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Attempts to relate the perceptual dimensions of timbre to quantitative acoustical dimensions have

been tenuous, leading to claims that timbre is an emergent property, if measurable at all. Here,

a three-pronged analysis shows that the timbre space of sustained instrument tones occupies

5 dimensions and that a specific combination of acoustic properties uniquely determines gestalt

perception of timbre. Firstly, multidimensional scaling (MDS) of dissimilarity judgments generated

a perceptual timbre space in which 5 dimensions were cross-validated and selected by traditional

model comparisons. Secondly, subjects rated tones on semantic scales. A discriminant function

analysis (DFA) accounting for variance of these semantic ratings across instruments and between

subjects also yielded 5 significant dimensions with similar stimulus ordination. The dimensions of

timbre space were then interpreted semantically by rotational and reflectional projection of the

MDS solution into two DFA dimensions. Thirdly, to relate this final space to acoustical structure,

the perceptual MDS coordinates of each sound were regressed with its joint spectrotemporal

modulation power spectrum. Sound structures correlated significantly with distances in perceptual timbre

space. Contrary to previous studies, most perceptual timbre dimensions are not the result of purely tem-

poral or spectral features but instead depend on signature spectrotemporal patterns.
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I. INTRODUCTION

Timbre is foundational to the ability to identify sound

sources but may be one of the most intractable auditory per-

ceptions to investigate, due to dynamic contextual factors

that interact with the stable source modes in sound produc-

tion (Handel, 1995). Its definition is negatively posed as all

qualities of sound other than pitch, level, duration, and loca-

tion. Previous researchers making determinations of percep-

tual timbre space have relied on unlabeled judgments of

dissimilarity between tones produced by different musical

instruments, so as to avoid adjectives prejudicing listeners

toward arbitrary musical concepts as criteria for timbral

judgments (Grey, 1977). Researchers then used multidimen-

sional scaling (MDS) of the dissimilarity judgments to

describe perceptual timbre space.

The present work makes three major advances in the

characterization of perceptual timbre spaces. First, we com-

bine the MDS analysis with a discriminant function analysis

(DFA) of subsequent semantic ratings of the same sounds.

This allows us to validate the subjective experience described

by the MDS and also to obtain a semantic labeling of the

axes of the perceptual space. Furthermore, the use of a more

complete set of isolated sustained orchestral instrument

stimuli (42 tones) makes it possible to treat a wider and more

continuous scope of timbral differences (von Bismarck, 1974;

Gordon and Grey, 1978), many of which have broader behav-

ioral relevance as structural attributes of resonant sounds in

general.

Secondly, we perform a regularized regression analysis

to relate the perceptual MDS dimensions to the acoustic

properties of the sounds. Current literature describes timbre

as a combination of both spectral and temporal features of

sound (Sethares, 2005, pp. 27–32) but treats spectral prop-

erties separately from temporal properties (Peeters and

Deruty, 2010). By applying the spectrotemporal modulation

power spectrum (MPS) to the physical characterization of

instrumental sounds, our acoustical analysis advances the

first comprehensive and unified description of physical

sound structure causing listeners’ gestalt percept of orches-

tral timbre.

Thirdly, debate has been unable to resolve the dimen-

sionality of this perceptual space. Researchers have sug-

gested dimensionalities from 2 to 4 [2 dimensions: Rasch

and Plomp (1999) and Wessel (1979); 3 dimensions:

Gordon and Grey (1978), Grey (1977), Marozeau et al.
(2003), McAdams et al. (1995), and Plomp (1970); 4

dimensions: von Bismarck (1974) and Stepanek (2006)] but

have never advanced a rigorous analytical argument for the

claim. We solve this thorny issue by developing a novel

cross-validation methodology for a recently developed non-

classical MDS procedure. The cross-validation results are

confirmed by agreement with three further statistical proce-

dures: (1) a more classical MDS model selection, (2) a

significance test of the DFA of semantic ratings, and (3) the

regression analysis between MDS coordinates and acousti-

cal features. The consistency among these four statistical

procedures confirms that 5 dimensions are necessary and

sufficient to describe the perceptual timbre space of sus-

tained orchestral tones, a complex yet salient percept

underpinning the cognition of music.
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II. METHODS

A. Subjects

Subjects had at least 3 years of musical or acoustical

training (mean 6 s.d. 9 6 5.5 years) and were asked to

exclude themselves if they thought they might have any

hearing problems. The 33 subjects averaged 24 years in age;

14 were male and 19 female. Subjects gave written consent

as approved by the Committee for the Protection of Human

Subjects at the University of California, Berkeley.

B. Stimuli and presentation

We limited our study to the timbre of instruments found

in the Western orchestra and used professional recordings of

real instruments rather than synthetic sounds, to achieve

focused ecological validity. Our sample strove to encompass

the range of timbral perceptions at one pitch experienced by

typical listeners of orchestral music (Plomp and Steeneken,

1969). The drawback of using stimuli not easily synthesized

is the need for fine adjustments to normalize loudness, dura-

tion, and pitch.

Recordings that included sustained tones at E-flat in

octave 4 (above middle C) were selected from the McGill

University Master Samples collection (Opolko and Wapnick,

2006). The total of 66 recordings was reduced to a sample of

42 that would represent the variety of instruments and

include muted and vibrato versions where possible (noted

parenthetically as m and v, respectively): alto saxophone,

alto flute, alto shawm, bass flute (v), Bach trumpet, baritone

saxophone, Baroque alto recorder, Baroque tenor recorder,

bass viol, B-flat trumpet (m), bass clarinet, bassoon, C trum-

pet, C trumpet (m), cello, cello (v), cello (mv), Classical

oboe, cornet, double bass (m), double bass (v), E-flat clarinet,

English horn, French horn, French horn (m), flute, flute (v),

oboe, oboe d’amore, pan flute, soprano saxophone, soprano

crumhorn, tenor saxophone, tenor trombone, tenor trombone

(m), tuba, viola, viola (m), viola (v), violin, violin (m), violin

(v). Each tone was re-sampled such that the fundamental

peak in the spectral profile was shifted (� a whole tone) to

311 Hz.

Tone duration was subjectively shortened to 1 s in the

following way. Attack and decay beginning and end points

were noted subjectively by a third party. The Hilbert trans-

form of the tones yielded an envelope, and the decay portion

was extracted between the demarcated timepoints. The decay

envelope was re-scaled in level such that its initial amplitude

maximum was 1. The original envelope was then multiplied

by the scaled decay envelope starting at a timepoint such

that the total envelope length from beginning of attack to

end-point of the decay envelope multiplier would equal 1 s,

and the sound file was truncated at that point. An undesirable

consequence was that this operation failed to preserve the

potentially perceptible timbral phenomenon of individual

harmonics dropping out at different relative times. However,

this concern was surpassed by the concern that differences in

duration might dwarf less salient differences in decay; attack

properties are thought to more strongly influence perceptions

of instrument identity (Saldanha and Corso, 1964).

Tones were then normalized for A-weighted rms sound

level. Sounds were presented in a sound-attenuated booth,

over Sennheiser HD580 precision (16 subjects) or Sennheiser

HD250 linear II (17 subjects) headphones at a level set

according to listener comfort by initial subjects and calibrated

afterward to �65 dB SPL (B&K Level Meter, A-weighting,

measured with headphone coupler from B&K, peak level with

fast integration). Stimuli were controlled, and keyboard

responses recorded, using the Psychophysics Toolbox version

3 (Brainard, 1997) in MATLAB 7.6.0 (R2008a) on a personal

computer running Windows XP.

C. Experimental procedure

1. Dissimilarity judgments

Subjects first judged the dissimilarity of pairs of the normal-

ized orchestral instrument tones on a differential scale of timbre.

The 42 tone stimuli were divided into three groups of 14

tones, and each subject made every possible unidirectional

nonidentical pair-wise comparison (378) within a 28-tone sub-

set comprising two of these groups. Groups were counterbal-

anced among the 33 subjects, so that the 861 comparisons

possible among all 42 stimuli were represented >14 times in

the entire data set. The sequence of pairs was pseudorandom

and the first pair of stimuli reappeared at the end of the task,

so that the difference with the first presentation could be used

as a gauge of reliability (the mean difference on z-scored rat-

ings was 0.713, less than 1 s.d.). Only the final response was

taken for further analysis.

