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Abstract
The availability of complete genomes and global gene expression profiling has greatly facilitated
analysis of complex genetic regulatory systems. We describe the use of a bioinformatics strategy
for analyzing the cis-regulatory design of genes diferentially regulated during viral infection of a
target cell. The large-scale transcriptional activity of human embryonic kidney (HEK293) cells to
reovirus (serotype 3 Abney) infection was measured using the Affymetrix HU-95Av2 gene array.
Comparing the 2000 base pairs of 5’ upstream sequence for the most differentially expressed
genes revealed highly preserved sequence regions, which we call “modules”. Higher-order
patterns of modules, called “super-modules”, were significantly over-represented in the 5’
upstream regions of transcriptionally responsive genes. These supermodules contain binding sites
for multiple transcription factors and tend to define the role of genes in processes associated with
reovirus infection. The supermodular design encodes a cis-regulatory logic for transducing
upstream signaling for the control of expression of genes involved in similar biological processes.
In the case of reovirus infection, these processes recapitulate the integrated response of cells
including signal transduction, transcriptional regulation, cell cycle control, and apoptosis. The
computational strategies described for analyzing gene expression data to discover cis-regulatory
features and associating them with pathological processes represents a novel approach to studying
the interaction of a pathogen with its target cells.
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INTRODUCTION
Though the mechanisms of eukaryotic transcriptional regulation are not completely
understood, they are thought to be controlled by two main factors. First, cis-regulation
involves the combinatorial binding of transcription factors to the 5’ upstream regions of
genes, which controls the activation or repression of the basal transcriptional assembly.
Second, signal transduction pathways integrate the cellular stimuli that lead to the activation
of transcription factors, which is known as trans-regulation. Understanding the mechanisms
of cis- and trans-regulation can help decipher the form and function of living systems. The
availability of the complete genome and the ability to assay the large-scale transcriptional
response of an organism bring us closer to this understanding.

In this manuscript, we utilized a computational methods strategy to analyze cis-regulation
from high-throughput gene expression data. Similar approaches have been used to
characterize microarray data from yeast [1] and plants [2], however they have not been
previously utilized to study the interactions of a pathogen with host target cells. We utilized
this approach to investigate reovirus-induced alteration of host gene expression profiles.
Mammalian reoviruses are non-enveloped viruses that contain a double-stranded RNA
genome. Most mammalian species, including humans, serve as hosts for reovirus infection.
Reovirus infection in neonatal mice provides a classic experimental system for studying
viral pathogenesis [3, 4]. Similarly, the interaction of reoviruses with a variety of host cells
have provided valuable insights into how viruses perturb cellular signaling pathways
including those involving transcription factor activation, mitogen-activated protein kinase
cascades, and cell death. [5-8].

We test the hypothesis that significant similarity between the 5’ upstream regions of genes is
key to understanding their co-regulation and their role in the integrated signaling response of
cells. Using genes that were identified as most transcriptionally responsive to reovirus
infection and by computationally searching their upstream sequences, we identified putative
transcriptional control modules, which are regions with highly similar 5’ upstream sequence.
These modules were significantly over-represented in transcribed genes as compared to
untranscribed or unchanged genes. We also identified patterns of modules, called
supermodules, which were highly specific to transcriptionally active genes. Using this
modular cis-regulatory architecture we could resolve the role of downstream genes in
different cellular processes, such as signal transduction pathways leading to apoptosis. Our
results suggest that the modular architecture of the upstream regions of differentially
expressed genes plays an important role in cis-regulation. We believe that this indicates that
these modules are candidate target regulatory regions whose activity is modulated by virus-
induced perturbations in host-cell signal transduction events. That is, activated sets of
transcription factors binding in defined combinations to modules regulate the changes in
host cell gene expression induced following infection with a viral pathogen.

A variety of methods have been developed to identify significant differentially expressed
genes and to cluster genes based on expression profiles. Computational approaches for
identifying cis-regulatory sites and for analyzing gene expression data have been of great
interest. Our work contributes to more recent computational approaches for analyzing
transcriptional control by combining high-throughput gene array data with whole genomic
sequence (a recent review can be found in [9]). We have put our results in the context of: (i)
the use of gene array data, (ii) the nature of upstream sequence motifs involved in
transcriptional control, (iii) algorithms for motif discovery, and (iv) biological systems for
studying transcription control.
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Gene array data is used to identify coregulated genes, which narrows the search for sequence
motifs to the 5’ upstream regions of a relevant subset the genes. Some approaches use levels
of expression to cluster genes [10, 11]. A completely different approach involves the use of
the level of expression of a gene as some function of the putative transcription factor binding
sites [12, 13]. We treat the gene array data as a coarse measure of biological function by
grouping genes into three broad categories: significant differential expression (de),
unchanged expression (uc) and no expression (off). We believe that these three functional
classes are useful for representing the important biological groups of transcriptional activity
and for understanding cis-regulatory logic.

