable. The root node in our model should
preferably be interpreted as an auxiliary parameter and any
indication about the placement of the root should
be viewed as an artefact arising from the approximations
used.

Assuming linkage equilibrium and that the genotyped
individuals represent a random sample from each of the
K populations, a product multinomial distribution is obtained
for the allele counts conditionally on the allele frequencies,
such that

L K

px|v) =[] [P | ¥re: ¥iso), (4)

I=1 c=1

where p(xfc) | Yipe, Wise) is the joint multinomial probability
of the allele counts x,(c) at locus I in sample population ¢, with
the allele frequencies now being indexed by the locus. Notice
that the remaining parameters in (1) and (2) are assumed to
be constant over the loci.

The earlier expressions for conditional distributions deter-
mine jointly a hierarchical model for the genotype data, which
reflects the degree of genetic relatedness among the sample
populations through the tree topology and the branch length
parameters. Our model can be completed with a Bayesian
formulation by assigning prior distributions to all the
unknown parameters. When analyzing real data, the prior
distributions can be chosen to reflect background informa-
tion about the quantities that the parameters represent.
However, in this work, we have simply used uniform distri-
butions on the interval (0, 1) for the time parameters t and
exponential distributions with mean 1 for the relative muta-
tion parameters m. These choices have been made to specify
weakly informative prior distributions and they should not
have any considerable effect on the resulting posterior infer-
ences. The exponential distribution for the mutation param-
eters is ensuring that the parameter stays within a realistic
range, as it might be weakly identifiable for some data sets.
Finally, the tree topologies would typically be assigned a uni-
form prior distribution as is done more generally in Bayesian
phylogenetics.
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Computation

We have implemented an Adaptive Metropolis (AM) algo-
rithm (Haario et al. 2001) to generate samples from the con-
ditional posterior distribution of T, m, and 1/, given a topology
T and the partition of the alleles to sets P and S. An adaptive
MCMC algorithm (Robert and Casella 2004) provides in gen-
eral a much more efficient approach to approximating pos-
terior distributions than a standard Metropolis—Hastings
algorithm, when parameters are moderately or strongly cor-
related and the correlation structure is unknown. The essence
of the AM algorithm is that the covariance matrix of the
Gaussian proposal distribution is modified during the algo-
rithm run based on the previous iterations, such that an ad-
equate level of mixing is acquired in the resulting Markov
chain. In our implementation, the parameters T and m are
updated jointly, whereas the allele frequencies i are updated
separately for each locus and population node. All of the
variables are transformed with logarithm or logit functions
before applying the Gaussian proposals.

Inference about the tree topology T poses a more difficult
computational challenge than the continuous parameters of
the model. Ideally, one would like to assign prior distribution
on the topologies and then make inferences from the
corresponding posterior distribution by utilizing algorithms
like the reversible jump MCMC (RIMCMC, Green 1995).
However, because the parameter spaces associated with the
topologies are partially different, the design of an efficient
algorithm is more complicated. Moreover, the adaptivity of
our AM algorithm would be lost in an RJMCMC algorithm
and, consequently, it would be much more computationally
expensive without a careful tuning of proposal distributions.
Alternatively, it is possible to compute approximate
marginal likelihoods from the output of MCMC for each po-
tential topology, or calculate approximate Bayes factors for
pairs of them (Newton and Raftery 1994; Kass and
Raftery 1995; Han and Carlin 2001; Lartillot and Philippe
2006).

Instead of approximating posterior probabilities for topol-
ogies through marginal likelihood estimates calculated from
the MCMC output, we have adopted in our numerical ana-
lyses a different approach similar to those widely used meth-
ods in phylogenetics that are based on estimating the
evolutionary distances between pairs of taxa, which is consid-
erably simpler regarding the computational effort. First, the
AM algorithm is used separately on each pair of sampled
populations. Second, we then compute the distance between
the two populations as the sum of relative times t because
the divergence from a common ancestral population. Finally,
we construct the tree topology by finding the unrooted
binary tree using the least squares criterion (see Felsenstein
2004, Chapter 11). As we do this separately for each sample
obtained from the posterior distribution of the pairwise dis-
tances, we get a measure of statistical uncertainty associated
with the topology by counting the relative number of times
each topology is the minimum scoring tree. Conditional on
any topology constructed in this manner, one can obtain
posterior inferences for its branch lengths directly from the
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MCMC samples by including the fraction of samples leading
to the particular topology.