Instructions to subjects were, “Your task is to click menu

buttons to play two tones as many times as you would like in

order to judge how different they are in timbre. You will rate

the similarity of the pair of tones relative to that of all other

pairs of tones you’ve heard.” As training, subjects heard all of

the stimuli in a random order so that they could calibrate their

judgment of the average dissimilarity between tones. Subjects

were encouraged to take breaks (total sessions were �1.8 h).

For ease of comparison with previous studies (Wessel, 1979),

subjects made the similarity ratings on a scale of 0 to 9 by typ-

ing a single digit at the keyboard or number pad: 0¼ the same

instrument played in the same manner; 1 to 3¼ very similar

instruments, or one instrument played in slightly different

ways; 4 to 6¼ an average level of similarity; 7 to 9¼ very

dissimilar tones. The dissimilarity judgments were trans-

formed into z-scores for each individual.

2. Semantic judgments

Instructions on the qualitative task, performed after the

dissimilarity task on the same 28 tones, were to assign a

value to each tone on 16 semantic differential scales between

pairs of opposites (e.g., calm vs explosive). Pairs included

adjectives and parameters related to the tone color of the

sound, spectral and temporal fluctuation, and envelope shape

(see Fig. 1 for entire list). Subjects replayed each tone

ad libitum and placed it on the semantic scales by typing a

digit from 0 to 9 appearing between the pair of polar oppo-

site attributes: for example, “Pleasant 0 1 2 3 4 5 6 7 8 9

Unpleasant.” Tones were presented in random order.
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D. Perceptual analysis

1. Overview

Taking the two psychophysical tasks separately, first we

related tones in a gestalt perceptual space based on an MDS

of overall similarity, and second, we found verbally expressed

dimensions by plotting tones on discriminant functions of the

16 semantic scales. Finally, we transformed the perceptual

space so that instrument distances best matched their relations

within the semantic DFA.

2. MDS algorithm

We used an MDS algorithm developed and imple-

mented by de Leeuw and Mair (2009), called SMACOF,

because in contrast to the classical scaling method, this itera-

tive algorithm can perform a multi-way constrained MDS, in

which multiple dissimilarity ratings (i.e., from different sub-

jects) are used for each pair of stimuli. The constraint on the

individual solutions guarantees that they are simple linear

transformations (e.g., scaling and rotation) of a group solu-

tion (interpretable as a weighted and scaled average). The

original SMACOF algorithm can already incorporate miss-

ing ratings, but we modified it to implement transformations

for “left-out” subjects as a cross-validation, to obtain meas-

ures of predictive power. The algorithm is briefly described

here (de Leeuw and Mair, 2009), and our changes in the fol-

lowing section.

In metric MDS, the configuration space X is defined as

the position of n objects (here n instruments) in a Euclidean

space of p dimensions. The optimal configuration is the one

that minimizes the weighted (wij) sum of square errors

between the empirical dissimilarities, dij, and the distances,

dij, in the metric space. This error is called the stress and is a

function of X:

rðXÞ ¼
Xn

i¼1

Xn

j¼1

wij½dij � dijðXÞ�2:

The distances dij are the Euclidean distances:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

s¼1

ðxis � xjsÞ2
s

:

When multiple subjects, K, are taken into consideration, the

stress becomes:

rðXÞ ¼
XK

k¼1

Xn

i¼1

Xn

j¼1

wijk½dijk � dijðXkÞ�2:

Although each subject is allowed its own configuration, Xk,

it is constrained to be a linear transformation of a group con-

figuration, Z:

Xk ¼ CkZ:

This multi-subject algorithm takes three forms depending on

whether the linear transformation Ck is unrestricted [IDIOS-

CAL (Individual Differences in Orientation Scaling)],

diagonal [INDSCAL (Individual Differences in Scaling)], or

set to the identity (Carroll and Chang, 1970). Both the group

configuration, Z, and the transformation Ck are found by mini-

mizing the stress function using optimization by majorization.

In majorization, a two-argument function, s(X,Y), is designed

to be always greater than the function that is being minimized,

r(X), and equal when the two arguments are identical

r(X)¼ s(X,X). The advantage of majorization is that although

the minimum of r(X) cannot be found analytically, one could

find the minimum of s(X,Y) with respect to its first argument

X. One can then minimize r(X) by an iterative procedure: (1)

Initialize X and Y to X0; (2) Minimize s(X,Y) with respect to X
to find Xmin; (3) Set X1¼Xmin; (4) Repeat step 2 with s(X1,X1);

(5) Iterate until r(X) stops decreasing by a significant amount.

In the SMACOF algorithm, the (single-subject) stress is

rewritten in matrix notation and after normalization (i.e.,Pn
i¼1

Pn
j¼1 wijd

2
ij ¼ 1 as r ðXÞ ¼ 1þ trX

0
VX � 2trX

0
BðXÞX:

Here tr denotes the trace of a matrix, prime denotes its

transpose, and V is the “weight” matrix V¼
Pn

i¼1

Pn
j¼1 wijAij

with Aij¼ðei�ejÞðei�ejÞ0 where ei means a unit vector

along the dimension i. Similarly for the cross-product term,

B(X) must be defined as: BðXÞ¼
Pn

i¼1

Pn
j¼1 wijsijðXÞAij

where sijðXÞ¼dij=dijðXÞ if dij(X)>0 and 0 otherwise. The

majorization function is then given by:

sðX; YÞ ¼ 1þ trX
0
VX � 2trX

0
BðYÞY:

Minimizing s with respect to X gives the simple update rule:

Xmin ¼ V�1BðYÞY:

When multiple subjects are taken into account the same

equations are used but with a configuration supermatrix

X0 ¼ [X1 X2… XK]. Similarly V and B become block diagonal

supermatrices.

FIG. 1. Bivariate linear regression of semantic ratings on the 5 dimensions of

the perceptual timbre space in Fig. 9(a) shows distinct semantic contributions

to the primary 4 dimensions perceived. Black bars¼ rotated 5D MDS solution

D1; dark gray¼MDS D2; light gray¼MDS D3; and white¼MDS D4.
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The iterative process of majorization involves first

obtaining an initial classical MDS estimate (Torgerson,

1958, pp. 1–460) for the group space based on the mean dis-

similarities and setting all subject configurations to this

group space. The majorization step is then used to get better

configurations for each subject. The transformation Ck is

derived (and updated in later iterations) and a new group

configuration and individual configurations are obtained.

Optimal Ck are obtained for each subject by finding the best

projection onto scaled-and-rotated transformations of the

previous group space. The updated group space (Z) is then

obtained by inverting this transformation and applying to

each subject’s configuration and averaging. Each individual

configuration is then set again to be equal to Xk¼CkZ. The

iteration is then repeated until the stress fails to decrease. In

our study, we use an R2 measure to quantify the goodness of

fit. The R2 was defined as the proportional reduction in stress

from a null configuration where all instruments are at the

same location:

R2 ¼ rT � rðXÞ
rT

where rT ¼
XK

k¼1

Xn

i¼1

Xn

j¼1

wijkðdijkÞ2:

3. Cross-validation

Adding dimensions to the MDS will always reduce stress

or equivalently increase R2 between observed dissimilarities

and the estimated distances. To judge the predictive power of

each additional dimension, we used two methods: (a) we

modified the SMACOF routine provided by de Leeuw and

Mair (2009) to allow for cross-validation across subjects, and

(b) we evaluated the goodness of fit as gauged by the Aikake

Information Criterion (AIC) at different dimensions. The

added complexity of the SMACOF MDS model, inherent to

its efficient representation of each subject’s individual differ-

ence as a rotation and scaling from the group (or average)

MDS space, undermines the use of traditional model selection

methods like AIC on the MDS solution dimensionality.

a. SMACOF across-subjects cross-validation. During

cross-validation, we left out subjects singly from the optimi-

zation while still obtaining a configuration space for each

left-out subject as a basis for calculation of R2. In the multi-

subject algorithm INDSCAL (Fig. 2), we calculated a trans-

formation Ck for the left-out subject that distinguished the

group configuration of the others from the SMACOF solu-

tion obtained at that particular step for the left-out subject.