The nature of cis-regulatory motifs is another major attribute differentiating existing
methods for analysis of transcription factor binding sites. While earlier methods focused on
identifying individual motifs to represent a single transcription factor binding site, recent
approaches capture the binding of multiple transcription factors through combinations of
motifs. Individual and complex motifs can be further classified either by their use of known
binding sites [10, 12, 14-19] or by their discovery of novel ones [20-24]. While it is
important to search for novel motifs, as the available information about transcription factor
binding sites is limited, it is computationally difficult to discover short regulatory elements
accurately. This is because short and variable nucleotide sequence motifs have a high rate of
false positive matches. Our approach overcomes these issues by focusing on long motifs
(greater than 40 nucleotides). We term these motifs “modules” and higher-order patterns of
these motifs “supermodules”. We believe that the putative modules and supermodules in the
5’ upstream regions of differentially expressed genes play a critical role in trans-regulation.
That is, activated transcription factors bind combinatorially to the modules; interactions
between groups of modules, manifested as supermodules, regulate the expression of their 3’
downstream genes.

A number of methods have been developed for discovering novels motifs in sequence data.
We utilize MEME (Motif Expectation-Maximation for Motif Elicitation) [25, 26] for this
purpose. The significance of motifs is generally evaluated by calculating the representation
of motifs in the 5’ upstream regions of a subset of putatively coregulated genes as compared
to random sequence [11, 14, 17, 18, 21-23]. Our approach uses all of the highly regulated
genes to identify putative cis-regulatory modules but tests their significance by comparison
with genes that are unchanged or off. We also identify longer stretches (typically 15-50
bases) of imperfectly conserved sequence similarity motifs, instead of shorter motifs,
corresponding to the core and surrounding nucleotides specific for individual transcription
factors. This approach is biologically more plausible and it makes complete use of the
information derived from the gene array analysis.

One of the most important factors in analyzing cis-regulatory patterns in the context of gene
expression is the utilization of a biological system that is known to strongly involve
transcriptional control. We chose reovirus infection of a human cell line in this analysis
because it is an important model for studying eukaryotic processes that lead to host cell
damage and death [5-8]. The strain used in this study, serotype 3 Abney (T3A), efficiently
induces apoptosis in HEK293 cells through the binding of tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL) to its cell surface death receptors DR4 and DR5
[27]. It has been shown that the activated transcription factors c-Jun and NF-κB play a
critical role in these processes [28-33]. Since the expression of new genes is critical to
reovirus-induced apoptosis, this is a useful system to study the control of transcription.

Finally, to interpret the biological relevance of our analysis we compared supermodules with
the biological roles of genes from the GeneOntology (GO) database [34], using a previously
described tool [35]. By analyzing the involvement of supermodules in controlling the
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transcription of downstream genes and the role of genes in biological processes, we were
able to elucidate the pathways involved in the integrated response of mammalian cells to
reovirus infection. The advantage conferred by using this particular tool for inferring
biological associations for different supermodules is conferred by the fact that the method
generates p-value scores for the category frequency counts using a variety of distribution
models (e.g. binomial and hypergeometric) and adjusts the p-values for multiple correction
comparisons in order to minimize the risk of Type 1 errors.

MATERIALS AND METHODS
Cells and Virus

Human embryonic kidney (HEK293) cells (ATCC CRL1573) were plated in T75 plated
flasks and incubated for 24 hours. When cells were 70% confluent they were infected with
reovirus strain T3A at a multiplicity of infection (MOI) of 100 PFU per cell in a volume of 2
ml at 37 °C for 1 hour. A high MOI was used to ensure that all susceptible cells were
infected. Cells used for control infections were inoculated with a virus-free cell lysate
control. Cells were harvested at 12 hours post infection and washed with phosphate-buffered
saline. cRNA was prepared in accordance with protocols recommended by Affymetrix and
each sample was prepared in duplicate.