In all of our analyses, the partition of the alleles to shared
and private was based on the observed alleles. If an allele was
observed in only a single population, it was assumed to be
private and otherwise shared. We tried other possibilities for
dividing the alleles, which could take the tree topology into
account, but they provided inferior results compared to this
choice.

Results

Analysis of Simulated Data

To test the validity of our model for inference in population
phylogenies, we simulated data using the Wright—Fisher in-
finite alleles model. The topology of the tree along with the
population sizes and numbers of generations are shown in
figure 1A and table 1. The mutation rate was fixed to
u=>5x 107> for all loci leading to an effective mutation
parameter m in the range 0.5-1.5. Allele frequencies were
simulated for 112 loci. The allele frequencies in the root popu-
lation were generated by simulating the Wright—Fisher model
for 2 x 10° generations in a population of 10> individuals
from a starting point with 10 alleles at uniform frequencies.
This ensured that the distribution of frequencies in the root
was close to the stationary distribution. For each of the popu-
lations, a sample of 200 alleles was taken at each locus.

We analyzed the simulated data with the number of popu-
lations considered simultaneously varying between 2 and 5.
First, we estimated the pairwise distances between each pair
of populations. These were obtained by running the MCMC
sampler with the corresponding populations and summing
the distances 7 to the root. The number of loci used varied
between 7 and 112. In this and other analyses, we ran two
independent chains for each combination of populations and
number of loci to ensure that the sampler converged prop-
erly. In all cases, the sampler was run for 5 x 10° iterations
with the first 10° iterations used as burn-in. The chains were
further thinned by collecting every 40th sample to get 10°
posterior samples for the estimation. The runtime of a single
chain for analysis of 7 loci was approximately 50 min using a
single core of a 2.6 GHz AMD Opteron processor. For larger
number of loci, the running time scaled linearly.

Figure 2 shows the posterior distributions of the pairwise
distances with varying number of loci. We note that the pair-
wise distances are underestimated even with 112 loci and the
50% posterior intervals do not include the correct values. This
is most likely due to the way of dividing the alleles into private
and shared, as it does not take account the possibility that an
ancestral allele might disappear from one of the populations.
In such cases, our procedure assumes wrongly that it is a novel
mutation. Nevertheless, the ratio of estimated distances with
112 loci to the correct values is in the range 0.8-0.91 for all
pairs of populations. Hence, the distance seem to converge to
the truth relative to each other, but the absolute values are
somewhat biased. The pairwise distances were also used to
infer the correct topology with the least squares approach
described earlier. Using 7 and 14 loci the correct unrooted
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Fic. 1. Correct and estimated branch lengths for the simulated data set. The length of each branch is proportional to the value of corresponding relative
time t parameter. (A) Values used in simulation, (B) posterior expectations from analysis using 7 loci, and (C) 112 loci.

Table 1. Parameter Values Used for the Simulated Data.

Branch? N T T

1 2.5 x 10* 400 0.016
2 1.5 x 10° 500 0.033
3 1.5 x 10% 300 0.02
4 1x 10 250 0.025
5 3x 10* 700 0.023
6 3x 10* 500 0.017
7 1% 10% 250 0.025
8 2 x 10* 300 0.015

*Number refers to the child node of the branch.

topology was recovered in 99.24% and 99.99% of the cases,
respectively. With 28 or more loci, the best tree had the cor-
rect topology in all of the posterior samples.

Next, we analyzed all of the populations simultaneously
with the correct tree topology using between 7 and 112 loci.
The AM algorithm was again run for 5 x 10° iterations with
the first 10° iterations used as burn-in. Figure 1B and C
show the posterior means of the branch lengths with 7 and
112 loci, respectively. Figure 3 shows the posterior means of
the branch lengths as functions of the number of loci used
along with the correct values. The estimates seem to get
reasonably close to the correct values in all other cases
except for the branch connecting population 5. The length
of this branch is the most difficult one to estimate because
the parent node of population 5 does not have another
observed population as a child.

We also analyzed two subtrees with populations (3, 4, 5)
and (1, 2, 3, 4). The distributions of branch length estimates
with varying number of loci are shown in supplementary
figures S1 and S2, Supplementary Material online. These
estimates appear to be much closer to the correct ones
than in the pairwise case or with all the populations
simultaneously.