That solution was itself derived from the group average

obtained at the previous iteration from the other subjects.

The jackknifing procedure leaves each subject out in turn to

determine an average and standard error for the R2 of all

left-out subjects. The initial starting point for the left-out

subjects was also the classical MDS solution obtained from

the average distances of the other subjects. In this manner

we could apply the scaling and rotation for the left-out sub-

ject and obtain values of stress comparable to those obtained

from the other subjects, but the data from the left-out subject

could be excluded from the estimation of group means and

the minimization of stress. This procedure allowed us to esti-

mate the predictive power of the improvement in stress

made by each additional MDS dimension. The results

obtained with IDIOSCAL, INDSCAL, and the identity ma-

trix were very similar, with the former two introducing small

improvements (Fig. 2). In the cross-validation analysis, we

chose INDSCAL as a good compromise between goodness

of fit and the number of model parameters in the MDS. The

cross-validated R2 did not increase monotonically with the

number of dimensions but plateaued around n¼ 5 dimen-

sions [Fig. 3(a)]. This extension of the SMACOF routine is

available as an R script upon demand.

b. Model selection by AIC. Because the treatment of

individual differences played a negligible role (Fig. 2) in the

MDS on our data, we also evaluated the goodness of fit of

additional dimensions in a more classical MDS analysis

(where the same solution is used for each subject) by calcu-

lating the AIC of each solution. Among competing models,

the best one for the data at hand will produce the minimum

AIC value. AIC depends on the log likelihood of the

observed data given the model, penalized by the number of

parameters in the model:

AIC ¼ 2kðpÞ � 2 ln L:

Here p is the dimensionality of the MDS solution, k(p) is the

number of free parameters in the MDS model, and L is the

likelihood. We calculated the AIC for the simplest MDS

method in which the same group configuration is used for all

subjects (i.e., Ck is the identity matrix). The use of this simple

method allows us to apply AIC because the number of free

model parameters becomes easy to estimate and does not

increase with the number of observations (which would vio-

late the asymptotic theory for maximum likelihood estimates).

Although this is a more restricted case of MDS (and has fewer

model parameters), the INDSCAL and the Identity methods

FIG. 2. Comparison of IDIOSCAL, INDSCAL, and IDENTITY. The multi-

subject algorithms in the SMACOF model, IDIOSCAL and INDSCAL,

allow subjects to have different configurations than the “Identity” diagonal

matrix alternative. Each algorithm produces a different version of the MDS.

But all MDS versions showed similar coefficients of determination R2. Fits

from all three models plateaued with increasing dimensionality of the solu-

tion, corroborating the 5-dimension limit of descriptive power across

subjects.
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generated very similar solutions and R2 values from our data

(Fig. 2). The number of parameters in the MDS model of

dimensionality p is:

kðpÞ ¼ n � p� pðpþ 1Þ=2;

where n is the number of objects in the space (here sound

stimuli). To calculate the likelihood of the observed data

given the model, one needs to assume an error model. A

commonly used noise model in MDS is the log-normal

model (Takane, 1994, p. 385):

ln dij ¼ ln dij þ e and e � Nð0; rÞ;

where d is the observed responses collected for the perceived

distance dij between stimuli i and j. The log likelihood is

then:

ln L ¼ � 1

2

S

r2
þM ln r2;

where

S¼
Xn

i¼1

Xn

j>1

½ln ðdijÞ � ln ðdijÞ�2

and M is the number of distance measurements, M¼ n(n - 1)/2.

The AIC calculated from our data was minimal for p¼ 5

[Fig. 3(b)], providing an alternative rationale for selecting the

5D MDS model as best for this data set.

4. Discriminant function analysis of semantic
judgments

We also performed a classical DFA to find the smallest

number of dimensions that describe the semantic timbre space

based on the 16 qualitative descriptor ratings of each tone. The

DFA finds the linear combinations of the original ratings that

successively maximize the distance between the 42 tones

while taking into account subject variability. These linear com-

binations are called discriminant functions (DF) and the signif-

icant DFs define a Euclidean space that captures the signal in

the data. Mathematically, classical DFA is obtained by per-

forming a principal component analysis (PCA) on the ratio of

the between-variance matrix, obtained from the mean ratings

for each instrument, and the within-variance matrix, obtained

by averaging the variance across subjects for each instrument.

The statistical significance of each dimension is obtained by

multivariate analysis of variance (MANOVA): the p-value is

obtained after calculating Wilks’ Lambda statistic and compar-

ing the results to expected distributions given the null hypothe-

sis. The first several discriminant functions are analyzed

because they represent a majority of variation. DFA was per-

formed using the MANOVA function of MATLAB, and the

PCA preceding it used raw ratings (without z-scoring) from

subjects who completed all ratings.

5. Synthesis of dissimilarity MDS and semantic DFA
via rotation

Isomorphic Procrustes rotation and reflection (performed

in MATLAB; Sch€onemann, 1966) allowed us to cast the first two

dimensions of the 5D dissimilarity MDS solution space into a

space described by DF1 and DF2 of the semantic ratings. This

recasting allowed us to compare the gestalt “timbral” space

defined by dissimilarity judgments (MDS space) to the seman-

tic “timbral” space defined by the descriptor ratings (DFA

space). Positive results from the comparison permitted applica-

tion of the semantic labels to the MDS dimensions.

E. Acoustical analysis

1. Spectrotemporal MPS

The MPS of a sound is the amplitude spectrum of the

two-dimensional Fourier Transform of a time-frequency rep-

resentation of the sound pressure waveform. The MPS can

be taken for a single tone (Fig. 4), or the MPSs of all 42

tones can be averaged. First a spectrogram is calculated

using Gaussian windows, which are symmetric in time and

frequency domains, resulting in more conveniently invertible

representations (Cohen, 1995, p. 108). As in the cepstrum,

FIG. 3. Predictive power and significance of the number of dimensions in

the MDS analysis of dissimilarity judgments (a and b) and in the DFA of

semantic ratings (c). Cross-validation, model selection, and MANOVA anal-

yses indicate that a 3D space suffices to describe much of perceptual timbre

space as assessed by either dissimilarity judgments or semantic qualifica-

tions, but that 5 dimensions in total are merited. (a) The solid line shows the

R2 obtained for fitted subjects in the MDS analysis of dissimilarities. Circles

show the average R2 value obtained for the left-out subjects. Error bars rep-

resent one SEM. Dotted line represents the average R2 value for the 5D

through 10D solutions. The cross-validated R2 plateaus beyond this point.

(b) Aikake information criterion is minimal for 5 MDS dimensions, indicat-

ing this model is preferred for its simplicity balanced with goodness of fit.

(c) The solid line shows the cumulative variance captured by successive

discriminant functions for the normalized ratings in the semantic task. The

MANOVA analysis shows that 5 dimensions provide statistically significant

discriminations (see Sec. III). The dotted line is provided for reference in

judging that 5 dimensions suffice to describe the variation in qualitative

ratings.
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the logarithm of the amplitude of the spectrogram yields sep-

arate additive spectral and temporal modulation terms that

would otherwise be multiplicative. For example, the spectral

modulations composing the distribution of spectral power

related to the percept of spectral balance separate from those

composing the fundamental (Fig. 4, right column).

The resulting MPS is the square amplitude as a function

of the Fourier pairs of the time and frequency coordinates of a

spectrogram of the original log-amplitude spectrogram. The

MPS has axes referred to as temporal modulations (in Hz) and

spectral modulations (in cycles/kHz). Positive and negative

temporal modulations xt, by convention, distinguish upward

frequency modulations [e.g., cos(xsf-xtt) for positive xt and

xs] from downward modulations [e.g. cos(xsfþxtt)] of spec-

tral modulation xs. The resolution of the spectrogram in time

and frequency, set by the width of the Gaussian window,

determines the upper bounds of the temporal and spectral

modulation in an inverse relationship known as the time-

frequency (TF) tradeoff. The TF scale is necessarily chosen

with the modulation frequencies of interest held in mind, so

that most of the energy in the MPS is far from these bounda-

ries (Singh and Theunissen, 2003). The TF scale used was

given by a Gaussian window of 5 ms in the time domain, or

32 Hz in the frequency domain ðrt ¼ 1=2prf Þ, with upper

bounds of 100 Hz and 64 cycles/kHz, respectively. Modula-

tion patterns important for timbre are better resolved when a

spectrogram rather than a cochleogram is taken as the initial

time-frequency representation (Fig. 5), because the MPS in

cycles/octave units does not reveal harmonic regularities.

