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Positive feedback produces broad distributions in maximum activation
attained within a narrow time window in stochastic biochemical reactions
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How do single cell fate decisions induced by activation of key signaling proteins above threshold
concentrations within a time interval are affected by stochastic fluctuations in biochemical reactions?
We address this question using minimal models of stochastic chemical reactions commonly found in
cell signaling and gene regulatory systems. Employing exact solutions and semi-analytical methods
we calculate distributions of the maximum value (N) of activated species concentrations (Pmax(N))
and the time (t) taken to reach the maximum value (Pmax(t)) within a time interval in the minimal
models. We find, the presence of positive feedback interactions make Pmax(N) more spread out with a
higher “peakedness” in Pmax(t). Thus positive feedback interactions may help single cells to respond
sensitively to a stimulus when cell decision processes require upregulation of activated forms of
key proteins to a threshold number within a time window. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4772583]

I. INTRODUCTION

Decisions made at the single cell level enable organisms
to respond to changes in the local environment. Such de-
cisions are usually processed upon upregulation of specific
proteins, transcription factors, or soluble molecules that help
cells to communicate with each other. These activation events
often require concentrations of few key proteins to reach a
threshold level within a time window. Examples of such re-
sponses include, activation of immune cells such as T cells
triggered by a threshold number of pathogenic peptides,1 all
or none maturation of oocytes in the frog Xenopus laevis in-
duced by different concentrations of progesterone,2 or switch-
like activation of Lac genes regulating lactose metabolism
produced by a threshold concentration of stimulus in E. coli.3

However, every cell in a cell population interacting with
stimuli possesses unique temporal profiles of concentrations
of activated signaling molecules or genes. This cell to cell
variability in the kinetics occurs due to the inherent stochas-
tic nature of associated biochemical processes (or intrinsic
noise)4–6, 8 and variations in expression levels of genes and
proteins (or extrinsic noise).8 Therefore, the threshold for ac-
tivation for a specific signaling molecule and the time window
within which the signaling molecule should be activated to
influence cell functions can change from cell to cell.2, 28 How
do nonlinearities commonly found in biochemical signaling
networks, such as positive feedbacks, help cells to respond to
these variations? We address this question in the article, in
particular, we investigate the role of positive feedback inter-
actions which are often responsible for producing all or none
responses in signaling or gene regulatory kinetics. We use a
minimal model for a linear and a positive feedback interac-
tion in a simple chemical reaction describing activation of a
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single chemical species representing a key signaling protein
or a gene. Since many positive feedback interactions1, 2, 7 can
be reduced to this form the results from the model will be
relevant for a wide range of biological systems.

We consider a minimal biochemical process, C �C∗,
describing production and deactivation of the activated
species C* which needs to reach a threshold concentration
(say N) in a time interval [0, T] in order to mediate a functional
response. Due to the stochastic fluctuations in the kinetics, the
threshold concentration of C* could occur at different times
(Fig. 1) or even stay below the threshold level in the time win-
dow. Therefore, knowing the distribution of the number (n) of
C* molecules at a time T will not reveal if the concentration
of C* attained the threshold level at an earlier time. However,
knowledge of the joint distribution of the maximum number
(N) of C* and the time t (0 ≤ t ≤ T) when this value was
attained in a temporal profile describing the kinetics of C*
in a single cell will inform us if the cell was able to cross the
threshold in the time interval [0, T]. Such distributions are reg-
ularly dealt with in extreme value theory where extreme value
distributions for identically distributed independent random
variables have been studied extensively.9 Analysis of extreme
value distributions for correlated random variables has been a
topic of intense research in the recent years due to its applica-
tion in physics,10, 11, 18, 19, 24 climate science,25 finance,15 and
population13, 16 and cell biology.14 Application of such distri-
butions in stochastic biochemical reaction kinetics has been
initiated only recently.17 Interestingly, it has been found that
for strongly correlated random variables in different types of
random walks or fluctuating interfaces extreme value distribu-
tions can display simple one parameter scaling behavior.10, 11