Analysis of S. pneumoniae

Streptococcus pneumoniae is a major human pathogen
responsible for over 1 million deaths each year (O'Brien
et al. 2009). Colonization is the normal state in the life history
of S. pneumoniage, and disease only a rare outcome.
Depending on the sample, between 20% and 80% of individ-
uals are carrying S. pneumoniae asymptomatically at any time.
Historically, S. pneumoniae has been divided into strains by
serotype. Serotyping is a means of classification that uses the
major surface antigen of the bacterium to divide the popu-
lation into 93 strains. Geographic differences in the serotype
composition of the S. pneumoniae population were noted as
early as 1931, when Milam and Smiillie investigated the strains
isolated from an isolated tropical island (St. John, in the
United States Virgin Islands) and found them to be distinct
from those circulating in New York City (Milam and Smillie
1931). More recently, these differences have been studied in
detail. In general, the pneumococcal populations in Europe
and the United States are quite similar to one another in
terms of serotype composition, and distinct from the popu-
lations in South America, Asia, and Africa. The latter are simi-
lar to each other and characterized by a higher prevalence of
certain serotypes such as 1, 2, and 5 that are rare in European
and North American settings (Hausdorff et al. 2001).
Serotype has more recently been augmented by the greater
resolution offered by molecular epidemiology. Multi-locus se-
quence typing (MLST, Enright and Spratt 1998) is a com-
monly used typing method that genotypes strains at seven
loci. We wished to test whether the MLST data would sup-
port the geographical structuring previously described
(Hausdorff et al. 2001), and whether any geographically
defined populations are more divergent and distinctive
than others. Genotypes of isolates from samples collected
worldwide are publicly available in the MLST database at
URL http://spneumoniae.mlstnet/ (last accessed February 1,
2011). The MLST database contains allelic data for the
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Fic. 3. Posterior estimates of the branch lengths with different number of loci. Box plots of the posterior distributions for the branch lengths 7 from the
analysis of the simulated data using the correct topology. The number of loci used was 7, 14, 28, 56, and 112. The box depicts the 25% and 75% quantiles
and the whiskers depict the minimum and maximum among posterior samples. The lengths of the two branches 6 and 8 connected to the root are
summed, because the placement of the root is not identifiable under the infinite alleles model. The horizontal line depicts the value used in simulating

the data.

following seven housekeeping genes: arok, gdh, gki, recP, spi,
xpt, and ddl. Using data from Africa accessed on February 1,
2011, we reconstructed the intra-continental population his-
tory, based on three local populations representing East (347
isolates), South (388 isolates), and West Africa (1,130 isolates).
For each local population, the data were almost exclusively
derived from a single country. With these sample populations,
there are three possible rooted topologies and the MCMC
sampler was used to generate posterior samples of the par-
ameters for each of them. We ran two independent chains of
10° iterations for each topology to ensure that the MCMC
sampler had properly converged. The chains were thinned by
collecting every 80th sample, with 2 x 10° initial samples
excluded as burn-in. As expected, no differences appeared
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among the rooted topologies, due to the time reversibility
of the underlying infinite alleles model, and the independent
runs resulted in practically identical results for each topology.
Posterior summaries of the model parameters are given in
figure 4 for one of the three rooted topologies.

To reconstruct the global population history of S. pneu-
moniae, we considered each continent as a sample popula-
tion, with the following numbers of isolates available in the
database (data accessed on February 1, 2011): Africa (1,981),
Asia (1,553), Europe (5,029), Oceania (168), South America
(526), and North America (1,664). Here, we used the pairwise
approach based on 10° iterations, thinned to every 80th
sample, with 2 x 10° initial samples discarded as burn-in.
For each pair of populations, we ran two independent
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MCMC chains and obtained indistinguishable results, indicat-
ing that the sampler had converged properly. Trees were
constructed from 10,000 final posterior samples and the
two most frequent topologies are shown in figure 5.
Posterior expectations and 95% posterior intervals of the pair-
wise distances are given in table 2. We also generated a phylo-
genetic network in SplitsTree4 (Huson and Bryant 2006) to
visualize the relationships between populations. The network
was created from the posterior expectations of the pair-wise
distances using the neighbor-net method (Bryant and
Moulton 2004) and is shown in figure 6.

Extensive network structure is evident, with poor reso-
lution of the specific branching patterns of the continental
subpopulations. We suggest that this reflects recent migra-
tion. The length of the branches in figure 6 reflects drift, and
hence the amount of unique diversity accumulated in each
population. Even with extensive migration, the African sam-
ples are plainly highly divergent. Contrastingly, the European

sample lies at the end of a very short branch, possibly reflect-
ing concentrated sampling of this region in the database, and
extensive migration between this region and the rest of the
world.