Cycles/kHz units reveal a separation between formants and

power at alternating harmonics, for example.

2. PCA of MPS

Before performing the regression between perceptual dis-

tances and sound features described by the MPS, we analyzed

the principal components of the MPS across the 42 stimuli in

order to reduce the dimensionality of that representation.

Of 41 possible principal components (PCs), only the

first 20 principal components (PCs) were included for the

regression analysis because they represent a reasonable

amount of the variance and because they yielded the

best cross-validated predictions (adjusted R2) of perceived

timbre, as compared with other multiples of 5 PCs up to

40 PCs.

The MPS representation is not, however, a complete

description of the physical sound features and in particular

the modulation phase could also play an important role. The

role of phase may be better captured by other measures such

as the spectral mean below.

3. Alternative spectral and temporal feature
calculation

More traditional acoustic features that separately

describe the spectral and temporal envelope were calculated

for comparison with the MPS analysis.

The shape of these envelopes was quantified by the equiv-

alent of the statistical moments. To describe spectral shape, we

first normalized the frequency power spectrum to obtain: p(fi)

FIG. 4. (Color online) Waveforms, frequencies, and spectrotemporal modu-

lations differ between instrument tones normalized for fundamental fre-

quency (311 Hz), sound level and duration. Oscillogram (top left panel),

spectrogram (bottom left panel), and spectrotemporal MPS (right panel) of

perceptually dissimilar example stimuli representing different instrumental

families. (a) bass flute with vibrato; (b) bass clarinet; (c) tenor trombone

with mute; (d) alto shawm; and (e) viola with vibrato. White areas represent

modulation power below 78 relative dB.
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where fi¼ frequencies and
PN

i¼1 pðfiÞ ¼ 1. One can then define

and calculate the mean spectral frequency �f ¼
PN

i¼1 fipðfiÞ and

the standard deviation of the spectrum r2
f ¼

PN
i¼1 pðfiÞ

ðfi � �f Þ2. Using these values, we obtained normalized meas-

ures of spectral skew and kurtosis given by:

Skew ¼
XN

i¼1

pðfiÞðfi � �f Þ3 � 1

r3
and

Kurt ¼
XN

i¼1

pðfiÞðfi � �f Þ4 � 1

r4
:

We also used an entropy measure to further characterize

finer details in the shape. The spectral entropy was calcu-

lated as �
nPN

i¼1 pðfiÞ log2 ½pðfiÞ�
o
=log2 ðNÞ. Complemen-

tary measures were also obtained from a normalized

temporal envelope. The entropy measures embody the higher

moments and allow one to distinguish envelope profiles with

many ripples (e.g., harmonic stacks or tremolo) from more

static shapes (e.g., noisy spectral sounds or steady ampli-

tude). The temporal envelope was obtained by rectification

of the sound pressure waveform and low-pass filtering below

20 Hz. The spectral envelope was obtained by the Welch’s

modified periodogram estimation of the power spectral den-

sity using a Hamming window of 23 ms. Similar metrics for

describing spectral and temporal shape have also been pro-

posed by others (Sueur et al., 2008).

F. Psychophysical analysis

1. Ridge regression of perceptual space with either
the MPS or a traditional acoustic description

Because multiple linear regression is generally prone to

overfitting noise, regularization is used to constrain the com-

plexity of the model while optimizing its fit to the data. The

regularization we used combined principal component regres-

sion and ridge regression (Hoerl and Kennard, 1970). In ridge

regression, also called L2-regularization, the prior probability

distribution of predictor weighting (of the 20 PCs representing

the MPS, or of the traditional acoustical features) is Gaussian

and centered at zero, and a “ridge parameter” (inversely

related to the width of the Gaussian) is used to effectively

restrict the effect of predictors with low predictive power. We

evaluated ridge parameters from 0.1 to 1000. To cross-

validate the predictive power of the resulting models in a

bias-free manner and to determine model significance, we

used a jackknife resampling procedure. In this procedure, one

instrument at a time is removed from the regression analysis.

The error in those predictions yields an adjusted R2 value and

is used for evaluating model significance. The best cross-

validated predictions from MPS regressors were obtained by

using only the first 20 PCs of the MPS (see Sec. II E) and

ridge parameter values of 5 (MDS D1 and D4), 10 (D2) or 50

(D5). D3 did not correlate significantly with the PCs of the

MPS, regardless of ridge parameter. For the regression analy-

sis using the more traditional sound features defined in sub-

section F.3 above, we found that ridge parameter values of 0.1

(D1), 5 (D3), and 10 (D2 and D4) gave maximum R2 values

in the cross-validation data set. D5 did not correlate signifi-

cantly with any traditional parameter.

This multivariate linear regression analysis also con-

firms that the ordering generated in the 5 MDS dimensions is

not random, since a significant correlation was found

between the coordinates of stimuli in the 5 perceptual MDS

dimensions and the physical descriptions of the acoustical

features of stimuli obtained either by the MPS (Fig. 6) or by

more classical sound features.

To compare the predictive power of the traditional

sound features with the MPS features, we used the same

FIG. 5. (Color online) Modulation power spectra from cochleograms. Coch-

leograms (a cochlear filter bank with logarithmically spaced center frequen-

cies) are often used as the initial time-frequency representation of sounds

since they better model the peripheral neural representation (Schreiner

et al., 2011). In this case the spectral dimension of the MPS yields cycles/

octave instead of cycles/kHz. This figure illustrates that the spectral modula-

tion patterns important for timbre are not well resolved using cochleograms.

(a) As an example, a cochleogram representing spectral features of the viola

vibrato tone across time. Independent filters model the aural output available

to the auditory system, based on Patterson’s gammatone filterbank (Clark,

2007). (b) MPS of the cochleogram in (a) shows a monotonic decrease in

power away from the origin, without distinction between spectral modula-

tions higher or lower than those of the fundamental that we would find in

the linear MPS. Thus, although this representation might be more relevant

for modeling peripheral neural representation, we find it harder to interpret

for acoustic analysis and psychophysical studies such as this one.
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ridge regression algorithm and cross-validation approach.

All 11 traditional features were used as regressors, and we

compared adjusted R2 values between the regressions.

2. Bivariate regression of perceptual space on
traditional acoustic features alone

Bivariate correlation coefficients were calculated to

evaluate the potential contribution of each traditional acous-

tic feature individually to the variation along the 5 dimen-

sions of perceptual timbre space (Fig. 7).

III. RESULTS

This study evaluated the dimensionality of perceived

orchestral timbre, correlated timbre with differences in com-

prehensively expressed acoustic properties, and confirmed

the ecological validity of the perceptual timbre space using

semantics.

A. Acoustic structure of instrument stimuli

We examined the perceptual and acoustical nature of 42

tones produced by Western orchestral instruments, at the

same note (E-flat) with the same intensity and length. Exem-

plars of the instrument families represented in the tones have

distinct spectrograms (Fig. 4, left plots) with unique ampli-

tude envelopes, spectral balance and dynamics. Another

exceptionally powerful representation for acoustic analysis

of perceptible features, which are often jointly spectrotemop-

ral, is the MPS, because it unifies spectral and temporal

domains. The MPS is insensitive to the phase of features,

and quantifies power in particular spectrotemporal structures

that would often be superimposed in a spectrogram (Elliott

and Theunissen, 2009; Singh and Theunissen, 2003). A PCA

of the MPS across instruments was performed both to exam-

ine the combination of acoustical features that varied the

most across instruments and to reduce the dimensionality of

this representation for analyzing the relation of the physical

structure of the sounds to their perceived timbre. The first 20

PCs were retained for this purpose (see Sec. II).