We solve the master equation associated with the mini-
mal model and calculate the joint probability distribution for
C* attaining a maximum value N at time t in the time in-
terval [0, T] exactly analytically and semi-analytically. We
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FIG. 1. Three different temporal profiles of the number (n) of C* molecules
that attain a maximum value N = 10 in the time interval [0, T]. Each profile,
representing activation of C* in a single cell, shows cell to cell variation of the
time t when the maximum value was reached. The stochastic trajectories were
obtained by performing a Gillespie simulation23, 26 of the chemical reaction
C � C∗, where the system started with no C* molecules at t = 0 for the
parameters (described in Eq. (2)) k1 = 0.001, kp = 0.01, k−1 = 0.5, and N0
= 50.

show that when the system is far from the steady state, in
the presence of the feedback reaction, the distribution of the
maximum value N over the time interval [0, T] is spread out
over a broader range of N compared to the linear model. In
contrast, the distribution of the time t when the maximum
value occurred is much narrowly distributed in the presence
of the feedback. This suggests that feedback interactions can
help single cells to respond sensitively to weak stimulus with
a well-defined response time even in the face of stochastic
fluctuations.

II. RESULTS

A. Irreversible kinetics

In order to understand the role of stochastic fluctuations
in affecting the distribution of maximum value of C*, it will
be instructive to study the deterministic mass action kinetics
for the concentration of C* (or [C*]) in the reaction, C � C∗,
which is described by

d[C∗]/dt = (k1 + kp[C∗])[C] − k−1[C∗]. (1)

The total concentration, C0 = [C] + [C*], is always fixed,
and, the rates k1 and kp determine timescales for production
of C* from C via a linear first order reaction, and, a second or-
der reaction representing a positive feedback, respectively. C*
is converted back to C with a rate, k−1. These time scales in a
biological network can be regulated by the strength of a stimu-
lus that results in generation of C*, e.g., a weaker (or stronger)
stimulus would give rise to longer (or shorter) time scales for
production of C*. The rate equation contains a single stable
fixed point, and, thus starting with any initial concentration,
[C*] monotonically reaches a steady state determined by the
rate constants, and, C0. Consequently, if a reaction initiated
with a concentration [C*(t = 0)] < [C*(t → ∞)] is followed
until t = T, the maximum value of [C*], uniquely determined
by the rate constants, C0, and T, is reached at t = T. However,
in the presence of intrinsic stochastic noise fluctuations, the
maximum value of the concentration of C* or the time when
it is attained will vary in each stochastic “trajectory” (Fig. 1),

where every trajectory represents activation of C* in a single
cell. In this situation, P(n, t|m, 0), the conditional probabil-
ity of having n number of molecules of the C* species at any
time t starting with a distribution P(m, 0) at t = 0, follows the
master equation,

∂P (n, t |m, 0)

∂t
= (N0−n+1)(k1+kp(n−1))P (n−1, t |m, 0)

+ k−1(n + 1)P (n + 1, t |m, 0)−(k1(N0−n)

+ k−1n + kpn(N0 − n))P (n, t |m, 0) , (2)

where, N0 denotes the total number of molecules of C and C*
species. The distribution of the maximum number (N) of C*
molecules and the time when the maximum was reached in a
time interval [0, T] can be calculated by solving of the above
master equation and using the renewal equation,20, 21

P (n, t |m, 0) = QN (n, t | m, 0)

+
∫ t

0
dt ′ FN ( t ′

∣∣m, 0)P (n, t | N, t ′). (3)

Here, QN(n, t|m, 0) describes the probability of having n
molecules of C* species at time t, when an absorbing bound-
ary condition, QN(n, t|m, 0) = 0 for n ≥ N, is imposed. FN(t|m,
0) denotes the probability of arriving at the state n = N for the
first time at time t. If the time variable is Laplace transformed
in the renewal equation, then FN(s|m, 0) is related to P(N, s|m,
0) simply by, FN(s|m, 0) = P(N, s|m, 0)/P(N, s|N, 0). The un-
normalized joint probability distribution for attaining a maxi-
mum value N at time t in the time interval [0, T] is then given
by

EN (T , t |m, 0) =
N∑

n=0

FN ( t |m, 0)QN+1(n, T | N, t) . (4)

We then calculate the un-normalized distribution of the max-
imum value N over the time interval [0, T], i.e.,