Although the network shown in figure 6 reflects conflicting
signal, it does not preferentially weight those relationships
that are most well supported by the data. The two topologies
most frequently sampled from the posterior are shown in
figure 5. These clearly support the distinct nature of the popu-
lations found in South America and Asia, as previously re-
ported (Hausdorff et al. 2001), and also provides strong
evidence for the divergence of the African population con-
sistent with recent observations of the sequence variation in
the largest African carriage sample published to date (Donkor
et al. 2011). The North American, European, and Oceanian
populations are clearly closely related, and the only difference
between the two topologies is in the grouping of these popu-
lations, possibly reflecting conflicting signal arising from
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Table 2. Posterior Expectations (lower triangle) and 95% Posterior Intervals (upper triangle) for Pairwise Distances of Global Streptococcus

pneumoniae Populations.

Africa Asia Europe Oceania South America North America
Africa — 0.03-0.043 0.032-0.046 0.042-0.067 0.027-0.042 0.044-0.065
Asia 0.036 — 0.021-0.031 0.028-0.045 0.025-0.039 0.028-0.042
Europe 0.039 0.064 — 0.015-0.026 0.013-0.021 0.013-0.021
Oceania 0.054 0.06 0.02 — 0.02-0.035 0.021-0.036
South America 0.034 0.032 0.017 0.027 — 0.021-0.033
North America 0.054 0.034 0.017 0.028 0.026 —
H0.0010
Oceania Asia
N. America Africa
Europe
S. America

Fic. 6. Phylogenetic network from the pair-wise analysis of global Streptococcus pneumoniae populations. The network was generated in SplitTree4

program using posterior expectations of the branch lengths as the distances.

frequent intercontinental travel. However, it is consistent
with the observations regarding serotype compositions on
different continents referred earlier.

Discussion

Our likelihood-based method provides a considerable gener-
alization over the purely drift-based model introduced in
Sirén et al. (2011), extending the approach to data where
the effect of mutation needs to be explicitly considered. We
demonstrated the usefulness of this approach by an applica-
tion to a major human pathogen, S. pneumoniae, showing the
clearly divergent nature of the population circulating in Africa
from all other samples a distinction that was obscure using
historical serotyping data. We also found in our pairwise ana-
lysis considerable evidence for phylogenetic inconsistency, as
displayed graphically in figure 6, in particular among the
North American, European, and Oceania populations.

In the analysis of simulated data, the posterior estimates of
the parameters converged close to the correct values in most
cases, but some bias is evident in others. It should be noted
that the data were simulated under the exact Wright—Fisher
infinite alleles model, whereas our method is based on
approximating a truncated version of its diffusion approxima-
tion, and, therefore, minor bias in the results is expected.
Another source of possible bias is also the partitioning of
the alleles into the sets S and P. As the partition is obtained
by comparing the observed numbers of alleles in each popu-
lation outside the model, we are effectively modeling a con-
ditional version of the diffusion. This conditioning might
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change the dynamics of the diffusion in a way which could
result in biased estimates, although we have not studied it in
detail. However, we believe that the approach used in this
work should not cause any serious bias, as is shown by the
analysis of simulated data.

The model described here could be extended in several
directions. For example, the partitioning of the alleles into
shared and private could be included in the model. This
could in principle be achieved by utilizing generalizations to
Dirichlet distributions used in Bayesian nonparametrics (Hjort
et al. 2010). Also, the sampling model used in our study was
assumed to be basic random sampling, which may not always
be adequate, in particular for bacterial data from clinically
important organisms. Therefore, other sampling designs
could be considered and easily used with the corresponding
likelihood functions to extend the basic model.

Homologous recombination is a factor which needs to be
considered when modeling the evolution of many named
bacterial species. The extent to which recombination affects
inference will largely depend on the geographical scale of the
analysis. Recombination can cause difficulties in particular
under two different circumstances. First, when recombination
has occurred between different parts of the tree, the data
deviate from the vertical process of evolution in the allele
frequencies. When each locus is considered independently,
then recombination between populations is effectively equal
to migration event. It should be noted though that recom-
bination within a population only weakens linkage disequi-
librium between loci, if whole gene sequences are transferred.
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In addition, novel alleles brought by recombination
from some unsampled outgroup can be adequately modelled
in terms of mutation (as they generate new alleles).
Note that this would not be the case with explicit modelling
of sequence evolution, in contrast to the infinite alleles as-
sumption used here. Second, when recombination affects
only a part of a single gene sequence, novel alleles are likely
to be generated. How well a mutation model can approxi-
mate this effect remains unknown, but it will depend on the
ratio of mutation to recombination rate for the species in
question. However, the direct effect will follow from how
often a recombination has replaced a segment in the
genome, which is not expected to be very frequent for few
short segments such as those considered in the MLST data.
Estimates of mutation parameters may be biased by these
factors. The extent to which this is the case is a subject of
ongoing research.