The distinctive properties of modulation power, as they

appear in the example plots (Fig. 4, right) and the average

MPS [Fig. 8(a)], are as follows. The MPS of each instrument

shows a peak spectral modulation power at 3.22 cycles/kHz

corresponding to the natural spacing of harmonics of the

E-flat fundamental (F0¼ 1000/3.22¼ 311 Hz). Spectral mod-

ulations at multiples of this 3.22 cycles/kHz peak indicate the

spectral shape of harmonic bands whereas power at fractions

of 1/F0 reflect spectral energy balance across harmonics. For

example, the suppression of power in even harmonics of the

FIG. 6. (Color online) Distinct spectrotemporal modulations correlate with relative locations in perceptual timbre space. The first 20 PCs of the MPS of the instru-

mental tones were regressed with the MDS coordinates for each instrument after rotational scaling. Colors toward red indicate that a power increase in that region

of the MPS correlates with positive distance values along that dimension of the 5D MDS solution (plot title); blue indicates that a power increase correlates with

negative distances. White indicates areas of low predictive power (<2 s.e.m.); contours enclose smoothed areas above or below 20% of overall maximum. X-axis

arrows at 6 Hz are characteristic of vibrato. The right side y-axis labels give spectral modulations in units of the period of the fundamental (1/311 s).

FIG. 7. (Color online) Spectral and temporal envelope sound features and

timbre. Diagrams of traditional (a) spectral and (c) temporal acoustic fea-

tures extracted from the stimuli. (a) Spectral acoustic features of the exam-

ple viola vibrato tone include mean (dashed line) of the power spectral

density (blue line; red line its envelope); standard deviation of power spec-

trum (whiskers around dashed line); and skew, kurtosis, and entropy (inset).

(b) Bivariate correlation coefficients between the spectral envelope features

and the first 4 dimensions of the rotated MDS solution representing percep-

tual timbre. Black¼D1; dark gray¼D2; light gray¼D3; and white¼D4.

Only significant correlation coefficients (p< 0.05) are shown. (c) Temporal

features symmetric to those of the same example tone as in a, with mean

temporal envelope represented as a solid vertical line. Dashed line shows

the end of the attack. (d) Bivariate correlation coefficients of perceptual tim-

bre space on temporal acoustic features as in Fig. 7(b).
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bass clarinet results in a secondary peak at 1/2F0 [Fig. 4(b)].

Spectral formants are defined as prominent power in local fre-

quency regions and result from linear filtering properties of

the instruments independent of the fundamental (Handel,

1995). Formants appear in the MPS as low spectral modula-

tions (well below 1/2F0 and with temporal modulation

close to 0 Hz). The single formant caused by low spectral

balance in flute and trombone [Figs. 4(a) and 4(c)], manifests

as a wide spread of spectral modulation power from 0 to �1

cycles/kHz, whereas the multiple formants present in viola

and alto shawm [Figs. 4(d) and 4(e)] result in more peaked

energy including below 1 cycles/kHz. Spectral distributions

change with a temporal dynamic evident in their distance

from the y-axis: a relatively delayed onset of higher harmon-

ics with respect to that of the fundamental, representative of

the brass family, appears as an upsweep bias of spectral mod-

ulations toward the left quadrant at 3.2 cycles/kHz in trom-

bone [Fig. 4(c)] and other instruments predicted by weighting

of PC3. The temporal modulations of tremolo and vibrato

characteristic of woodwinds and strings appear laterally at

�6 Hz (Brown and Vaughn, 1996; Fletcher and Sanders,

1967; Strong and Clark, 1967). Tremolo is a fluctuating

change in overall amplitude that can be seen as a peak of

energy on the x-axis (0 spectral modulation) �6 Hz [bass flute

vibrato, Fig. 4(a)] while a pure vibrato fluctuating in pitch

without change in amplitude would appear as a peak also at

�6 Hz but with spectral modulations corresponding to the

fundamental, 1/F0 and its multiples [viola vibrato, Fig. 4(e),

see also synthesized sounds in Figs. 8(b) and 8(c)]. The fast

attack and decay of the alto shawm [Fig. 4(d)] increases pure

temporal modulations from 0 to 20 Hz because of the sudden

changes. The slower attack and decay of the viola [Fig. 4(e)]

has more peaked overall amplitude modulations, which

resembles intermediate (�3 Hz) ongoing temporal dynamics

as in, e.g., a crescendo.

B. Ordination of perceived timbre dissimilarity

We represented the perceived dissimilarities in timbre

as distances between tones by fitting the ratings to a model

space using MDS. The MDS solutions improve in fit with

increasing dimensionality of the space, but solutions with

relatively few dimensions represent a substantial portion of

the timbral differences judged by listeners [Fig. 3(a)]. The

solution in 3 dimensions explains 91.5% of the squared dis-

tance between instruments.

C. Dimensionality of perceived timbre dissimilarity

Because increasing the dimensions in the MDS analysis

always results in improvements in fitting a given set of pair-

wise dissimilarities, MDS is prone to overfitting. The benefit

from using additional dimensions does not necessarily gener-

alize to another data sample. To study the significance of the

various possible dimensionalities of the perceptual timbre

space, we examined the predictive power gained by succes-

sive dimensions, by (1) developing and implementing a

novel cross-validation procedure and (2) evaluating the AIC.

In the cross-validation procedure, the dissimilarity ratings by

a left-out subject are transformed into coordinates along with

other data but are excluded when minimizing the MDS stress

function to find the optimal dimensions (see Sec. II). The

cross-validation procedure allows us to estimate the standard

error of the goodness of fit and also to determine the upper

dimension above which improvement in fit stops increasing.

The adjusted R2 first decreased at 9 dimensions, so we eval-

uated the dimensionalities within 1 s.e.m. of this R2, namely,

5 to 10 dimensions, whose averaged R2 is shown as the dot-

ted line in Fig. 3(a). Because the error bars (2 standard

errors) of dimensionality 4 just crossed this line, we judged

the minimum number of significant dimensions to be five.

Together with the fact that the fifth dimension is correlated

with acoustical features (below), the evaluation shows that

there is no substantial improvement in fit beyond 5 dimen-

sions [Fig. 3(a)], and 5 dimensions did not overfit the data.

Standard errors overlap between adjacent dimensionalities

around 5, but not between, e.g., 3 and 5 dimensions. This rel-

ative plateau in stress with increasing dimensionality was

essentially unchanged even when we removed individual

instruments in turn from the MDS analysis (not shown), sup-

porting the notion that our stimulus set was sufficiently large

to encompass the perceptual timbre range of the Western or-

chestra. Evaluation of the AIC led to the same conclusion.

The AIC reached its minimum at 5 dimensions, supporting

the claim that a 5D timbre space provides the best fit to the

data without overfitting.

The 5D solution of the MDS converged after 100 itera-

tions and was well correlated with observed dissimilarities

FIG. 8. (Color online) MPS of illustrative sounds. General properties of the MPS of the 42 tones reflect their pitch (normalized at E-flat) and their overall enve-

lope shape. (a) The average MPS of all 42 stimuli shows peaks at multiples of spectral modulations associated with the fundamental. (b) For illustration pur-

poses, the spectrogram of a tone synthesized to have cosine ramped amplitude, with overtones’ power dropping off as cos2, a 0-to 100 cents vibrato, and 0-to-

6 Hz tremolo. (c) The MPS of the synthetic tone in Fig. 8(b).
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(R2¼ 0.93). Tones ordered by the first 2 dimensions of the

5D MDS solution [Fig. 9(a), left] clustered roughly into

instrument families, with flutes low on the primary dimen-

sion (D1), brass and reeds on a continuum across D1, and

strings well separated high on D2. Families overlapped on

D3 and D4, but D5 separated the brass (all positive) from the

reeds (all negative).

D. Discriminant function analysis of semantic timbre
characterization

To obtain a qualitative interpretation of timbre space,

we performed a DFA on the ratings from the semantic judg-

ment task. The first 5 discriminant functions (DFs) explained

88.6% of the variance. Instruments in the same families

grouped together with some proximity [Fig. 9(b)], but less so

than in the MDS solution [Fig. 9(a)]. Instruments with large

DF1 values rated most strongly explosive, sharp and steady
pitch. DF2 loaded most heavily ratings of vibrato, varying
level, and sharp. DF3 weighted most the descriptors big
instrument, full, and tonal.