Pmax(N, T ) =
∫ T

0
dt EN (T , t |m, 0) (5)

and the un-normalized distribution of the time t when the
maximum value occurred given by

Pmax(t, T ) =
N0∑

N=m+1

EN (T , t |m, 0). (6)

We first consider the case where the production of C*
occurs irreversibly, i.e., k−1 = 0. In this limit, EN(T, t, |m,
0) can be evaluated analytically as calculations simplify due
to the following relations: P(N, T|m, 0) = 0 for m > N,
thus, QN + 1(N, T|m, 0) = P(N, T|m, 0) for m ≤ N. Con-
sequently, the joint probability distribution can be expressed
as EN(T, t, |m, 0) = FN(t|m, 0)P(N, T|N, t). This essentially
implies that the probability of having a maximum value N
at time t is the probability the state n = N was attained at
time t for the first time and then no reaction occurred in the
time interval T − t. Next we calculate these distributions
for the linear and the feedback models by solving Eq. (2)
for k−1 = 0.

In the absence of the positive feedback (kp = 0),
the exact solution of the master equation in Eq. (2)
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yields, P (N, t | m, 0)=N0−mCN0−N e−(N0−N)k1t (1− e−k1t )N−m,
where, P(m, 0) = δm, 0. The first passage time distribution is
given by, FN(t|m) = (N0 − N + 1)k1P(N − 1, t|m, 0), there-
fore, EN(T, t, |m, 0) = k1(N0 − N + 1)P(N − 1, t|m, 0)P(N,
T|N, t). Thus, Pmax(N, T) = P(N, T|m, 0), and, Pmax(T , t)
= (N0 − m)e−k1t

(
1 + e−k1T − e−k1t

)N0−(m+1)
(see Ref. 27 for

additional details). In the presence of the feedback, Eq. (2) can
be solved exactly by Laplace transforming the time variable.
We consider the “feedback only” (k1 = 0 and kp �= 0) case to
exclusively interrogate the role of the positive feedback. The
exact solution for the time dependent probability distribution
for m = 1 is given by

P (N, s|1, 0) = kN−1
p (N − 1)!2 N0−1CN0−N

×
N∏

r=1

1

(s + kpr(N0 − r))
. (7)

The calculation of the inverse Laplace transformation of
the above equation is tedious but straightforward and, since
the poles of P(N, s|1, 0) at two different values of r can
be equal, the probability distribution contains terms which
are product of linear and exponential functions of t (de-
tails in Ref. 27). The first passage time distribution for this
case is given by, FN(t|m) = kp(N − 1)(N0 − (N − 1))P(N
− 1, t|1, 0), therefore, EN (T , t, |1, 0) = kp(N − 1)(N0

− (N − 1))P (N − 1, t | 1, 0)e−kpN(N0−N)(T −t). As in the lin-
ear model we find, Pmax(N, T) = P(N, T|1, 0). However,
Pmax(t, T) does not possess a simple expression as the linear
model. The shapes of the distributions, Pmax(N, T) and Pmax(t,
T), depend on N0 and the dimensionless variable, τ = kpT (or
k1T for the linear model). In order to compare the distributions
for the pure feedback and the linear models, we chose an end
time T, where the average number of C* molecules was the
same for both the models. Figure 2(a) shows the maximum
value is distributed more evenly across different numbers of
C* molecules in the presence of the feedback compared to
the linear model, in contrast, Pmax(t, T) (Fig. 2(b)) is more
sharply peaked for the feedback model, indicating that once
the first molecules of C* are produced the positive feedback
leads to fast production of C* molecules giving rise to a peak
at t = T. The variation (inset, Fig. 2(a)) of the Fano factor, f
= (〈N2〉 − 〈N〉2)/〈N〉, which quantifies if a distribution is
broader than a Poisson distribution (where, f = 1), with 〈N〉 at
different times shows that Pmax(N, T) is more spread out for
the pure feedback model as long as the system is away from
the steady state. As the system approaches the steady state,
due to the irreversibility in the reactions, all the C molecules
are converted into C*, i.e., P (N, t → ∞|m, 0) → δN,N0 , and
then f decreases and become comparable for both the mod-
els. We used kurtosis (K) defined as K = μ4/σ 4 − 3, where,
μ4 and σ 2 denote the 4th cumulant and the variance, re-
spectively, to quantify the “peakedness” and the presence of
“heavy tails”22 in Pmax(t, T) compared to a Gaussian distribu-
tion (K = 0). The pure feedback model produces much larger
values of K at different values of 〈N〉 compared to the linear
model (inset, Fig. 2(b)) indicating higher “peakedness” of the
distributions in the presence of the feedback.

