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Background: Cystic fibrosis is characterized by defective autophagy and increased Burkholderia cenocepacia infection.
Results: The depletion of SQSTM1/p62 from �F508 macrophages improves bacterial clearance via autophagy.
Conclusion: p62 expression level determines the fate of B. cepacia infection in �F508 macrophages.
Significance:Our study reveals the role of p62 in diseases characterized by protein aggregates that compromise autophagy by
consuming essential autophagy molecules.

Cystic fibrosis is the most common inherited lethal disease in
Caucasians. It is caused bymutations in the cystic fibrosis trans-
membrane conductance regulator (CFTR), of which the cftr
�F508 mutation is the most common. �F508 macrophages are
intrinsically defective in autophagy because of the sequestration
of essential autophagy molecules within unprocessed CFTR
aggregates. Defective autophagy allows Burkholderia cenocepa-
cia (B. cepacia) to survive and replicate in �F508 macrophages.
Infection by B. cepacia poses a great risk to cystic fibrosis
patients because it causes accelerated lung inflammation and, in
some cases, a lethal necrotizing pneumonia. Autophagy is a cell
survival mechanism whereby an autophagosome engulfs non-
functional organelles and delivers them to the lysosome for deg-
radation. The ubiquitin binding adaptor protein SQSTM1/p62
is required for the delivery of several ubiquitinated cargos to the
autophagosome. In WT macrophages, p62 depletion and over-
expression lead to increased and decreased bacterial intracellu-
lar survival, respectively. In contrast, depletion of p62 in �F508
macrophages results in decreased bacterial survival, whereas
overexpression of p62 leads to increasedB. cepacia intracellular
growth. Interestingly, the depletion of p62 from �F508 macro-
phages results in the release of the autophagy molecule beclin1
(BECN1) from themutant CFTR aggregates and allows its redis-

tribution and recruitment to the B. cepacia vacuole, mediating
the acquisitionof the autophagymarkerLC3andbacterial clear-
ance via autophagy. These data demonstrate that p62 differen-
tially dictates the fate of B. cepacia infection in WT and �F508
macrophages.

Cystic fibrosis (CF)3 is the most common inherited lethal
disease among Caucasians, which is caused bymutations in the
cftr gene encoding the cystic fibrosis transmembrane conduct-
ance regulator (CFTR). The most common CFTR mutation
results in a deletion of phenylalanine at position 508 (�F508),
which affects the processing of the CFTR protein in such way
that it cannot reach the epithelial cell surface. This mutation
results in an aggresome-prone protein that forms intracellular
aggregates (1–4).
Autophagy is a conserved physiological process that elimi-

nates non-functional organelles and recycles cytosolic compo-
nents to generate nutrients during periods of stress or starva-
tion (5, 6). Autophagy also targets cytosolic long-lived proteins
and organelles for lysosomal degradation in eukaryotic cells
and plays a role in innate immunity (7). Loss of autophagy in
murine tissues is accompanied by accumulation of protein
aggregates and disordered organelles, leading to life-threaten-
ing diseases (8). Autophagy plays a key role in protecting the
cytosol from bacterial infection. The mechanisms of bacterial
recognition by this pathway are starting to be elucidated. Some
cellular cargos are marked for autophagy by acquiring adaptor
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proteins suchasCalcoco2 (also knownasNDP52) andneighborof
BRCA1 gene product (NBR1) (9–14). In addition, SQSTM1 (also
known as p62) is required for targeting Salmonella enterica sero-
var Typhimurium (Salmonella typhimurium), intracytosolic Shi-
gella, and Listeria to the autophagic pathway (9, 10).

The adaptor molecule p62 is a ubiquitously expressed cellu-
lar protein that is conserved in metazoa but not in plants or
fungi (15, 16). The quantity of p62 is critical for cell viability and
is strictly controlled (17). p62 has multiple protein-protein
interaction domains, including the ubiquitin-associated
domain for ubiquitinated cargo binding and the LC3 interac-
tion region for binding LC3 (10). Accordingly, impaired
autophagy is accompanied by accumulation of p62 followed by
formation of aggregates containing p62 and ubiquitinated pro-
teins. This accumulation occurs because of the nature of both
self-oligomerization and ubiquitin binding of p62 (18, 19).
Burkholderia cenocepacia (B. cepacia) is an opportunistic