Gene Expression Analysis
We used Affymetrix U95A version 2 arrays to assay expression levels of genes in infected
and control samples. Gene array data was read with Agilent GeneArray. Using Affymetrix
algorithms in GeneChip 5 software, transcripts was classified as present, marginally present
or absent. Present versus absent calls were used later to group genes that were absent across
all samples into the set of untranscribed genes. A median filter was used to filter genes that
did not show a significant variation across all samples. The data was analyzed using
GeneSpring suite (from Silicon Genetics). Data was normalized in order to facilitate cross
array comparison and to account for variations. Linear regression was performed between
replicates in order to filter out genes that showed poor consistency between replicates and
genes that lay within the 5% confidence interval were retained for further analysis. Genes
that were both well-replicated and present were subjected to parametric (t-test) and
nonparametric (Wilcoxon signed rank) tests with the False Discovery Rate (FDR)
correction. The FDR threshold was varied between 0.08 and 0.15 and the resulting gene list
was chosen based on the minimum percentage of false positives produced for a given
number of genes. This yielded 90 probe set identifiers corresponding to 64 distinct genes
showing statistically significant differential expression, while 4,300 genes showing
insignificant differential expression, and 6,000 genes were found to be transcriptionally
inactive. Out of the 64 initially identified differentially expressed genes, 22 genes were
available for upstream characterization (see Fig. (1)). The remaining 42 genes could not be
analyzed in this fashion for a variety of reasons including: (1) no upstream sequences were
available, (2) short upstream sequences were available for certain genes having large spans
of N's, (3) genes were not represented/included within the genomic assembly; this included
genes that could not be mapped to any of the assembled human contigs used for sequence
retrieval.

Upstream Genomic Sequence Analysis
The complete human genome was obtained from GenBank and the first 2,000 base pairs of
the 5’ upstream regions for each gene in the Affymetrix U95A version 2 gene array were
extracted from it. We found upstream regions for 7,022 out of the total 10,390 genes
including, 22 significantly differentially expressed genes, 4,300 expressed genes, and 2,700
untranscribed genes. The similarity between the upstream genomic sequences was computed
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using MEME (Motif Expectation-Maximization for Motif Elicitation) [25, 26], which finds
conserved sequence motifs in a set of biomolecular sequences. Sequence modules of length
between 15 and 50 nucleotides were identified in the significant differentially transcribed.
These conserved modules were then searched in the genes whose expression was unchanged
by reovirus infection and the genes that remained transcriptionally inactive using MAST
(Motif Alignment and Search Tool) [36]. MAST is a tool for searching the biological
sequence databases for sequences that contain one or more of a group of known motifs. It
takes as input a file containing the descriptions of one or more motifs and searches a
sequence database that the user selects that matches the motifs. The motif file can be the
output of the MEME motif discovery tool or any file in the appropriate format.

Significance of Modules
To assess the significance of the conserved modules identified by MEME the upstream
regions of all available genes in the unchanged and untranscribed groups were searched
using MAST (using p < 0.0001 for each match). The observed counts of modules in each
expression group were compared with the expected frequency according to a simple random
model. Assuming module occurrences are equally likely in all expression groups, the
expected frequency of hits for one module or supermodule in any category, denoted as Ni, is
proportional to the fraction of genes in each group, given by fi. Since the number of genes in

each group and the total number of genes are fixed, we have ,

, and . The expected number of observations of a
module in a given expression group is the product of the fraction of genes in that group and

the total number of observed hits for a module or supermodule, No. Hence, . To
test the independence between the observed and expected counts of modules we employed
the Fisher exact test (instead of the χ2 test due to some low expected and observed counts).

Over-Representation and Under-Representation of Modules
We calculated the likelihood ratio of the observed and the expected frequencies of
occurrence of each module and supermodule in the 5’ upstream regions of genes in the

different expression categories. This ratio is denoted as , where α = (de; uc; off) and β =
(module; supermodule) and calculated as shown in equation 1 below:

(1)

There are three main cases for the value of this ratio. First, when a particular module or
supermodule occurs more frequently in an expression group than expected by chance then

 and . Second, when a particular module or supermodule occurs at the

expected frequency then  and . Third, when the frequency of the module or

supermodule is lower than what would be expected by chance then  and . The
interpretation of the likelihood ratio is summarized in equation 2 below:

(2)
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Gene Ontology Annotation
Gene functional annotations were obtained by querying the latest release of the Gene
Ontology (GO) database [34]. The score of the molecular functions and biological processes
was calculated as the frequency of occurrence for each GO identifier in the differentially
expressed genes with the total number of genes with the same GO identifiers for all genes on
the Affymetrix HU-95v2 gene array. This percentage used each GO node and all of its
children [35]. The p-values associated to each category were calculated using the
hypergeometric distribution model and adjusted using FDR to compensate for Type I errors
introduced by multiple comparisons. Onto-express [35] was utilized to correlate expression
profiles with biochemical and molecular functions, biological properties, and cellular roles
of proteins encoded by differentially expressed genes.