FIG. 2. Comparison between the feedback and the linear model when k−1
= 0, N0 = 21, and P(m, 0) = δm, 1. The results from the exact solutions
(solid lines: feedback model; dashed lines: linear model) are compared with
Gillespie simulations23, 26 of the reactions for the feedback (◦) and the lin-
ear (�) model. Data from the Gillespie simulations are averaged over 106

stochastic trajectories. (a) Shows Pmax(N, T) at T = 10 for the feedback (kp

= 0.01) and the linear (k1 = 0.9699) models where both the models pro-
duce the same values of 〈N(T)〉. (Inset) Variation of the Fano factor f with
〈N(T)〉 calculated from Pmax(N, T) at different times for the same param-
eter values as in (a). The feedback model (solid line) displays larger val-
ues of f as compared to the linear model (dashed line) until the systems
reach the steady states. (b) Pmax(t, T) vs t at T = 10 for the linear and the
feedback models. The other parameters are the same as in (a). The point at
t = 0 shows the probability for the n = 1 state to remain in the same state until
t = T. (Inset) Variation of kurtosis K with 〈N(T)〉 as T is increased. The feed-
back model displays larger values of K indicating presence of larger peaks
and heavy tails in Pmax(t, T).

The above results become evident at the limit, N0 → ∞,
k1N0 → k̃1, and kpN0 → k̃p. Then the probability distribu-
tion, P(n, t|m, 0), follows a simple functional form for both
the models. In the linear model,

Pmax(N, T ) = k̃N−1−m
1 e−k̃1T (k̃1T )N−m/(N − m)! (8)

and

Pmax(T , t) = e−k̃1(T −t) , (9)

whereas, in the model with pure feedback,5

Pmax(N, T ) = m(m + 1) · · · (N − 1)

× (1 − e−k̃pT )N−me−k̃pmT /(N − m)! (10)

and

Pmax(T , t)=me−mk̃pT e−k̃p(T −t)[1−(1−e−k̃p t )e−k̃p(T −t)]−(m+1).

(11)
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Calculation of the Fano factor (f) for Pmax(N, T) shows that,
f = k̃1T/(m + k̃1T ) < 1 and f = ek̃pT − 1 for the linear and
the feedback model, respectively; clearly demonstrating that
Pmax(N, T) contains more variation in N for the feedback
model for T > 1/k̃p. On the other hand, the denominator in
Pmax(t, T) for the feedback model decreases as t approaches
T making the distribution more sharply peaked at t = T com-
pared to the linear model. These results point to the following
physical understanding. For the feedback model, the probabil-
ity (∝ e−nk̃p�t ) to remain in the state n for a time interval �t
decreases with n, whereas this probability (∝ e−k̃1�t ) is inde-
pendent of n for the linear model. Therefore, in the feedback
model, the states with smaller values of n spend large fraction
of their time initially in waiting for the first reactions to occur,
and then at times closer to the end time T, as these states move
to larger values of n, the next reactions take place in rapid suc-
cessions. This produces a large range of values of maximum
values N in the time interval [0, T] but a sharp peak in Pmax(t,
T). In contrast, in the linear model a state with n molecules
moves to the next higher state (n + 1 molecules) with a con-
stant rate, so at t = T all the states reside close to the average
value of C*. In addition, since the waiting time for next reac-
tion to occur does not depend on n, Pmax(t, T) is more spread
out. We expect these features to persist even in the presence
of a non-zero de-activation rate, as long as, the time scales
for the feedback reactions are smaller than the de-activation
time scale. These results suggest the following biological
significance. During early signaling events, if the rate of
de-activation is slower than that of activation, then in time
scales smaller than that of deactivation the presence positive
feedback interactions can help cells to achieve a wide range of
activation within a narrow response time even in the presence
of stochastic fluctuations. In Sec. II B, we will show that the
main features of the distributions Pmax(N, T) and Pmax(t, T)
persist even in the presence of a non-zero de-activation rate.