Gram-negative bacterium that infects CF patients and leads to
severe lung inflammation and lung tissue destruction. Occa-
sionally, this infection results in a lethal necrotizing pneumonia
(20–22). Unfortunately, B. cepacia is resistant to most known
antibiotics and, thus, is nearly impossible to treat. B. cepacia
adopts an extracellular or intracellular lifestyle (23, 24). This
bacterium can survive within a variety of eukaryotic cells such
as amoebae, epithelial cells, and macrophages (25–28).
We have demonstrated previously that inWTmacrophages,

the majority of B. cepacia-containing vacuoles slowly acquire
the specific autophagymarker LC3within 2 h of infection. Sub-
sequently, these vacuoles fuse with the lysosomes, and the bac-
terium is degraded. In �F508 macrophages, B. cepacia-con-
taining vacuoles do not acquire autophagosome markers and
do not fuse with the lysosomes.
Here, we demonstrate that in WT macrophages, p62 is

required for targeting B. cepacia to the autophagosome. Upon
p62 down-regulation, bacterial growth increases, whereas the
overexpression of p62 results in a significant decrease in
B. cepacia replication.On the contrary, down-regulation of p62
in �F508 macrophages is associated with decreased bacterial
growth, and p62 overexpression results in increased B. cepacia
replication. p62 down-regulation in �F508 macrophages
releases the trappedBECN1 fromCFTRaggregates, allowing its
recruitment to the B. cepacia vacuole. BECN1 acquired by the
B. cepacia-containing vacuole subsequently attracts LC3,
thereby mediating the fusion of the maturing autophagosome
containing B. cepacia with the lysosome via the autophagic
machinery. These data provide mechanistic insight on how
B. cepacia persists in�F508macrophages. This report also sug-
gests that p62 may be an attractive drug target to improve
B. cepacia clearance by autophagic machinery.

EXPERIMENTAL PROCEDURES

Bone Marrow-derived Macrophages—Animal experiments
were performed according to protocols approved by the Ani-
mal Care and Use Committee of the Ohio State University Col-
lege ofMedicine.WTC57BL/6 were purchased fromThe Jack-
son Laboratory. �F508 mice on a C57BL/6 background were
obtained fromCaseWesternUniversity andhoused in theOhio
State University vivarium. Bone marrow-derived macrophages

were isolated from the femurs of 6- to 12-week-old mice and
were cultured in Iscove’s modified Dulbecco’s medium (Invit-
rogen, catalog no. 12440) containing 10% heat-inactivated FBS
(Invitrogen, catalog no. 16000), 20% L cell-conditioned
medium, 100 units/ml penicillin, and 100 mg/ml streptomycin
(Invitrogen, catalog no. 15140) at 37 °C in a humidified atmo-
sphere containing 5% CO2. Macrophages were infected with
B. cepacia K56-expressing m-RFP or the corresponding
gentamicin-sensitive strainMHK1 at a multiplicity of infection
of 10.
Bacterial Strains and Culture—B. cenocepacia strain K56-2

is a clinical isolate from a CF patient. The corresponding gen-
tamicin-sensitive strain MHK1 was described previously (29).
All bacterial strains were grown in Luria-Bertani broth at 37 °C
overnight with high-amplitude shaking. To kill extracellular
bacteria, Iscove’s media (Invitrogen, catalog no. 12440) plus
FBS (Invitrogen, catalog no. 16000) containing 50 �g/ml gen-
tamicin (Invitrogen, catalog no. 3564) were added for 0.5 h, as
described previously (29). To enumerate intracellular bacteria,
infectedmacrophageswere lysedwith ice-cold PBS (Invitrogen,
catalog no. 14190) at designated times. Recovered bacteriawere
quantified by plating serial dilutions on Luria-Bertani agar
plates and counting colonies using theAcolyteColonyCounter,
5710/SYN.
Immunoblotting—Macrophages were stimulated with

B. cepacia, and the culture supernatant was removed. Cells
were lysed in lysis buffer solution supplementedwith a protease
inhibitor mixture (Roche Applied Science, catalog no. 10-519-
978-001). The protein concentration was adjusted to 30 �g/ml.
Proteins were separated on a sodium dodecyl sulfate 15% poly-
acrylamide gel and transferred to a PVDFmembrane (Bio-Rad,
catalog no. 1p62-0117). Membranes were immunoblotted for
p62 (Sigma-Aldrich, catalog no. P0067), LC3 (Sigma-Aldrich,
catalog no. L8918), Calreticulin (Stressgen, catalog no.
SPA600), BECN1 (Abcam, catalog no. ab55878), NDP52 (Mil-
lipore, catalog no. MAB4386), NBR1 (Santa Cruz Biotechnol-
ogy, Inc., SC-130380), and Actin (Abcam, catalog no. ab8299,
and Atg7 (Sigma, A2856)). Protein bands were detected with
secondary antibodies conjugated to horseradish peroxidase,
followed by enhanced chemiluminescence reagents (Amer-
sham Biosciences, ECL Western blotting detection reagents;
GE Healthcare, catalog no. RPN2106).
siRNA Treatment and Plasmid Transfection—siRNA treat-