RESULTS
Upstream Sequence Analysis of Differentially Expressed Genes

We used Affymetrix U95A version 2 arrays to measure the large-scale transcriptional profile
of human embryonic kidney (HEK293) cells in response to reovirus (T3A) infection. By
applying stringent statistical filters (see methods) we divided the genes on the array into the
following groups: significant differential expression, unchanged expression, and
transcriptionally inactive. The 2 kb 5’ upstream regions of the genes on the array were
extracted from the human genome using GenBank. This resulted in 22 genes in the
differentially expressed group, 4,300 genes in the unchanged group and 2,700 untranscribed
genes. The 5’ upstream regions of the 22 differentially expressed genes were analyzed using
MEME to find the most similar sequence regions.

We termed similar sequence regions in the 5’ upstream regions of genes “modules.”
Modules are longer (15-50 bp in length) than the short regulatory element consensus
sequences, which are generally used in analyzing upstream regions of genes. A schematic of
the ten most significant modules in the 22 differentially expressed genes is shown in Fig.
(2a). This visualization shows the organization of the upstream region of individual genes,
where each module is represented by a uniquely colored rectangle. For example, SCYA5
(the first gene from the top) has the following arrangement for the first five modules starting
2000 bp upstream from the start codon: module 9, module 2, module 8, module 4 and
module 2. The figure also displays the overall architecture of the cis-regulatory regions of
the differentially expressed genes. The visualization shows that number of other genes have
modules in common with SCYA5 including EGR3, ISG15, DVL3 and IFIT1, to mention a
few. For instance, EGR3 has two occurrences of module 9; ISG15 has a single occurrence of
module 9; both DVL3 and IFIT1 have multiple occurrences of module 9. Since the
occurrence of these modules in these sequences is highly statistically significant, and the
expression of these genes is highly regulated, it is plausible that these modules play a role in
transcriptional control.

The size, log-likelihood ratios and corresponding E-values associated to each individual
module are shown in Fig. (2b). The size of each identified modular element varies between
21-45 base-pairs. Using this type of approach allows identification of rather long stretches of
closely related sequence elements, which is extremely useful given the fact that individual
transcription factors identify degenerate oligonucleotides sequences as binding sites. Each
individual module captures the spatial relationship between putative individual transcription
factor binding sites both in terms of the order of the hits and the distance between them. This
represents an important difference between our approach and more commonly employed
methods which rely heavily on the identification of individual transcription factor binding
sites as the starting material for regulatory element discovery.
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Modular Organization and Supermodules
In addition to the individual modules, we also found a unique “supermodular” organization
in the upstream regions in 16 out of the 22 differentially expressed genes. A supermodule is
a sequence of modules in which the order and relative location of the modules is preserved
in the upstream regions of different genes. For example, the upstream region of SCYA5 had
the following sequence of modules: 9, 2, 8, 4, 2, 8. We call this sequence, (9 2 8 4 2 8), a
supermodule because it is also preserved in the upstream regions of the EGR3, ISG15,
DVL3, IFIT1, and IQGAP2. The occurrences of supermodules in the upstream regions of
these 22 genes are summarized on the right hand side of Fig. (2). We identified four
supermodules, A, B, C and D, which were defined by the sequences of modules given by (9
2 8 4 2 8), (3 7 1 5), (1 5 6) and (10 10 10), respectively.

Significance of Modules and Supermodules
To assess the biological relevance of modules and supermodules in transcriptional control
we evaluated their significance across the complete dataset in two ways. First, we compared
the observed versus expected frequency of occurrence of modules in the three categories of
transcriptional response: differentially expressed (de), unchanged (uc), and untranscribed
(off). For each of these categories we computed the occurrence of modules and
supermodules in the upstream regions of all 7022 genes. For instance, module 1 was found
in 14 out of 22 of the significantly differentially expressed genes; in 1759 of the genes that
were unchanged; and 948 out of the transcriptionally inactive genes. Using a random model,
we calculated the expected number of occurrences of module 1 as 8, 1666, 1046 in the de,
uc and off categories, respectively. Using the Fisher exact test of independence we found the
observed and expected frequencies of occurrence for module 1 to be highly statistically
different across the expression groups (p < 0.001). Applying this procedure to each of the
modules and supermodules showed that the observed and expected frequency of modules in
the upstream regions of transcriptionally active and inactive genes was statistically different
(Table 1). Hence, the distribution of modules and supermodules in the upstream regions of
genes is significantly different from what would be expected by chance.