B. Reversible kinetics

In the presence of a non-vanishing rate of de-activation
(i.e., k−1 �= 0), the number of C* molecules can decrease af-
ter attaining the maximum value, therefore, the simple rela-
tionships between the P(n, t|m, 0) and the maximum value
distributions as in Sec. II A no longer hold. Moreover, it be-
comes difficult to analytically solve the master equation ex-
actly when the positive feedback is present. Therefore, we
calculated the maximum value distributions semi-analytically.
We briefly outline the method here, the details of the calcula-
tions are shown in Ref. 27. The master equation in Eq. (2) can
be cast as an operator equation21 described by

∂ |P (t)〉/∂t = L |P (t)〉 , (12)

where, 〈n|P(t)〉 = P(n, t|m, 0) and (L)nn′ = (N0 − n′)
(k1 + kpn′)δn′, n−1 + k−1n

′δn′, n+1 − (k1(N0 − n) + k−1n +
kpnn′)δn′, n. We solve the above equation by numerically
evaluating the right (|Rr〉) and left (〈Lr|) eigenvectors, and the
eigenvalues ({λr}) of the operator, L. The solution of the mas-
ter equation then can be written as 〈n|P (t)〉 = P (n, t |m, 0)
= 〈n|eL t |P (0)〉 = ∑N0

r=0 eλr t ar (0) 〈n|Rr〉 = ∑N0
r=0 ar (t)Rrn,

where |P(0)〉 describes the probability distribution at

t = 0 and Rr n = 〈n |Rr〉 . {an(0)} is calculated from
the initial condition. The same scheme is used to cal-
culate the probability distribution, QN(n, t|m, 0) using
QN (n, t | m, 0) = ∑N0

r=0 eλ
(N)
r t a(N)

r (0)R(N)
r n , where {λ(N)

r } and
{R(N)

r n } are the eigenvalues and eigenvectors of L with an ab-
sorbing boundary condition at n = N, respectively. We define
the survival probability, SN ( t |m, 0) = ∑N

n=0 QN (n, t | m, 0),
which can be used to evaluate the first passage time dis-
tribution, FN(t|m, 0), following the relation, FN(t|m, 0)
= −∂SN/∂t. The maximum value distribution functions are
then calculated using the following equations:

Pmax(N, T ) =
∫ T

0
dtFN (t |m, 0)SN+1(T − t |N, 0) (13)

and

Pmax(T , t) =
N0∑

N=m+1

FN ( t |m, 0)SN+1(T − t | N, 0). (14)

The shapes of the probability distributions, P(n, t|m, 0)
and EN(t, T|m, 0), depend on the dimensionless parameters,
kpt, k1/kp and k−1/kp for the feedback model and k1t and k−1/k1