ment was performed using siRNA against p62 (Dharmacon,
catalog no. 18412) ACAGAUGCCAGAAUCGGAA, CUGCU-
CAGGAGGAGACGAU, GAACAGAUGGAGUCGGGAA,
and CCAUGGGUUUCUCGGAUGA; siRNA against NDP52
(Dharmacon, catalog no. 76815) CAACACAGAGGGUCAA-
UAA, CAGAAGAGGACAUCCGGAU, CCAAGGAUGUGG-
AGCGCUA, and GAGUUGAGGUGUCCGUGUA; siRNA
against NBR1 (Dharmacon, catalog no. 17966) GAAAUGGG-
AUUCUGCGACA, AGUCCGUGGAAGCGAGUAA, CAAG-
CAAAGCUGACGAUUU, and ACAGGAGGCAUUCGGG-
UUA; and siRNA against Atg7 (Dharmacon, catalog no. 49953)
CAUCAUCUUUGAAGUGAAA, GCUAGAGACGUGACA-
CAUA, AGCGAAAGCUGGUCAUCAA, and GGUCGUGU-
CUGUCAAGUGC. siRNA was nucleofected into primary
macrophages 48 h before infection using a Lonza nucleofection
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kit and Amaxa equipment, as described previously (30, 31).
Successful knockdown was confirmed by immunoblot analysis
for each experiment. The DsRed-p62 plasmid was obtained
from Addgene (32) and was nucleofected into primary macro-
phages using a Lonza nucleofection kit and Amaxa equipment.
The plasmid was nucleofected 24 h before the infection. Suc-
cessful p62 overexpression was confirmed by immunoblotting.
Real-time PCR—Total RNA was isolated from cells lysed in

TRIzol (Invitrogen, catalog no. 15596-026) and then converted
to cDNA.Gene expressionwas calculated as relative copy num-
bers, as described previously (30, 33). Briefly, Ct values of the
p62 gene were subtracted from the average Ct of two house-
keeping genes (GADPH and CAP1), and the resulting �Ct was
used in the following equation: RCN � (2��Ct) 100. The rela-
tive copy number of a gene is represented as the number of
copies relative to the 100 copies of average housekeeping genes
(30, 33).
Confocal Microscopy—Immunofluorescence experiments

for colocalization with autophagy markers were performed as
described previously (34, 6). Rabbit anti-LC3 (Abgent, catalog
no. AP1805a), mouse anti-p62 (BD Biosciences, catalog no.
610832), FK2 mAb (Enzo Bioscience, catalog no. BML-
PW8810), and rabbit anti-BECN1 (Abcam, catalog no.
ab55878) were used, followed by fluorescent secondary anti-
bodies (Molecular Probes, catalog no. A11008). Nuclei were
stained with the nucleic acid dye DAPI (6, 35). Samples were
analyzed with an Olympus Fluoview FV10i confocal micro-
scope at the Ohio State University, Department of Microbial
Infection and Immunity.
Statistical Analysis—All experiments were performed at

least three times independently and yielded similar results.
Comparisons of groups for statistical difference were con-
ducted using Student’s two-tailed t test. p � 0.05 was consid-
ered significant.
Ethics Statement—This study was carried out in strict

accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes

of Health and Ohio State University. The Institutional Animal
Care and Use Committee has approved our protocol number
2007A0070. All efforts were made to minimize suffering.

RESULTS

More B. cepacia Colocalized with p62 in WT Macrophages
Than in �F508 Macrophages—We demonstrated previously
that B. cepacia is cleared by the autophagy machinery in WT
macrophages but not in their �F508 counterparts. To deter-
mine why theB. cepacia vacuole is not efficiently recognized by
the autophagy machinery in �F508 macrophages, we followed
the trafficking within WT and �F508 macrophages. Recent
studies showed that p62 is required for targeting S. typhimu-
rium, Shigella, and Listeria to the autophagic pathway (9, 10).
Therefore, we examined the colocalization of B. cepacia with
p62 inWT and�F508macrophages. The time course for infec-
tion was 0.5, 1.5, 2, and 4 h. In WT macrophages, a significant
percentage of B. cepacia colocalized with p62 at 1.5 h post-
infection. Colocalization then declined at later time points (Fig.
1, A and B). However, B. cepacia vacuoles in �F508 macro-
phages did not colocalizewith p62 at any timepoint throughout
infection (Fig. 1, A and B). Together, these data show that p62
labels the B. cepacia vacuole in WT but not in �F508
macrophages.
The B. cepacia Vacuole Efficiently Acquires Ubiquitin in