Though the occurrence of modules and supermodules is statistically different across the
expression categories, additional information is necessary to infer their role in
transcriptional control. For this purpose, we calculated the likelihood ratio, denoted as Rα,β,
of the observed and the expected frequencies of occurrence of each module and
supermodule in the 5’ upstream regions of genes in the different expression categories. We
calculated Rα,β and their descriptive statistics for the ten modules and the supermodules
across the three expression categories as shown in Table 2. The likelihood ratios between
categories were found to be statistically different using a one-way ANOVA (p = 0.006). The
average over-representation of the modules and supermodules in the differentially expressed
genes and under-representation in the transcriptionally inactive genes is summarized in the
row labeled R ̄ (see Table 2). The mean value of the likelihood ratio was greater than unity in
the differentially expressed genes . In the unchanged and the inactive genes the
ratios were  and , respectively. Using a one-sided t-test to compare
means, p < 0.05 (p-value adjusted for multiple testing by the false discovery rate correction).
Therefore we can be confident that modules and supermodules are generally significantly
over-represented in the 5’ upstream regions of differentially expressed genes, under-
represented in the 5’ upstream transcriptionally inactive genes and close to randomly
distributed in the 5’ upstream regions of unchanged genes. Comparing the values of the ratio
for the modules and supermodules in Table 2 also highlights an important result: the
supermodules occur up to eight times more frequently upstream of differentially expressed
genes than the unresponsive genes (p < 0.05).
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It is important to note that the likelihood ratios for module 10 and supermodule D do not
follow the general trend. Specifically, module 10 and supermodule D were under-
represented in the differentially expressed genes. On the other hand, supermodule D was
slightly over-represented in genes that were not differentially expressed. We discuss
possible reasons for these observations later.

The Anatomy of a Module
We explored the potential combinatorial interactions of the modules with transcription
factors by searching the consensus sequences of the modules [37] against the known
regulatory elements in the TransFac database [38]. For example, Fig. (3) shows a
visualization of the high-scoring putative regulatory elements that were found in module 2.
We found a number of potential binding sites for different transcription factors including, c-
Jun (activating protein 1, AP-1) and NF-κB. In addition, we also observed predicted
matches for c-Jun binding in modules 3, 5 and 6. This is consistent with our prior studies
and those of others showing that both NF-κB and c-Jun are activated following reovirus
infection [28-33].

Supermodules and Signaling
In order to understand the biological importance of the supermodules we used the
GeneOntology [34] and OntoExpress [35] to analyze the biological processes in which the
differentially expressed genes were involved. Table 3 summarizes the involvement of the
genes 3’ downstream of supermodules in different biological processes. These processes
include apoptosis, cell cycle arrest, signal transduction, inflammation and viral response
pathways. For example, all of the genes downstream from supermodules A, B, C, and D
were involved in signal transduction, but only supermodule D appeared to be upstream of
genes involved in DNA repair. The genes putatively controlled by supermodules B and C
shared most of their biological process annotations, whereas genes regulated by
supermodule A shared just a subset of these processes. Supermodule D controlled genes that
showed a marked difference in terms of their molecular process annotations: they were
involved in five distinct processes including, DNA repair, lipid metabolism, positive
regulation of cell proliferation, protein biosynthesis and regulation of CDK activity. In terms
of just their molecular functions, genes downstream of supermodules A and D shared a
distinct subset of functional annotations than did supermodules B and C. The association of
supermodules with different biological processes is highly informative because it aids in
grouping genes based on cis-regulatory information as opposed to their level of expression
alone.

We used the four supermodules and their associated genes to elucidate the signal
transduction processes in which they may be involved. Supermodule A was shared by
interferon signaling genes (ISG15, IFIT1), transcriptional control genes EGR3 (involved in
FasL apoptosis signaling) and signal transduction. Supermodule B was shared among a
different subset of differentially expressed genes involving the above categories and there
were two genes that had supermodules A and B (EGR3, SCYA5). The genes involved in cell
signaling, interferon and cell proliferation control (GADD34, MAPRE2) were downstream
of supermodule C. Thus, supermodule C could be a common control circuit for the genes
linked to signaling and early cellular response to viral infection. The presence of multiple
supermodules in the upstream regions of these genes suggests that the transcripts related to
cell signaling and interferon response are under the control of multiple pathways. These
findings point to several mechanisms that are involved in the onset of reovirus-mediated
apoptosis. For instance, DNA damage response is modulated via p53-dependent
mechanisms. Interferon and other chemokine-mediated signaling indicates the activation of
a wider network of signal transduction pathways including G-proteins; Wnt and growth
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receptor signaling; p38 / JNK pathway via MEKK4 and MAPK8; and the activation of the
apoptotic process via TRADD and FasL. Transcriptional modulators are also a key
component of these processes including, nuclear matrix binding proteins, transcription
factors and core promoter binding proteins. In combination, these processes represent the
effector arm of the cell signaling machinery.