for the linear model. We varied k−1 as well as t and T in the
models to investigate the effect of the de-activation rate on the
above distributions. We kept k1/kp fixed to a small non-zero
value (0.01) with two goals in mind: (i) prevent the n = 0
state from becoming an absorbing state, (ii) to exclusively
study the effect of the feedback; when k1/kp  1, the feedback
model starts behaving like the linear model. The presence of
a non-zero de-activation rate makes Pmax(N, T) different than
P(n, T|m, 0) (Fig. 3(a)), since P(n, t|m, 0) no longer vanishes
for m > n. The non-zero deactivation rate can give rise to bi-
modal distributions for P(n, T|m, 0) (Fig. 3(a)) in the feedback
model, which is purely generated due to stochastic fluctua-
tions since the deterministic rate equation (Eq. (1)) does not
possess any bistability. Pmax(N, T) can also show a bimodal
distribution as P(n, T|m, 0). However, the peaks in Pmax(N,
T) occur at larger values of N compared to the values of n
where P(n, T|m, 0) is peaked. This behavior is produced by
stochastic trajectories that attained the maximum value n = N
at times earlier than T. Since C* in the linear and the feedback
models can attain the state n = N0 with a non-vanishing prob-
ability, Pmax(N, T ) → δN, N0 as T → ∞ in both the models,
making the distributions similar for both the models at long
times. Therefore, the bimodal distribution in Pmax(N, T) for
the feedback model will be transient. These results can have
implications for transient bimodal distributions observed in
experiments when the underlying signaling network predicts
steady state bimodal distributions. In such experiments, acti-
vation of the cells could be caused by a key signaling pro-
tein crossing the activation threshold for the first time, conse-
quently, the distribution of activated cells will be represented
more appropriately by Pmax(N, T) instead of P(n, T|m, 0). Next
we calculated Pmax(t, T) using Eq. (14). As in the irreversible
case, the distribution, Pmax(t, T), shows a higher peakedness
for the feedback model as compared to the linear model
(Fig. 3(b)). The larger values of the Fano factor (f) for the
distribution Pmax(N, T) for a range of de-activation rates
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FIG. 3. Comparison of the distribution functions Pmax(N, T) and Pmax(T, t)
between the feedback and the linear models for non-zero de-activation rates
(k−1 �= 0). The results are shown for N0 = 21 and an initial distribution of
C* given by P(m, 0) = δm, 0 for both the models. (a) Variation of Pmax(N, T)
with N at T = 200 for the feedback (kp = 0.01 , k−1 = 0.1, and k1 = 0.001)
and the linear model (k−1 = 0.01 and k1 = 0.00269) where both the mod-
els produce the same values of 〈N(T)〉. Data from Gillespie simulations,23, 26

averaged over 106 stochastic trajectories, for the feedback (◦) and the linear
(�) models are compared with the semi-analytical calculations (dark solid
lines: feedback; dark dashed lines: linear). P(n, T|m, 0), calculated using the
semi-analytical scheme for the feedback (gray solid line) and the linear (gray
dashed line) models, are compared with Pmax(N, T). (b) Variation of Pmax(t,
T) with t at T = 200 for the linear and feedback models. The results from
the semi-analytical calculations are shown in dark solid and dashed lines for
the feedback and the linear models, respectively. Pmax(0, T) for the feedback
model showing the probability of the system to remain at the initial state (m
= 0) until time t = T is finite and is not shown on the graph. Data from Gille-
spie simulations, shown using the same visualization scheme as in (a), are
compared with the semi-analytical calculations. All the parameters used for
the calculations are the same as in (a).

(Figs. 4(a) and 4(c)) and end times T demonstrate that Pmax(N,
T) continues to have more variance for the feedback model
compared to the linear model as long as the system is away
from the steady state. The peakedness in Pmax(t, T) was char-
acterized by the kurtosis, K, as in Sec. II A. The feedback
model produces positive and substantially larger values of K
than that for the linear model (Figs. 4(b) and 4(d)), where, for
most of the parameter values, K is negative, indicating a flatter
distribution compared to a Gaussian distribution. Therefore,
the above results demonstrate that even in the presence of de-
activation of signaling molecules, the presence of the positive
feedback prepares the single cells to respond to a wide range
of activation thresholds in a well-defined time window in a
noisy environment.