�F508 Macrophages—Autophagy recognizes cargo for uptake
and degradation when it becomes ubiquitinated and bound to
an autophagy adaptor molecule (10). The lack of p62 acquisi-
tion by the B. cepacia vacuole in �F508 macrophages could be
due to defective ubiquitination of the B. cepacia-containing
vacuole or because of lack of p62 expression in �F508 macro-
phages. To differentiate between these possibilities, we first
infectedWT and �F508macrophages with B. cepacia-express-
ing m-RFP for 0.5 h or 2 h and examined the colocalization of
B. cepaciawith ubiquitin. Therewas no significant difference in
the colocalization ofB. cepaciawith ubiquitin betweenWTand
�F508 macrophages (Fig. 2, A and B). These data demonstrate

FIGURE 1. More B. cepacia vacuoles colocalize with p62 in WT macrophages than in �F508 macrophages. A, confocal microscopy for WT and �F508
macrophages infected with B. cepacia-expressing m-RFP for 0.5 or 1.5 h. p62 stained green, whereas nuclei were stained with DAPI. B, the percentage of
colocalization of B. cepacia with p62 was quantified at the indicated time points. More than 200 cells were scored. The white arrows indicate the sites of
colocalization. Data in B are presented as means � S.D. *, p � 0.05.
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that equivalent numbers of B. cepacia vacuoles acquired ubiq-
uitin in WT and �F508 macrophages. Therefore, the lack of
colocalization of B. cepacia with autophagosomes in �F508
macrophages is not due to the absence of ubiquitin around the
B. cepacia vacuole.
Next, to determine whether the failure of the autophagy

machinery to target the B. cepacia vacuole is due to the lack of
p62 expression in �F508 macrophages, we examined the level
of p62 withinWT and �F508 macrophages. Immunoblot anal-
ysis using an antibody against p62 revealed that murine macro-
phages harboring the �F508 mutation exhibited a higher level
of p62 comparedwithWTmacrophages (Fig. 3A). Quantitative
PCR (q-PCR)was performed to determinewhether the increase
in p62 protein level in�F508macrophages, comparedwithWT
macrophages, is due to regulation of gene expression or accu-
mulation of the p62 protein. Therewas no significant difference
in the p62 mRNA level in both types of macrophages (Fig. 3B).
Together, these data show that the increase in p62 level in
�F508 macrophages is due to accumulation of the protein
inside the cell, suggesting defective autophagy activity.
B. cepacia Infection Elevates p62 Expression within WT and

�F508 Macrophages—p62 is well expressed in �F508 macro-
phages. However, B. cepacia infection down-regulates auto-
phagy in bothWT and�F508macrophages. Thus, it is possible
that B. cepacia infection is accompanied by depletion of p62
from�F508macrophages upon infection. To examine this pos-
sibility, we examined the effect of B. cepacia on p62 expression
upon infection in WT and �F508 macrophages by q-PCR and
immunoblot analysis. At 4 h post infection, q-PCR analysis
demonstrated increased expression of the p62 gene level in
both WT and �F508 macrophages compared with non-in-
fected macrophages (Fig. 3C). Similarly, immunoblotting
showed a higher p62 level in both types of macrophages (Fig.
3D). Together, these data show that B. cepacia infection

increases the expression level of p62 in WT and �F508
macrophages.
Overexpression of p62 Conversely Affects B. cepacia Replica-

tion inWT and�F508Macrophages—To determine the role of
p62 in B. cepacia replication in WT and �F508 macrophages,
we examined B. cepacia survival in the presence of ectopically

FIGURE 2. The ubiquitination of the B. cepacia vacuole is similar in WT and �F508 macrophages. A, confocal microscopy for WT and �F508 macrophages
infected with m-RFP-expressing B. cepacia for 0.5 or 2 h. Ubiquitin stained green, and nuclei were stained with DAPI (the white arrow indicates the sites of
colocalization). B, the percentage of colocalization of B. cepacia with ubiquitin was quantified. More than 200 cells were scored.