The DFA can also be used to reduce dimensionality

since it ranks dimensions. Here, the significance of the dis-

criminant dimensions was assessed by classical MANOVA:

the p-values for 5th and 6th dimension respectively were

0.002 and 0.0938. Thus, as did the dissimilarity MDS, the

semantic DFA suggested that a 5-dimensional space suffices

to describe much of timbre [Fig. 3(c)].

E. Interpreting perceptual timbre space in semantic
terms

To compare the ordinations of instruments that resulted

from the dissimilarity-based MDS and the semantic DFA,

and to assign qualitative labels to the dimensions obtained in

the MDS, we reoriented the first two dimensions of the 5D

MDS solution by a Procrustes transformation without scaling

(reflection and rotation) onto the first two dimensions of the

DFA solution. This oriented and labeled version of the MDS

solution is what we henceforth call “the perceptual timbre

space” and use in all subsequent analyses [Fig. 9(a)]. In this

perceptual timbre space, distances represent quantitative

FIG. 9. (Color online) Instrument locations in perceptual timbre space. (a) The first vs second dimensions (left plot), and first vs third dimensions (right), of

the five-dimensional MDS solution of the dissimilarity judgments, projected after rotational scaling onto the primary two DFs of the semantic ratings. Tones

from different families (“flutes” includes end-blown flutes) are distributed unevenly among the quadrants. Instrument abbreviations (M¼muted, V¼ vibrato):

ASax alto saxophone; AFlu alto flute; AShwm alto shawm; BFluV bass flute; BchTpt Bach trumpet; BrSax baritone saxophone; BqARec Baroque alto re-

corder; BqTRec Baroque tenor recorder; BViol bass viol; TptM B-flat trumpet; BClar bass clarinet; Bsn bassoon; CTpt C trumpet; CTptHM C trumpet with

Harmon mute; Cel, CelV and CelMV cello; COb Classical oboe; Cornt cornet; DBassM double bass; DBassV double bass; EClar E-flat clarinet; EngHn Eng-

lish horn; FHn and FHnM French horn; Flu and FluV flute; Ob oboe; ObA oboe d’amore; PFlu pan flute; SSax soprano sax; SCrhn soprano crumhorn; TSax

tenor saxophone; TTbn and TTbnM tenor trombone; Tba tuba; V1a, V1aM and V1aV viola; V1n, V1nM and V1nV violin. Black ovals (lower right inset) rep-

resent SEM. (b) Semantic ratings for each instrument projected onto the first 3 discriminant functions (DF1, DF2, and DF3). The discriminant functions are

the linear combinations of ratings that maximize the normalized distance between instruments. Ovals represent SEM of the average projected ratings. Symbol

color shows instrument family as in Fig. 9(a).
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differences in gestalt timbre, and each axis direction best

explains the major qualitative differences, or semantic var-

iance, between tones as assessed by the DFA.

The overall arrangement of instruments in the two solu-

tion spaces, compared by visual inspection of the rotated

MDS solution and the DFA solution, are preserved [Figs. 9(a)

and 9(b)], although exact distances differed somewhat.

By rotating the MDS solution to the DFA we could

assign semantic ratings to it. However, since the similarity

between the two resulting solutions is imperfect and since

the discriminant functions are composed of potentially

redundant rating scales, we also used bivariate linear regres-

sion to show contributions of the individual semantic differ-

ential scales to the five dimensions of the rotated MDS

solution (Fig. 1). This complementary analysis provides a

quantitative assessment of the importance of each label to

the MDS dimension. In good agreement with the Procrustes

rotation of the MDS to the semantic DFA, the bivariate con-

tributions show ratings of hard, sharp, high-frequency
energy balance, and explosive contributed the most to D1 of

the MDS (Fig. 1, black bars), while ratings of varying level,
dynamic, vibrato, and ringing release best accounted for

positive values in D2 (dark gray bars). D3 (light gray bars)

was explained best by ratings of noisy, small instrument,
unpleasant. D4 (white bars) correlates best with ratings of

compact, steady pitch, and pure. MDS D5 had no significant

correlates among our semantic descriptor pairs.

Subjects segregated their applications of descriptors,

according to the bivariate analysis, in correspondence with

the mathematical orthogonality of the first two rotated MDS

dimensions. With the exception of steady-pitch/vibrato,

descriptor pairs with high coefficients for MDS D1 have low

coefficients for MDS D2 and vice versa.

F. Acoustic basis of perceived timbre

The spectral and temporal acoustic information present

in the stimuli is most effectively represented by the joint

spectrotemporal MPS, so we examined which of these mod-

ulations contribute to the orthogonal percepts.

In a ridge regression analysis, the coefficients of the first

20 PCs of the MPS of each tone were used to predict its posi-

tion in the perceptual timbre dimensions [Fig. 9(a)]. The 20

regression weights can then be multiplied by the principal

component vector to obtain the regression weights in the MPS

space (Fig. 6) for each perceptual dimension. Acoustic fea-

tures of the MPS correlate significantly with four perceptual

dimensions after jackknife cross-validation: the maximum

adjusted R2 was 0.73 for D1; 0.59 D2; 0.6 D4; and 0.1 D5.

D3 did not correlate significantly with the PCs of the MPS,

regardless of ridge parameter, suggesting either that percep-

tual ordering of this “noisy, small instrument, unpleasant”

dimension does not depend on spectrotemporal modulations,

or that it does so in a nonlinear way. Notably, the spectral

mean considered among the traditional acoustic features

below has no representation in the MPS (except as the phase

of the amplitude spectrum, not included in the MPS analysis).

The modulation contributions display distinct patterns

(Fig. 6). Percepts high on D1 of the perceptual timbre space

(associated with hard) were explained by an increase in

broad temporal modulation power from 0 to>20 Hz, corre-

sponding to fast transients both in the overall envelope and

individual harmonics. The asymmetric power peaking in the

left quadrant (corresponding to up-sweeps) is caused by

delays in these transients such as in the arrival of higher har-

monics. In an orthogonal pattern to that of D1, contributions

to percepts high on D2 included increases in 62 and 66 Hz

temporal modulations of broad spectral patterns (vertical

yellow bands), together with small decreases in fluctuations

of individual harmonics (blue areas at dotted reference line).

Thus sounds high on D2 have slower than average modula-

tions of partials. D4 entails a distribution of spectral power

between alternating (either all odd or even) harmonics (red

area at 1/2F0 cycles/kHz spectral modulation) along with a

small decrease in power at slower spectral modulations in

the region of formants (lowest blue areas). High-D4 instru-

ments also included amplitude modulations >6 Hz (yellow

to the right of arrow on x-axis) corresponding to faster dy-

namics. Instruments high on D5 have more power in select

areas <6 Hz (yellow near the y-axis). The restricted nature

of the modulation features appearing in D5 reflect the sub-

tlety of this dimension as compared with acoustical variation

along the other dimensions of perceptual timbre space.

Despite the orthogonality between D1 and D2, all 4 cor-

related dimensions are predicted by complex joint spectro-

temporal power related to tonal resonance. On the other

hand, there is a segmentation of temporal features below, at,

and above �6 Hz (arrows) that correlate severally with per-

ceptual dimensions. Similarly, we find a segmentation of

spectral structure related to tonal resonance (at ratios and

multiples of 1/Fo) and more invariant “fixed” spectral for-

mants (D2 and D4).

G. Traditional spectral and temporal acoustic features
associated with perceptual timbre space

Since previous researchers used purely spectral or tem-

poral terms to describe perceptual qualities of timbre, we

extracted 11 such traditional acoustic parameters (Fig. 7)

and compared their PCs with distances in perceptual timbre

space. The traditional features systematically described the

temporal and spectral envelope of each sound, characterized

by the moments of their power density distributions (mean,

spread, skew, and kurtosis) and an equivalent of the distribu-

tions’ entropy. We performed two regression analyses with

these traditional features on the perceptual MDS dimensions.

First, a regularized multivariate regression analysis showed

that the combination of these acoustical descriptors can be

used to predict the perceptual score of instruments in the

MDS space for dimensions 1 to 4 with estimated adjusted

R2 values of 0.7 for D1, 0.57 for D2, 0.40 for D3, and 0.22

for D4.