A full model-based approach would be preferable for infer-
ring tree topologies instead of the estimation of pairwise evo-
lutionary distances as pursued here. However, it is inevitably
computationally more expensive than the current approach,
which at its present form requires considerable computa-
tional resources. We target to explore these possibilities
closer in future and also examine the accuracy of approxima-
tions to marginal likelihood based on posterior samples of
parameters conditional on a fixed topology. One possibility
could be to include the method as a part of an existing phylo-
genetic software package such as BEAST (Drummond and
Rambaut 2007), which already implements sophisticated
algorithms for traversing the space of trees. A free software
package implementing both the pure drift and infinite alleles
models is available for download at URL http://www.helsinki.
fi/bsg (last accessed November 6, 2012).

Supplementary Material

Supplementary figures ST and S2 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjournals.
org/).
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Appendix

Consider a locus with r alleles following Wright—Fisher model
in a population with fixed size N. Assume that the r — 1 first
alleles mutate to the rth type at rate m/N and no other
mutations occurs. This can be seen as a truncated version
of an infinite alleles model, where the r — 1 first alleles are

followed and the rth allele includes all other alleles. Let X, and
Yje = Xig/N,j=1,...,r, denote the number and the
relative frequency of allele j at generation t. In this model,
the alleles at generation t are obtained as a random
sample with replacement from the previous generation
t — 1. The numbers of different alleles have a multinomial
distribution conditional on the alleles of the previous
generation

X1t, A ,X1t |X1(t_1), ey X1(t_1) ~ N\ultinomial(N, T)t),
where 7, is a r dimensional vector with entries
Dy = 1—(1— %)(1 — 1//,@,1)) if j =r and
4 (1 =" otherwise.

Conditional on the frequency 1,, we get the expectation of

Ve as
B Y0) =1 = (1= ) (1 = %h0)

by using the rule of iterated expectation. Now letting t and N
go to infinity so that t/N — t the expectation becomes

E(Wrr | 1ﬁro) =1- e_m1(1 - er)’ (5)

where with slight abuse of the notation ,, refers to the
frequency at generation TN.

The conditional variance of v, given v, is obtained by
recursive application of the variance decomposition as

vesntva = (03 5)

i=0
X E(Yri | Yr0)(1 — E(Wri | ¥rr0))-

Assuming t and N large, this may be approximated as
an integral

Var(Yy: | ¥rr0)
t—1

~ 1- lﬁro/ e—(2m+1)"f\f1 (1
0

— e (1 — U))e™id
N e "N( 1ﬁo))e Z

I ) U e 2
=e — (e DN — eN(1 — ¥0))dz
0

_ o-me 15t 1 Vo
N

« (w —N(1 — wro)(e% — 1))

m+1
= eim%(‘l - WVO)
1— e_<’" + 1)% t— t—
g (T — (1= e (1 - ef))

— e (1 — Yy)
1— e*(m+1)l'
x (7 —e (1 = Yo)(1 — e_f)),

m+1
(©)

asN,t —> oo and tN — .
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The conditional mean and variance of ;. are easily
obtained for j =1,...,r — 1, as j; behaves like 1— ..
Thus

E(Wje | Y0) = e "o and

1— ef(m+1)r

Var(Y;. | Yjo) = e_WWm( —e "Y1 —e_T)).

m+1

Using similar techniques as with the variance, we
can compute the conditional covariance between ;, and
Ykesjok=1,...,r —1,as

72 —
Cov(Yje, Yur | Yo, Yro) = —Vjo¥koe™ """ (1 — ™)

and the conditional covariance between v, and v, as
COV(ths wrr | ij ‘Pro)
1— e—(m+ 1t
=e Yo (7 —e (1 = Po)(1 — er))-

m+1
Consider now the Beta-Dirichlet model specified in equa-
tions (1) and (2) with parameters (3). We show that this
model has same expectations and covariances as the model
described earlier. As yp. follows a Beta distribution it has
expectation