FIGURE 3. Murine bone marrow-derived macrophages harboring the
�F508 mutation have a higher level of p62 than WT macrophages.
A, upper panel, immunoblot analysis of WT and �F508 macrophage lysates
showing the expression level of LC3 (I/II) and p62, respectively. Lower panel,
densitometry of the p62 protein level. B, q-PCR expression profile of p62 in WT
and �F508 macrophages. C, q-PCR expression profile of p62 in WT and �F508
macrophages non-infected (NT) or infected with B. cepacia for 4 h (4h BC).
**, p � 0.01; ***, p � 0.001. D, upper panel, immunoblot analysis for WT and
�F508 macrophages using p62 antibody prior and at 4 h post-infection with
B. cepacia. Lower panel, densitometry of the p62 protein level. Data in B and C
are expressed as relative copy numbers (RCN) and shown as means � S.D. of
three independent experiments.
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expressed p62.WT and�F508macrophages were nucleofected
with p62 plasmid or vector control and after 24 h, cells were
infectedwithB. cepacia for 2, 4, and 6h (Fig. 4G). InWTmacro-
phages harboring the p62 plasmid, recovered B. cepacia CFUs
decreased at 6 h post-infection compared with the cells harbor-
ing the vector alone (Fig. 4A). Confocal microscopy revealed
significantly less bacterial accumulation upon overexpression
of p62 (Fig. 4, B and C). In contrast, �F508 macrophages har-
boring the p62 plasmid allowed significantly increased B. cepa-
cia accumulation after 6 h post-infection (Fig. 4D). Confocal
microscopy confirmed increased bacterial accumulation (Fig.
4, E and F). Together, these results demonstrate that the avail-
ability of p62 differentially determines the fate of B. cepacia in
WT and �F508 macrophages.
Down-regulation of p62 Decreases the Growth of B. cepacia in

�F508 Macrophages—To determine whether p62 targets
B. cepacia vacuoles to autophagosomes for degradation, we
nucleofected WT and �F508 macrophages with p62 siRNA or
scrambled siRNA (Fig. 5G). After 48 h, cells were infected with
B. cepacia for 2, 4, and 6 h. In WT macrophages, B. cepacia
CFUs significantly increased upon down-regulation of p62 (Fig.
5A). In addition, confocal microscopic analysis demonstrated
significantly increased bacterial numbers at 2 h post-infection
(Fig. 5, B and C). In contrast, �F508 macrophages showed
decreased B. cepacia CFUs upon down-regulation of p62 (Fig.
5D). Furthermore, confocal microscopy revealed significantly

low bacterial accumulation 2 h after B. cepacia infection upon
down-regulation of p62 (Fig. 5, E and F). Therefore, these data
demonstrate that p62 controls B. cepacia infection in WT
macrophages but not in�F508macrophages. The details of this
differential role are not clear.
Decreased p62 Expression Promotes LC3 Acquisition by

B. cepacia Vacuole in �F508 Macrophages—LC3 is the main
marker for autophagosomes. The conversion of LC3-I to
LC3-II denotes autophagy stimulation and autophagosome for-
mation (7, 36). We have demonstrated previously that B. cepa-
cia colocalization with LC3 is markedly decreased in �F508
macrophages compared with WT macrophages (37, 38). To
determine the underlying mechanism, WT and �F508 macro-
phages were nucleofected with either siRNA against p62 to
down-regulate p62 or with scrambled siRNA, and after 48 h,
nucleofected macrophages were infected with B. cepacia-ex-
pressing m-RFP for 0.5 and 2 h. Confocal microscopy showed
that in WT macrophages, B. cepacia colocalization with LC3
decreased significantly when p62 was down-regulated com-
pared with the siRNA control-treated cells (Fig. 6, A and C). In
contrast, �F508 macrophages allowed significantly more
B. cepacia colocalizationwith LC3 after the down-regulation of
p62 compared with the siRNA control-treated cells (Fig. 6, B
andD). Together, these data suggest that p62 is required for the
delivery of B. cepacia to the autophagosomes in WT macro-

FIGURE 4. p62 overexpression decreases growth of B. cepacia in WT macrophages, whereas increases bacterial growth in �F508 macrophages. A and
D, WT and �F508 macrophages were nucleofected with the p62 plasmid or vector control 24 h prior to infection and then infected with B. cepacia for 2, 4, and
6 h. CFUs were enumerated. B and E, confocal microscopy for WT and �F508 macrophages overexpressing p62 at 0.5 or 2 h post-infection. The white arrows
indicate B. cepacia stained with DAPI. C and F, both types of macrophages overexpressing p62 were infected for 0.5, 2, and 4 h, and the number of bacteria/100
cells was quantified. More than 200 cells were scored. G, immunoblot analysis for WT macrophages after 24-h nucleofection with the DsRed-p62 plasmid
showing the overexpression of p62. Data are representative of three different experiments and presented as the means � S.D. A, C, D, and F, *, p � 0.05; **, p �
0.01; significant differences from the vector at the respective time points.
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phages, a role that is compromised for unknown reasons in
�F508 macrophages.
Depletion of p62 Liberates BECN1, Allowing Its Redistribu-

tion and Recruitment by the B. cepacia Vacuole in �F508
Macrophages—A growing body of evidence indicates that
BECN1 is sequestered within the mutant CFTR aggresomes (1,
2). BECN1/Atg6 is a member of the class III PI3K complex and
is essential for the early stages of autophagosome formation (5,
39). Thus, its unavailability leads to defective autophagic activ-
ity (1, 2). Mutant CFTR aggregates sequester autophagy mole-
cules such as BECN1, depleting them from their storage areas,
leading to defective autophagy. We examined the colocaliza-
tion of B. cepaciawith BECN1 inWT and�F508macrophages.
Confocal microscopy showed that in WT macrophages, high
numbers of B. cepacia colocalized with BECN1 compared with
�F508 macrophages (Fig. 7, A and B, arrows). In WT macro-
phages, BECN1 was distributed throughout the cytosol,
whereas in �F508 macrophages, BECN1 was condensed in
patches (Fig. 7 A, arrowheads).