DISCUSSION
In this manuscript, we present a computational approach to analyze cis-regulation induced
by viral infection of a target cell from high-throughput gene expression data. Our analysis of
the 5’ upstream regions of genes differentially expressed in response to reovirus (T3A)
infection of HEK293 cells shows a distinct modular cis-regulatory organization. The
significant over-representation of modules and supermodules in the upstream regions of
differentially expressed genes, strongly suggests their involvement in transcriptional control.
Statistical analysis of the functional annotations for the genes downstream from the same
supermodules reveals their involvement in similar biological processes including apoptosis,
cell cycle regulation, antiviral defense and DNA repair. Our analysis of the consensus
sequence for each module against a large set of known transcription factor binding sites
yielded matches with NF-κB and c-Jun, which are known to be activated during reovirus
infection [28-33]. These results suggest that modular organization is preserved to ensure an
effective cellular response to external stimuli through signaling pathways.

Our results strongly suggest a role for modules and supermodules in transcriptional control.
Analysis of the 5’ upstream regions of a large set of genes in differing transcriptional states
suggests that modules are preserved because they are the loci for gene regulation through
signaling; and that higher-order patterns of modules, or supermodules, encode some of the
logic necessary for controlling the transcriptional state of their 3’ downstream genes. In
general, we found a significant over-representation of supermodules in highly differentially
expressed genes and an under-representation in transcriptionally inactive genes. Further
analysis of each module revealed potential binding sites for transcription factors that are
known to be involved in reovirus-induced apoptosis.

The annotations for molecular functions and for biological processes of transcriptionally
active genes suggest an association between upstream supermodules and known pathways.
However, we did not always identify a direct correspondence between supermodules and
pathways. Some supermodules appear to regulate genes involved in identical pathways;
others regulate multiple overlapping pathways. There are several interpretations for
overlapping control of pathways by supermodules. First, the similarity between
supermodules, measured by shared modular components, could be responsible for their
regulation of similar processes. Second, the continuity of cellular responses to changes in
homeostasis could be affected by a core group of modules in combination with a divergent
set of modules to fine-tune the response to different stimuli. Third, overlapping could be a
manifestation of redundancy in the control of gene regulation. Fourth, it is also possible that
cis-regulation is more complicated than can be explained by a modular representation of
only the 2000bp in the 5’ upstream regions of genes. We are further analyzing the
relationship between modular organization and signaling pathways to understand their
biologically relevance.

The GO annotations of the genes and the relevant biomedical literature on reovirus-induced
apoptosis present a congruent view of the association between supermodules, the genes that
are transcriptionally controlled by them, and biological pathways in which these genes are
involved. Supermodules B and C were most closely associated with apoptosis, which is
supported by the available literature on the genes controlled by these modules. The
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propagation of apoptotic and antiapoptotic pathways in mammalian cells through signal
transduction pathways is well-described. In reovirus-induced cell death, genes involved in
signaling can be resolved on the basis of the modules and supermodules in their 5’ upstream
regions. For example, the genes associated with interferon signaling including, ISG15,
IFIT1, IFI44 and IFRD1 appear to be controlled supermodule A, but IFI44 and IFRD1 by
supermodule D, and RI58 by supermodule B. Since all of these genes are associated with
interferon-related signaling, their upstream modular architecture hints at the existence of
alternative pathways for regulating their transcriptional activity. Interferon signaling
pathways have previously been shown to play a key role in reovirus-induced myocardial
injury and inflammatory responses [39-43]. These genes also share similar consensus
control elements with genes involved in different processes, creating a highly interconnected
network for controlling their transcriptional modulation.