E(V/Pc) =Up.=1-— e_mcrc(1 - pra(c))

and variance

Var(WPc)
. MPC(1 B /"LPC)
¢Pc +1
(1 = pap) (FEE — (1= pp)(1 = €7))

Mpc
= e_mcrc(‘l - pra(c))

1 — ef(mz + 1)
X ( - e_mcn(‘l - vapa(c))(1 - e_Tc))'

me+1
In the earlier mentioned and following equations, we have
dropped the conditioning to V¥pya() and Vspqa() to simplify
the notation. For Y5, 1 < j < r, we have
E(Wsg) = E(E(Wsq | ¥ec))
= E((1 — ¥p)itsq)
= Usg(1 — ipc)

WSPG(C)j —m.T,
=————e "““(1—1p
1— 1pPpa(c) ( pa(c))

—m,r,
=e LwSpa(c)j

and
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Var(wgq)
= E(Vaf(‘ﬁsq | WPC)) + Var(E(WScj | ch))

= E<(1 - WzM) +Var((1 = Ypo)itsq)

¢Sc +1
(1 — .
= 0 =) () — )+ £ — d)?) + 13, Var(ne)
¢Sc +1
— /LSCJ(1 - /’LSCj) /’(/Pc(1 - ,u/Pc) + (1 —u )2 i [,LZ ‘ ,Lch('l — MPC)
¢)Sc +1 ¢Pc +1 PC 59 ¢Pc +1
1T— s [ K I
= psg(1 — ppc) ¥ (—”’ <i +1— Mm) i )

+ Usg
¢Sc+1 ¢Pc+1 K ¢P«:+‘I

Plugging in the parameter values, the expression for
variance becomes

Var(l/fScj)
= psg(1 — ppc)

1— e M+ B 1— s
(L )

m.+1 ¢5¢ +1
1 — e M+ .
X (———————(—pup)(1—e ) +(1— MP:))
me+1

= psg(1 — ppo)

1 — e M+
X (MScj <7 - (1 - :u/PC)(‘I - ein))

m.+1
1—e—(mc+ N
(1 B /’LSCj) m+1

1—e—(mc+ )t

m+1 + (1 - MPc)e_rC

1— e M+
X |[——————+(1— pp)e ™
(e - we))

= (1 — ppo)

1 — e M+
X (MScj - < - H’SC}(1 - I’LPC)(1 - e—fc)

me+1
1 — e (M+Dz
+ (1= prsg) ———————
9 me+1

—mT,
=e clpszz(c)j

1— e M+
X ( - efmcrc 1a”szz(c)j(‘I - eirc)>~

me+1

The covariance between shared and private alleles has the
form

Cov(Vpc, Vsg)

= E(Vpc¥sg) — E(Wp)E(Vsq)

= E(E(¥pctrsg | Wpc)) — mpc(1 — fhpc)itsg
= E(Ypc(1 — ¥ptsg) — mpe(1 — fpc)ihsg
= pusqi(1pe — E(W) — thec + i)

= —sgVar(Yec)

= = " Yspa(o)

1— e—(mc+1)rc
X <7 — e (1 = Yppa)(1 — e‘"))-

me+1
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Finally, the covariance between ¥, and ¥sy, 1 < k <'r,
is given by

COV(lﬂsq, 1/’Sck)
= E(Cov(¥sg, Vsa | ¥rec)) + Cov(E(Wrsq | Vrec ), E(Wrsa | c))

= E(—U - %c)z%) +Cov((1 — Vo) tasgs (1 — Ypc)itsck)

+1
s sck
=== (Var(‘//Pc) +(1 - :uPc)z) + UsgifbsckVar(Ypc)
¢Sc +1
= —HsgiMsck
1 1— 1—
« ( (HPC( Hpc) +(1— ,LLPC)Z) . e HPC))
¢Sc+1 ¢Pc+‘I ¢Pc+1
= _H/ScjﬂSck(‘l - :uch)
1— e M+ N
X [—————— + (1= up) (1 —e ™)+
( A TS I B
1— e M+Nw
(e - e 1))
me+1

— sgibsck (1 — fLpc)

1— e M+ ;
(- (1= pp)(1—e ™
(- -

1—e—(mc+Nic (1_g—(mc+11c _ -1
me+1 me+1 +(1 MPC)e

1—e—(mc+ 1)t

me+1 + (1 - /JLPc)e7TC

= —psgitsak(1 — pp)’ (1 — €7 )
= _e—2m(rc 1pSpa(c)jWSpa(c)(‘I - e_‘[c)'
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