Because the sequestration of BECN1 in CFTR aggregates
requires p62 (1, 2), we examined the effect of p62 depletion on
BECN1 distribution within the cytosol and around the B. cepa-
cia vacuole inside �F508 macrophages. �F508 macrophages
nucleofected with p62 siRNA showed significantly more colo-
calization of B. cepacia with BECN1 compared with the siRNA
control (Fig. 7, C, arrows, and D). Additionally, within the
�F508 macrophages nucleofected with siRNA against p62,
BECN1 was redistributed within the cytosol with the disap-
pearance of BECN1-containing patches (Fig. 7C) after down-
regulation of p62 (B). Notably, our immunoblot analysis using
antibody specific to BECN1 showed equal amounts of the total
BECN1 in the �F508 macrophages before and after p62 deple-
tion (Fig. 7E). Together, these data show that depletion of p62
from �F508 macrophages allows the redistribution of BECN1
throughout the cell and increases its availability for the B. cepa-
cia-containing vacuole.
Together, these data suggest that depletion of p62 from

�F508macrophagesmediatesB. cepacia clearance via recuper-

FIGURE 5. Down-regulation of p62 results in increased growth of B. cepacia in WT murine macrophages, whereas in �F508 macrophages it leads to
decreased growth. A and D, WT and �F508 macrophages were nucleofected with siRNA against p62 (siRNA-p62) or control siRNA (siRNA-CT) 48 h prior to
infection and then infected with B. cepacia for 2, 4, and 6 h. CFUs were enumerated. B and E, confocal microscopy of p62-depleted WT and �F508 macrophages
infected with B. cepacia for 0.5 or 2 h. The white arrows show B. cepacia stained with DAPI. C and F, both types of macrophages were infected for 0.5 and 2 h after
depletion of p62. The number of bacteria/100 cells was quantified. More than 200 cells were scored. G, upper panel, immunoblot analysis for WT and �F508
macrophages after 48-h nucleofection with siRNA against p62 (si-p62) or control siRNA (si-CT). Lower panel, densitometry of the p62 protein level. Data are
representative of three different experiments and presented as the means � S.D. A, C, D, and F, *, p � 0.05; **, p � 0.01; ***, p � 0.001; significant differences
from the siRNA-CT at the respective time points.
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ated autophagy. To confirm this conclusion, �F508 macro-
phages were depleted of p62 and Atg7 (an essential autophagy
molecule) (40) to disrupt the autophagy machinery and then
infected with B. cepacia. Depletion of p62 alone from �F508
macrophages improved B. cepacia clearance, yet concomitant
depletion of Atg7 hindered bacterial clearance (Fig. 7, F andG).
Thus, improved bacterial clearance upon depletion of p62 from
�F508 macrophages is mediated by autophagy.
NBR1 and NDP52 Contribute to the Delivery of B. cepacia to

Autophagosomes after Down-regulation of p62 in �F508
Macrophages—Thus, down-regulation of p62 in�F508macro-
phages improves B. cepacia clearance by restoring autophagy
activity. However, what targets the B. cepacia vacuole for
autophagy in the absence of adequate amounts of p62 is
unknown. Recently, it has been shown that p62 and NDP52 act
cooperatively to drive efficient antibacterial autophagy of Sal-
monella, Shigella, and Listeria (9, 41). Furthermore, it was
revealed that NBR1 and p62 mark ubiquitinated cargo for
autophagy (11, 42). To determine whether NDP52 or NBR1
contribute to the delivery of B. cepacia to autophagosomes, we
nucleofectedWT and �F508 macrophages with siRNA against
NDP52 or NBR1 prior to infection with B. cepacia. Our results
showed that in WT macrophages, down-regulation of NDP52
did not affectB. cepacia recoveredCFUs, whereas that of NBR1
resulted in a significant increase in B. cepacia growth. In�F508
macrophages, the down-regulation of either NDP52 or NBR1
resulted in an increase in B. cepacia growth. This result dem-
onstrates that both NDP52 and NBR1 facilitate the delivery of

B. cepacia to autophagosomes in �F508 macrophages. In WT
macrophages, however, only NBR1 contributes to the delivery
of B. cepacia to autophagosomes (Fig. 8,A, B, andD). To deter-
mine whether NDP52 and NBR1 mark the B. cepacia vacuole
for autophagy uptake in p62-depleted �F508 macrophages, we
nucleofected �F508 macrophages with siRNA against p62
alone or in combination with either NDP52 or NBR1. Simulta-
neous down-regulation of p62 and NDP52 or p62 and NBR1 in
�F508 macrophages resulted in a significant increase in
B. cepacia growth (Fig. 8, C and E). Together, our data suggest
that both NDP52 and NBR1 contribute to labeling the B. cepa-
cia vacuole for autophagy uptake when p62 is unavailable.