FIG. 4. Comparison of the shapes of the distributions Pmax(N, T) and Pmax(T,
t), characterized by Fano factor, f, and kurtosis, K, respectively, between the
feedback and the linear models for non-zero de-activation rates (k−1 �= 0).
The results shown are calculated using the semi-analytical scheme for N0
= 21 and an initial distribution of C* given by P(m, 0) = δm, 0. The results
from the feedback and the linear models are shown with filled circles and
filled squares, respectively. (a) Variation of the Fano factor, f, with 〈N(T)〉 at
different values of k−1 as T is increased uniformly (interval of 50) from 50–
1000 for the feedback and the linear model. The rates used for the feedback
model are given by, kp = 0.01, k1 = 0.001, and, k−1 = 0.01. The rates for
the linear model are set at k1 = 0.00269 and k−1 = 0.0005. The figure shows
that the values of f are substantially larger in the feedback model than that in
the linear model for the same values of 〈N(T)〉 as long as the system is away
from the steady state. (Inset) The average value of C*, 〈N(T)〉, calculated for
the same parameters used in (a), increases monotonically with T until the
system reaches the steady state for both the feedback (solid line) and the
linear (dashed line) model. (b) Variation of K with 〈N(T)〉 for the feedback
and the linear model are displayed using the same visualization scheme and
parameters as in (a). The feedback and the linear models produced large +ve,
and -ve values of K, respectively. We use log(K) scale for the +ve values of K
for better visualization. (c) Variation of the Fano factor (f) with 〈N(T)〉 for a
range of values of k−1. The points depicting variations of f with 〈N(T)〉 as T
is increased at a fixed value of k−1 are connected with solid lines. Increasing
values of k−1 are indicated by changing the shade of the symbols from dark
to lighter shades of gray. k−1 changes uniformly from 0.01 to 0.208 in an
interval of 0.018 for the feedback. For the linear model, k−1 changes evenly
from 0.0005 to 0.0995 in an interval of 0.009. All the other parameters for
both the models are held fixed at the values given in (a). (d) Variation of K
with 〈N(T)〉 for the feedback and the linear model displayed using the same
visualization scheme and parameters as in (c). The feedback and the linear
models produced large +ve, and -ve values of K, respectively. We use log(K)
scale for the +ve values of K for better visualization.

III. CONCLUSION

We have studied how commonly found nonlinear bio-
chemical processes in cell signaling and gene regulatory net-
works such as positive feedbacks influence single cell deci-
sion processes in the presence of stochastic fluctuations when
these decisions are regulated by key proteins attaining thresh-
old concentrations within a time window. We analyzed the
joint probability distribution of the maximum value of con-
centration of a molecular species and the time when the max-
imum concentration was reached instead of the probability
distribution of the concentration of the molecular species at
any time, as the later distribution does not contain informa-
tion regarding if the molecular species attained the threshold
concentration at an earlier time. We calculated the maximum
value distributions exactly and semi-analytically in minimal
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models that can effectively describe linear and positive feed-
back interactions in biochemical reactions found in a wide
range of cell signaling networks. In particular, we investi-
gated the role of positive feedback interactions in affecting
the shape of the maximum value distributions. We find that
in the presence of a positive feedback interaction the maxi-
mum values of concentrations of the activated species are dis-
tributed more broadly compared to the linear model when the
system is away from the steady state. However, the positive
feedback produces a narrower distribution in the time when
the maximum activation was achieved. Therefore, a positive
feedback interaction, even in situations when stochastic fluc-
tuations dominate signaling kinetics, provides cells the abil-
ity to respond when specific cellular proteins need to attain a
wide range of threshold concentrations within a narrow time
window to influence cell decision processes. This property
of the positive feedback could play an important role when
a cell population has to sensitively respond to a weak stim-
ulus. The biological significance of the presence of a “heavy
tail” at time scales smaller than the most probable time scale
in Pmax(t, T) in the presence of positive feedback interactions
is less evident. Perhaps, the positive feedback helps create a
small reservoir of cells that can react to very weak stimuli
with a range of relatively smaller response times when the
majority of the cells in a cell population are destined to re-
spond at a much longer biologically irrelevant time scale. The
probability distributions calculated from the solutions of the
master equations for the minimal models indicate presence of
multiple time scales in the system. It will be interesting to see
if this can produce multi-scaling behavior12 in extreme value
distributions in such chemical reactions in general. Such ex-
amples will be qualitatively different than extreme value dis-
tributions in standard Brownian motion11 or models of fluc-
tuating interfaces10 which display single parameter scaling.
In addition, the minimal models studied here are embedded
in larger biological networks which ultimately determine cell
fate responses; therefore, it will be important to investigate
the behavior of maximal value distributions when the mini-
mal models are connected to a larger network.

ACKNOWLEDGMENTS

This work was funded by the Research Institute
at the Nationwide Children’s Hospital and a Grant No.

(1R56AI090115-01A1) from the National Institutes of Health
(NIH). I thank C. Jayaprakash and M. Kardar for discussions,
S. Mukherjee for help with LAPACK routines, and anonymous
reviewers for their helpful comments. This work is dedicated
to my parents.

1J. Das, M. Ho, J. Zikherman, C. Govern, M. Yang, A. Weiss, A. K.
Chakraborty, and J. P. Roose, Cell 136, 337 (2009).