Second, to identify contributions of particular features,

we then performed bivariate linear regression of the tradi-

tional acoustic features on the perceptual timbre space. All 5

spectral features contributed to rotated MDS D1, and D3

was similarly correlated with exclusively spectral features

[Fig. 7(b)], whereas features correlated with D2 and D4 were
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exclusively temporal [Fig. 7(d)]. The spectral contrast

between MDS D1 and MDS D3 is that only D1 is correlated

(inversely) with the spectral measures of skew and kurtosis;

sounds high in D1 have relatively more power in higher har-

monics than lower harmonics, and greater peakedness in

spectrum [Fig. 7(b)]. However, as discussed below, these

spectral features may be only secondary determinants of

MDS D1, because in combination with the MPS acoustic

analysis it appears that D1 is principally determined by fast

spectrotemporal differences including the attack. D3 is more

straightforwardly interpretable as purely spectral: instru-

ments that score high in D3 (noisy, small instrument,
unpleasant) have a power spectrum where the energy is

shifted toward the higher frequencies, resulting in higher

mean and greater bandwidth (spectral s.d.).

The regression results for D2 (varying level, dynamic)

would initially suggest a perceptual role for the shape of the

attack, since both mean time and time-to-peak are significant

regressors, except that the time-to-peak coefficient indicates

that slower attacks are found for instruments high in D2,

whereas the negative mean time contribution indicates the

opposite [Fig. 7(d)]. In fact, as described above and further

discussed below, D2 is principally determined by ongoing

fluctuations in the temporal envelope, corroborated by the

observed temporal envelope entropy. Stimuli that have such

dynamic temporal envelopes also tend to have longer times-

to-peak, and mean times lying in the first half of the tone.

MDS D4 (steady pitch, compact, pure) shows only weak

correlation with the temporal skew, with instruments high on

D4 having more positive skew, meaning a slightly longer

decay relative to the attack [Fig. 7(d)].

H. Contrast of acoustic analyses

The comparison of the two acoustical analyses showed

striking contrasts underscoring (1) the power of the MPS to

describe perceptually relevant acoustic structure, (2) the utility

of complementary measures, and (3) the difficulty in interpret-

ing regression results based on correlated descriptors.

We note that both acoustical analyses resulted in high

predictive values in multiple linear regression. However,

these predictions can be either similar in quality, as they

were for D1, or drastically opposed, as they were for D3 and

D4. Whereas MDS D3 was not significantly correlated with

the MPS, it correlated highly with spectral envelope attrib-

utes (adjusted R2 values of 0 vs 0.4, respectively) such as the

spectral mean, which is not represented in the MPS. On the

other hand, MDS D4 has strong correlations with the MPS,

but weak correlations with temporal envelope features

(adjusted R2 of 0.6 vs 0.2) and none with spectral ones. The

MPS analysis shows D4 is strongly affected by the spectral

structure corresponding to differential power in odd and

even harmonics and this quality is poorly captured by tradi-

tional spectral measures.

Thus, comparison revealed that interpretation of either

analysis could be misleading on its own, without an account

of the other. Combining analyses brought forward that the

traditional spectral features contributing to percepts high on

MDS D1 are characterized by fast transients (modulations at

high temporal frequencies) in both the overall envelope and

in the natural harmonic components that were not captured

by traditional temporal measures averaging across the entire

tone duration. Similarly, combined analyses show that the

traditional temporal features uniquely indicated for MDS

D2, such as kurtosis and time-to-peak, involve principally

low frequency modulations in the amplitude envelope (blue

and yellow areas at x-axis, Fig. 6), and particular intermedi-

ate (6 Hz) modulations in distribution of power across har-

monic partials (yellow indicated by arrow, Fig. 6), rather

than traditionally measured envelope changes associated

with tremolo, or the duration of attack per se.
In summary, the two acoustic analyses are strongly com-

plementary. When both give positive correlation results, the

MPS analysis has the advantage of being more quantitative

and detailed. For example, the MPS specifies 4 Hz temporal

modulation frequencies at the boundary between perceptual

dimensions D2 and D4 (vertical contours, Fig. 6). Further-

more, the combination of analyses shows that diverse acous-

tical parameters can be correlated and yet some may

disappear in the averaging along either the spectral or tempo-

ral dimension alone.

IV. DISCUSSION

Our key findings first robustly assess the dimensionality

of timbre perceived in instrumental tones, and second, relate

the five perceptual timbre dimensions to an unprecedentedly

complete physical acoustic structure, quantified by both the

MPS and more traditional acoustical measures.

The first limitation of earlier studies that arrived at a tim-

bre map by geometrical scaling analysis (i.e., MDS) of dis-

similarities between paired instruments (von Bismarck, 1974;

Grey, 1977) has been an inability to demonstrate perceptual

sufficiency. Albert Bregman drew attention to the difficulty of

making a complete description of timbral dimensions based

on such perceptual maps (Bregman, 1990, p. 125), “None of

these [MDS] attempts to find a reduced number of dimensions

to account for differences in perceived timbre has been able to

show that the dimensions identified as the important ones are

completely adequate, even within the restricted range of stim-

uli used, to account for differences in the qualities of the

sounds.” In this study, we have addressed this shortcoming

for one class of instruments. The sufficiency of 5 dimensions

in representing perceptual timbre space is justified by evaluat-

ing the changes in predictive power of additional dimensions

in the MDS solution. Predictive power is demonstrated both

by a well-established model selection statistic, the AIC, and

by cross-validation of a nonlinear MDS algorithm incorporat-

ing individual differences. As additional evidence that we are

not overestimating the number of dimensions, we show that

these 5 perceptual dimensions each have correlates with par-

ticular physical attributes of the sound.

At the same time, we extend the range of stimuli to a

broad set of Western orchestral instruments. Finally, we

make a qualitative interpretation by relating the perceptual

space to semantic qualifications made by musicians. The

DFA of these semantic measures independently supports the

sufficiency of 5 perceptual dimensions.
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A. Dimensionality of perceived instrumental timbre

To evaluate the dimensionality of the MDS solution

space while addressing the problem of overfitting, we

adapted a cross-validation technique to the particular case of

subject-weighted MDS. Specifically, the jackknifing cross-

validation determines the number of dimensions that can be

confidently used to fit SMACOF MDS solutions in which

individuals’ distance judgments weight dimensions differ-

ently. The point at which increased dimensionality makes no

improvement in predictions on alternately left-out subjects

indicates the upper limit of perceptual dimensionality that

can be supported with confidence by judgments across sub-

jects. We further validated this statistical analysis by esti-

mating the AIC for MDS solutions from 1 to 10 dimensions.

Here again, in the case of the AIC model selection, the MDS

model that best supports the data is five dimensional.

The result that there was no increase in goodness of fit

beyond 5 dimensions means that the perception of sustained

orchestral instrument timbre that is held in common between

our subjects has no more than 5 dimensions [Fig. 3(a)]. To

our knowledge we have made the first cross-validation of an

MDS using individual differences, and this method should

be widely applicable as an alternative to other model valida-

tion methods for classical MDS such as the AIC used here or

the Bayesian Information Criterion used in previous research

(Winsberg and De Soete, 1993).

The numerosity of the 5 dimensions in the perceptual

timbral space is also supported by the DFA of semantic rat-

ings in a subsequent task. The fact that similar arrangements

of tones are obtained between the two tasks (Fig. 9) and are

justified by the predictive power and significance of the

MDS and DFA dimensionality (Fig. 3) further validates our

conclusions about the nature of timbre space. It is remark-

able that these approaches yield the same result because they

differ in: (1) what is measured (gestalt dissimilarities vs

semantic ratings), (2) the method for dimensionality reduc-

tions (MDS vs DFA), and (3) the statistical analysis (a novel

cross-validation or AIC vs classical MANOVA). The meth-

odological approach could suitably be applied to many other

complex multidimensional perceptions and actions treated

by psychology, such as olfaction (Dravnieks, 1982).