DISCUSSION

Human and mouse CF macrophages and airway epithelial
cells exhibit impaired autophagy that is associated with forma-
tion of aggregates, including p62 and ubiquitinated mutant
CFTR protein. This is due to both the self-oligomerization and
ubiquitin-binding nature of p62 (1, 2, 10, 37, 38). Similar aggre-
gates have been identified in various neurodegenerative dis-
eases, such as Alzheimer’s disease, Parkinson’s disease, amyo-
trophic lateral sclerosis, and cancer (1, 2, 43, 44). Impaired
turnover of p62 is amajor cause of the pathogenic changes seen
in the autophagy-deficient mice, as the loss of Atg7 in mouse
livers results in severe p62 accumulation. Loss of p62 greatly
attenuates liver injury resulting fromautophagy deficiency (18).
Here, we found that �F508 macrophages express more p62

thanWTmacrophages. This could be due to p62 accumulation

FIGURE 6. Down-regulation of p62 decreases B. cepacia colocalization with LC3 in WT macrophages but increases the colocalization in �F508 macro-
phages. A and B, confocal microscopy for WT macrophages and �F508 macrophages infected with B. cepacia-expressing m-RFP for 0.5 or 2 h. LC3 stained
green, whereas nuclei were stained with DAPI. The percentage of colocalization of B. cepacia with LC3 at the indicated time points was scored in both WT and
�F508 macrophages, respectively. C and D, more than 200 cells were scored. Data are presented as means � S.D. *, p � 0.05; **, p � 0.01.
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FIGURE 7. Colocalization of B. cepacia with BECN1 is increased in �F508 macrophages upon depletion of p62. A, confocal microscopy for WT and �F508
macrophages infected with B. cepacia-expressing m-RFP for 2 h. BECN1 stained green, and nuclei were stained with DAPI. The white arrows indicate B. cepacia,
whereas the arrowheads indicate BECN1 aggregates. B, the percentage of colocalization of B. cepacia with BECN1 was scored by examining more than 400 cells.
C, confocal microscopy for �F508 macrophages nucleofected with siRNA against p62 (Si-p62) or scrambled siRNA control (si-CT) 48 h prior to infection.
Nucleofected macrophages were infected with B. cepacia-expressing m-RFP for 2 h. BECN1 stained green, whereas nuclei were stained with DAPI. The arrows
indicate B. cepacia, whereas the arrowheads indicate BECN1 aggregates. D, the percentage of colocalization of B. cepacia with BECN1 at the assigned time point
was scored. More than 400 bacteria were scored. E, immunoblot for �F508 macrophages nucleofected with siRNA against p62 or control siRNA for 48 h.
Antibodies against p62 and BECN1 were used. F, �F508 macrophages were nucleofected with siRNA against p62 or control siRNA or siRNA against p62 and
Atg7 together (si-p62�si-Atg7) for 48 h and then infected with B. cepacia for 2, 4, and 6 h. CFUs were enumerated. G, immunoblot analysis for �F508
macrophages nucleofected with control siRNA, siRNA against p62, siRNA against Atg7 (si-Atg7), or siRNA against p62 and Atg7 together for 48 h. Antibodies
specific to p62 And Atg7 were used to detect the down-regulation. Data in B, D, and F are presented as means � S.D. of three different experiments. B and
D, **, p � 0.01; ***, p � 0.001; significant differences between both types of macrophages at the designated time point.