We summarize the association of supermodules with biological processes in Table 3 and
Table 4 in the context of a transcription control network as follows: Genes controlled by
supermodules B and C are associated with signal transduction, antiviral defense and cell
cycle regulation. Supermodules B and C act as a potential “switchboard” for transcriptional
regulation. Similarly, supermodule A is associated with a subset of signal transduction and
antiviral defense pathways but it is also associated with distinct processes like
transcriptional regulation and cytoskeletal rearrangement. Module D stands apart because its
regulatory targets are involved in distinct processes including, DNA repair, lipid
metabolism, cell proliferation and protein biosynthesis. The involvement of some
supermodule-regulated genes in opposing processes like proapoptosis and antiapoptosis is
not discordant. For example, genes involved in sensing DNA damage and initiating repair
mechanisms after irradiation can also function later as triggers for cell death if the repair
mechanisms are unsuccessful [44]. Therefore analyzing modules and supermodules from
gene expression data can aid in deciphering the complex genetic regulatory network of a
living systems in a novel way.

It is important to emphasize that all modules and supermodules may not be biologically
relevant in transcriptional control alone. Module 10 and supermodule D, which are both
statistically under-represented in the differentially expressed genes, are a possible example
of this. On the other hand, their slight over-representation in the unchanged genes and their
associated GO processes may suggest their role in regulating “housekeeping” functions.
Further analysis of modules, their organization and their putative regulatory elements with
novel algorithms will aid in elucidating the finer details of cis-regulatory control.

A preliminary analysis of the predicted transcription factor binding sites the consensus
sequence for each module suggests the presence of both NF-κB and c-Jun controlled
apoptosis. Modules 2, 4, 5 and 10 have multiple matches against the NF-κB consensus-
binding site. The genes downstream from supermodules B and C, which contain the above
modules, are closely linked to apoptosis, inflammation, viral infection response, and cell
cycle arrest [45, 46]. The involvement of both c-Jun and NF-κB mediated signaling is
known to be critical in the onset of reovirus-induced apoptosis: The targeted disruption of
NF-κB activation results in the inhibition of programmed cell death. The potential binding
sites for c-Jun (in modules 2, 3, 5 and 6) suggest a subtle difference in the distribution of
NF-κB and c-Jun binding sites among the supermodules. This may be important because the
differential activation of these two transcription factors in response to reovirus infection is
associated with differences in cell fate. For example, the transient activation of NF-κB and
sustained AP-1 activation is associated with apoptosis in hepatocytes, whereas prolonged
NF-κB activation and a lack of AP-1 activation results in proliferation [47]. Furthermore,
TNFR1 mediated signaling during hepatitis virus C infection increases the transcript levels
of NF-κB and AP-1 through the activation of IκB kinase and JNK [48]. The balance
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between these two mechanisms during the response to reovirus infection can determine
shifts in the cellular commitment for apoptosis or for survival. Therefore further analysis of
the distribution of potential transcription factor binding sites in modules could help elucidate
the control of gene expression by signaling pathways at a finer level.

The results in Table 1 and in Table 2 indicate that modules and supermodules are found in
differentially expressed genes as well as genes that are unchanged in expression or
transcriptionally inactive. A possible explanation is that genes sharing common regulatory
modules can be subject to different transcriptional enhancement or repression mechanisms.
For example, the mechanisms of enhancement and repression can be controlled by variable
transcription factor binding sites within the modules or outside the modules. This is
plausible, since individual transcription factors can recognize variable sequence motifs, and
the differential binding of these proteins to their target sites can alter the expression of their
downstream genes. Another explanation emerges from the use of stringent statistical criteria
for identifying differential expression, and the limited sensitivity of Affymetrix gene array
technology for identifying subtle transcriptional changes. Both factors could account for
incorrect categorization of many biologically relevant genes as being unchanged in
expression. These are important issues, which we are addressing in ongoing research.

The complex combinatorial nature of transcription regulation events is likely to represent the
norm in higher order eukaryotic organisms, especially when addressing complex cellular
events such as the response to pathogen infection. This stems in part from the nature of the
protein complexes involved in the regulation process and that are involved in the execution
of the instructions within the genetic regulatory logic apparatus. Rather than focusing on
individual transcription factors we explored the occurrence patterns and frequencies of the
identified individual predicted regulatory elements and their higher organization. The
organization of individual modular elements into supermodules follows the same spatial
constraint rule, i.e. the modules occur in the same order within a given supermodule. Also,
the distance between individual modules across the genes that share it is conserved, with the
distance variation between supermodules being very small. We believe that it is the specific
patterns of transcription factors binding in the modules and supermodules that ultimately
determine the pattern of gene expression induced in a cell in response to a stimulus such as a
viral infection. However, it is likely that the spatial arrangement of modules and their
orientation and location in relation to the transcription start site also play a significant role.