2J. E. Ferrell, Jr. and E. M. Machleder, Science 280, 895 (1998).
3T. S. Gardner, C. R. Cantor, and J. J. Collins, Nature (London) 403, 339
(2000).

4C. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and
Natural Sciences (Springer-Verlag, Heidelberg, 2004).

5M. Delbruck, J. Chem. Phys. 8, 120 (1940).
6H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.A. 94, 814
(1997).

7L. S. Weinberger and T. Shenk, PloS Biol. 5, e9 (2007).
8P. S. Swain, M. B. Elowitz, and E. D. Siggia, Proc. Natl. Acad. Sci. U.S.A.
99, 12795 (2002).

9E. J. Gumbel, Statistics of Extremes (Dover, New York, 2004).
10S. N. Majumdar and A. Comtet, Phys. Rev. Lett. 92, 225501

(2004).
11S. N. Majumdar, J. Randon-Furling, M. J. Kearney, and M. Yor, J. Phys. A

41, 365005 (2008).
12L. P. Kadanoff, Chin. J. Phys. 29, 613 (1991), accession number

WOS:A1991GU01300006.
13J. H. Gillespie, Theor Popul. Biol. 23, 202 (1983).
14A. Kosmerlj, A. K. Chakraborty, M. Kardar, and E. I. Shakhnovich, Phys.

Rev. Lett. 103, 068103 (2009).
15P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events

for Insurance and Finance (Springer, Berlin, 2004).
16H. A. Orr, Evolution 56, 1317 (2002).
17M. Artomov, M. Kardar, and A. K. Chakraborty, J. Chem. Phys. 133,

105101 (2010).
18T. W. Burkhard, G. Gyorgyi, N. R. Moloney, and Z. Racz, Phys. Rev. E 76,

041119 (2007).
19S. Redner, A Guide to First-Passage Processes (Cambridge University

Press, Cambridge, 2001).
20N. Goel and N. Ritcher-Dyn, Stochastic Models in Biology (Academic,

New York, 1974).
21J. Honerkamp, Stochastic Dynamical Systems (VCH, New York,

1993).
22L. T. DeCarlo, Psychol. Methods 2, 292 (1997).
23D. T. Gillespie, J. Chem. Phys. 81, 2340 (1977).
24J.-P. Bouchaud and M. Mezard, J. Phys. A 30, 7997 (1997).
25R. W. Katz and B. G. Brown, Clim. Change 21, 289 (1992).
26M. Lis, M. N. Artyomov, S. Devadas, and A. K. Chakraborty, Bioinformat-

ics 25, 2289 (2009).
27See supplementary material at http://dx.doi.org/10.1063/1.4772583 for

additional details.
28A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, Proc. Natl. Acad. Sci.

U.S.A. 102, 18926 (2005).

http://dx.doi.org/10.1016/j.cell.2008.11.051
http://dx.doi.org/10.1126/science.280.5365.895
http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1063/1.1750549
http://dx.doi.org/10.1073/pnas.94.3.814
http://dx.doi.org/10.1371/journal.pbio.0050009
http://dx.doi.org/10.1073/pnas.162041399
http://dx.doi.org/10.1103/PhysRevLett.92.225501
http://dx.doi.org/10.1088/1751-8113/41/36/365005
http://dx.doi.org/10.1016/0040-5809(83)90014-X
http://dx.doi.org/10.1103/PhysRevLett.103.068103
http://dx.doi.org/10.1103/PhysRevLett.103.068103
http://dx.doi.org/10.1554/0014-3820(2002)056[1317:TPGOAT]2.0.CO;2
http://dx.doi.org/10.1063/1.3482813
http://dx.doi.org/10.1103/PhysRevE.76.041119
http://dx.doi.org/10.1037/1082-989X.2.3.292
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1088/0305-4470/30/23/004
http://dx.doi.org/10.1007/BF00139728
http://dx.doi.org/10.1093/bioinformatics/btp387
http://dx.doi.org/10.1093/bioinformatics/btp387
http://dx.doi.org/10.1063/1.4772583
http://dx.doi.org/10.1073/pnas.0509547102
http://dx.doi.org/10.1073/pnas.0509547102