FIGURE 8. Depletion of p62 in �F508 macrophages improves clearance of B. cepacia by autophagosomes via NDP52 and NBR1. A, B, and C, WT (A) and
�F508 (B and C) macrophages were nucleofected with siRNA against NDP52 (si-NDP52), NBR1 (si-NBR1), or control siRNA (si-CT) (A and B). C, �F508 macro-
phages nucleofected with siRNA against p62 (si-p62), si-p62�si-NDP52, or si-p62�si-NBR1. Macrophages in A, B, and C were then infected with B. cepacia for
2, 4, and 6 h. CFUs were quantified. D and E, Western blot analysis of macrophages treated as in A and B, respectively, with specific antibodies to NDP52, NBR1,
p62, or actin. Data in A, B, and C are presented as the means � S.D. A, C, D, and E, *, p � 0.05); **, p � 0.01; ***, p � 0.001; significant differences at the respective
time points.
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because of reduced recycling in �F508 macrophages as a con-
sequence of compromised autophagosome formation andmat-
uration. Alternatively, the accumulation of p62 could stimulate
the formation ofmore�F508CFTR aggregates. This latter pos-
sibility agrees with the observation that depletion of p62 from
�F508 macrophages improves autophagy and decreases the
BECN1-positive aggregates. Also, a previous study using CF
epithelial cells showed that p62 promotes aggresome accumu-
lation of misfolded or modified proteins (43, 45). Recently, it
has reported that reducing the levels of p62 can rescue �F508-
CFTR trafficking to the plasmamembrane of CF airway epithe-
lial cells (1, 2, 46).
The presence of intracellular bacteria such as B. cepacia

increases the level of p62 expression in both WT and �F508
macrophages. It is possible that p62 overexpression upon infec-
tion worsens the biology of �F508 macrophages, providing an
explanation for the deterioration of lung function and innate
immune responses in the infected CF lung. There are several
mechanisms by which B. cepaciamay lead to the accumulation
of p62. It is plausible that B. cepacia increases p62 accumula-
tion by inhibiting autophagy in�F508macrophages, as we have
published previously (37, 38). Notably, B. cepacia infection
increases p62 mRNA. Regardless of the mechanism of p62
accumulation, the p62 aggregates sequester essential auto-
phagy molecules such as BECN1, making them unavailable for
efficient autophagosome formation (48).
The sequestration of BECN1 occurs via transglutaminase 2

(TG2)-mediated cross-linking in aggresomes because the
BECN1protein sequence containsQP andQXXPmotifs, which
are specific target sites for TG2 activity (48), and TG2 is an
autophagy inhibitor in pancreatic adenocarcinoma cells (49).
Increased reactive oxygen species in CF epithelia sustain high
TG2 levels throughTG2 SUMOylation (48). Thus, BECN1, and
not all autophagy molecules, is specifically recruited to
aggresomes in CF cells.
Examining the sequential acquisition of autophagy mole-

cules by the B. cepacia vacuole revealed that although ubiquiti-
nation is efficient in bothWTand�F508macrophages, BECN1
acquisition is defective only in �F508 macrophages. BECN1,
also known as autophagy-related gene product 6 (Atg6), and its
binding partner class III PI3K (also named Vps34) are required
for the initiation of the autophagosome formation (47). Thus,
supplementation of p62 alone to �F508 macrophages will not
improve the targeting of B. cepacia to autophagosomes. This
conclusion is supported by the overexpression experiment of
p62 in �F508 macrophages, which actually leads to more bac-
terial growth. Therefore, to correct the trafficking defect of
B. cepacia in �F508 macrophages, “free” BECN1 is required,
which is achieved by depletion of p62.
p62 targets several pathogens, such as S. typhimurium, Shi-

gella, and Listeria to the autophagosome (9, 10). Similarly, p62
associates with the B. cepacia vacuole in WT macrophages.
However, depletion of p62 from�F508macrophages promotes
B. cepacia uptake by autophagosomes and decreases the bacte-
rial burden. It is possible that another adaptormolecule, such as
NBR1, compensates for the loss of p62. The structure of NBR1
resembles that of p62. It can bind both LC3 and ubiquitinated
proteins through the LC3 interaction region and ubiquitin-as-

sociated domain, respectively (11, 14). NDP52 is another cargo
marker that drives certain bacteria to the autophagymachinery
(9, 41). In this study, we found thatNDP52 facilitates autophagy
uptake ofB. cepacia in�F508macrophages but not inWTcells.
NBR1, however, appears to contribute to the delivery of
B. cepacia to the autophagy machinery in bothWT and �F508
macrophages. To our knowledge, this is the first demonstration
of a role for NBR1 in bacterial targeting by autophagy.
We showed previously (37) that autophagy stimulation by

rapamycin can overcome the down-regulating effect ofB. cepa-
cia on the ATG genes and can control the B. cepacia infection
in the �F508 mouse model both in vivo and in vitro. In this
work, we demonstrate that p62 depletion from �F508 mouse
macrophages is another approach to improve autophagic con-
trol on B. cepacia infection.

Together, these data provide a molecular framework to bet-
ter understand the emerging complexity of diseases related to
autophagic defect such as CF and the ability of macrophages to
defend against the bacterial infection. This study also indenti-
fies p62 as a promising drug target for improving B. cepacia
clearance in CF macrophages.
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