Expression analysis using gene arrays suggests that reovirus infection induces alterations at
the transcriptional level on a limited set of genes known to participate in cell cycle
regulation, interferon-related response and apoptosis, among other processes. To resolve the
transcriptional response in terms of signaling pathways, however, the cis-regulatory analysis
of modules and supermodules proves to be very useful. Further analysis of the regulatory
elements within modules can be used to understand the putative transcription factor binding
sites and to identify possible mechanisms for signal transduction pathways controlling gene
expression. The pathways identified in this work are consistent with results from previous
studies indicating the involvement of the G2/M cell cycle arrest mechanisms and signal
transduction via FasL and TRADD [49]. The role of interferon-mediated signaling has been
previously associated with reovirus infection events [39-43], possibly via an autocrine
feedback loop. Our work independently elucidates the known processes involved in reovirus
infection and also suggests the possibility of a broader transcription control network
involving signaling pathways and gene regulation through supermodules.

We conclude that the integrated analysis of gene expression and the 5’ upstream genomic
regions in terms of modules is a powerful approach for elucidating signal transduction-
mediated activity in the response of cells to extracellular stimuli. The approach presented in
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this paper can be useful for the analysis of gene regulation from other large-scale expression
datasets.
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Fig. (1).
Flow chart showing the overall experimental design for analysis of reovirus-induced
changes in gene expression. HEK293 cells were infected with reovirus T3A. 24 hrs post-
infection cRNA was prepared from infected cell lysates. Gene expression was analyzed
using Affymetrix U95A (version 2) arrays. 90 probe sets corresponding to 64 distinct genes
were found to be differentially expressed following reovirus infection. 22 genes had
sufficient information available for extraction of 2000 bp of 5'-sequence upstream of the first
start codon. A bioinformatics program for motif discovery (MEME, http://meme.sdsc.edu </
exchweb/bin/redir.asp?URL=http://meme.sdsc.edu/>) was used to identify conserved
sequence motifs of 15-50 bp size (“modules”) within the 5'-upstream region of differentially
expressed genes. Transcription factor binding arrangement within modules was predicted
using the TRANSFAC database. Differentially expressed genes were also classified and
grouped using Ontoexpress, an online analysis tool based on the Gene Ontology annotation
database (See Materials and Methods and text for further details).
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Fig. (2).
(a) Schematic showing the 10 most significant modules in the 22 analyzed genes that were
differentially expressed during reovirus infection. Each module is represented by a different
colored block, and the sequential arrangement of these modules within the 2000 bp's 5'-
upstream of the first start codon of each differentially expressed gene is shown.
Supermodules are composed of sets of modules in a particular arrangement. The
arrangement of modules characterizing four supermodules (A-D) is shown at the bottom of
the figure, and the presence of each of these supermodules within the 22 genes is shown at
the right of the figure. (b) The size of each module shown in (a) is indicated along with the
log-likehood ratio and E-value for its occurrence.
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Fig. (3).
A schematic illustrating the pattern of putative regulatory elements found in module 2. The
two elements (AP-1 and NF-κB) shown in dark blocks are known to be regulated during
reovirus infection of cells.
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Table 2

Representation of Modules and Supermodules in Different Expression Categories

Module Rde Ruc Roff

1 1.64 1.06 0.91

2 1.04 1.07 0.89

3 1.55 1.09 0.86

4 1.16 1.05 0.91

5 1.42 1.05 0.92

6 1.94 1.02 0.96

7 1.72 1.08 0.87

8 1.46 1.1 0.84

9 1.12 1.04 0.93

10 0.84 1.07 0.89

A: (3 7 1 5) 8.18 1.07 0.83

B: (1 5 6) 6.17 1.06 0.86

C: (9 2 8 4 2 8) 7.78 1.13 0.74

D: (10 10 10) 0.74 1.1 0.84

R̄ 2.77 1.07 0.88

σ R 2.68 0.03 0.05

Rmax 8.18 1.13 0.96

Rmin 0.84 1.02 0.74

The table summarizes the likelihood ratios of the observed and expected counts for each module and supermodule in the 5’ upstream regions of the
genes in each of the three expression categories: differentially expressed (de), unchanged (uc) and not expressed (off). The first column in the table
from left to right is Module, which is the label of the module or sequence of supermodules. Columns two to four show the ratios of the observed

and expected counts for each module and supermodule in the three expression categories, denoted by Rα where α = (de;uc;off). The ratios are
computed using data from Table 1.
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