Of the 5 dimensions, the first 3 capture most of the var-

iance and corroborate the 2 to 4 principal dimensions of tim-

bre assessed by previous researchers (von Bismarck, 1974;

Caclin et al., 2005; Gordon and Grey, 1978; Grey, 1977;

Marozeau et al., 2003; McAdams et al., 1995; Plomp, 1970;

Stepanek 2006; Wessel, 1979). Whether or not they treat

impulse notes along with the sustained, all such findings

have been limited to the timbre of Western music. An all-

inclusive timbre space would represent sounds from other

musical traditions, vocalizations (Ekholm et al., 1998) and

other environmental sounds. The timbre of simultaneously

blended sound sources (Kendall and Carterette, 1991) may

emerge as a nonlinear combination of the percepts of the

components themselves. Finally, timbre perception depends

on the pitch context (Marozeau et al., 2003) and is affected

by learning and experience (Chartrand and Belin, 2006).

Thus, the complete timbre space of potential sounds should

have higher dimensionality than the space reported here, and

may vary across subjects. Investigating this whole space

using naturally produced sounds is challenging because

of the difficulty in holding the pitch, duration and loudness

constant across diverse kinds of sound production. As an

alternative, one can assess synthetic sounds designed to sys-

tematically sample specific regions of timbral space. Such

approaches may confirm findings from natural sounds

(Caclin et al., 2005) or investigate potential extensions of

spaces found in other studies (Terasawa et al., 2005).

B. Perceptual timbre dimensions and their
interpretation

Relational tasks (similarity judgments) order stimuli

without the classification bias of musical terminology. But

the resulting constellation lies within a space detached from

the perceptual meaning that we sought to relate to physical

sound properties. To express the MDS solution in perceptual

terms requires interpretation of the dimensions upon which

the stimuli are ordered. To this end, subjects’ classification

using categorical rating scales results in conceptual distinc-

tions that semantically express the nature of perceived

dimensions of timbre. DFA of these semantic results pre-

cludes a priori suppositions about which rating scales are

perceptually salient or mutually redundant. The DFA

weights variables so that those upon which subjects disagree

cannot unduly influence the resulting dimensions, which are

meant to separate percepts.

By rotating and scaling the semantic space obtained

from the DFA into the Euclidean distance model obtained

from the MDS, we find that hard/soft, sharp/dull, high-/low-
frequency energy balance, and explosive/calm qualities com-

bine to organize instrumental tones along the primary per-

ceptual dimension. Varying/steady level, dynamic/static,

vibrato/steady pitch, and ringing/abrupt release commingle

in the secondary distinctions we perceive. Add to these the

perceptually complementary qualities of noisy/tonal, small/
big instrument and unpleasant/pleasant in the third dimen-

sion, and compact/scattered and pure/rich in the fourth

dimension, and all four dimensions taken together manifest

the essential orchestral landscape for us. Only one more

dimension held in common by listeners, the fifth, which had

no significant correlates among our semantic descriptor

pairs, remains for a final, less conspicuous qualification that

completes the diversity of our actively constructed experi-

ence of timbre in sustained instruments.

We found that the bivariate correlation coefficients of the

semantic descriptors with the first two dimensions of the

rotated MDS space showed a high degree of orthogonality.

This result validates that the MDS approach has extracted per-

ceptual dimensions that we perceive as distinct and are able to

describe as such, an idea previously proposed (Stepanek,

2006). The particular verbal expressions of timbral properties

that correlated with our first two perceptual dimensions are

also in reasonable agreement with previous assessments. Our

D1, which is principally influenced by the shape of the overall

amplitude envelope, can be related to Wessel’s “attack”

dimension in (Wessel, 1979) or Kendall et al.’s (1999)
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“nasal”. Our D2 could be related to the dimension that corre-

lated with spectral variability in time, labeled as “spectral

fluctuation” (Grey and Gordon, 1978) or “tremulous,”

“brilliant,” and “rich” by (Kendall et al., 1999).

C. Acoustic structure correlated with timbre percepts

Understanding the relation between acoustical structure

and the distinct timbre percepts is an essential part of this

psychophysical effort. One difficulty is that acoustic features

that affect timbre perception are relatively “high-order” in

the sense that most cannot be obtained from the sound pres-

sure waveform or simple linear (and invertible) transforma-

tions of the waveform. Previous researchers have therefore

relied on operational definitions of particular acoustic qual-

ities of the temporal envelope (e.g., the attack rise-time) or

the spectral envelope (e.g., the spectral centroid), or the dy-

namics of spectral shape (e.g., spectral flux). Although rela-

tively successful, this approach can lead to conflicts between

results using different durations or stimulus sets (Hajda

et al., 2007) and correlated spectral and temporal features

can lead to false conclusions (Fig. 7). Most ad hoc acoustical

descriptors are not fully invertible and therefore fall short of

examining all the sound parameters that could be of

significance.

The MPS overcomes some of these shortcomings

because of its completeness and unification of spectral and

temporal domains. First, the MPS is an invertible characteri-

zation. As long as both the phase and the amplitude are pre-

served, inversion of the MPS can obtain the original

spectrographic representation of the sound. This spectrogram

can itself be inverted under certain conditions to recover the

original sound. Second, the MPS is a nonlinear transforma-

tion of the sound pressure waveform that extracts features

that have been shown to be perceptually salient (Chi et al.,
1999; Elliott and Theunissen, 2009). Third, high-level audi-

tory neurons are well characterized by their modulation tun-

ing (Elhilali et al., 2006; Escabi et al., 2003) and this

characterization has helped link neural representation to per-

ception (Chi et al., 2005; Shamma, 2001; Woolley et al.,
2009). However, we find ultimately that because the MPS

phase is difficult to interpret, combining MPS analysis with

more traditional measures constitutes the best approach to

study the acoustical structure correlated with timbre

perception.

Our results recapitulate some prior linkages found

between acoustics and timbre, but with fundamentally new

conceptualization. It is an established finding that both tem-

poral and spectral properties affect timbre (Sethares, 2005,

pp. 27–32). For example, the rise-time of the attack ampli-

tude envelope (e.g., log attack time) and balance of power

across harmonic components in the spectral envelope (e.g.,

spectral centroid) have been shown to correlate with the tim-

bre of musical instruments (Grey, 1977; Hajda et al., 1997,

2007; Handel, 1995; Krimphoff et al., 1994; Marozeau

et al., 2003; McAdams et al., 1995, 1999; Samson et al.,
1997). It has been implied that these temporal and spectral

features correspond to separate perceptual dimensions

(Caclin et al., 2005; McAdams et al., 1995; Wessel, 1979).

Similarly, our analysis brought out a purely spectral dimen-

sion (D3) for which the spectral centroid is relevant. The

three other main dimensions in our analysis are spectrotem-

poral rather than isolated to the spectral or temporal domain,

a circumstance that could have led to erroneous classification

of them in the past. Yet they retain the orthogonality in

acoustics that was claimed by previous researchers (i.e., D1,

D2, and D4 show little overlap in the MPS analysis). One

last dimension distinguishing brass and reeds plays a more

minor role and is harder to describe perceptually.

Indeed, although our primary two timbre dimensions

show many features of orthogonality, both in the regression

with the MPS and semantically, their semantic classifications

are both mainly temporal. D1 (hard, sharp) is affected by

the shape of the overall envelope (including attacks), but

also by differential timing in the envelope of the harmonics.

Traditional acoustic feature analysis (Fig. 7) could mistak-

enly label these features as primarily spectral because

delayed onsets of some harmonics change the spectral bal-

ance (as in brass “brightness” caused by a relative delay in

high partial onsets). The upper extent of temporal modula-

tions in D1 surpasses 20 Hz, encompassing fast transient am-

plitude changes necessary for a sharp attack. D2 (varying
level, dynamic) is associated with dynamic spectral changes

on a slow scale that must include the sustain. But these tem-

poral changes affect spectral harmonics differentially (as

shown in the broad spectral modulation range) and occur

mainly at intermediate temporal modulations (between 2 and

6 Hz). The particular modulation rate of 6 Hz is characteris-

tic of vibrato in woodwinds and strings (Brown and Vaughn,

1996; Fletcher and Sanders, 1967; Strong and Clark, 1967).

In summary, classical acoustic analysis may have mislabeled

the D1 vs D2 distinction (orthogonal in percept, semantics,

and acoustics) as a spectral vs temporal contrast, whereas we

distinguish them by the different spectral application of

broad vs intermediate temporal ranges: either, in D1, overall

amplitude modulations including fast transients applied to

the whole tonal resonance structure, or, in D2, 2-to-6 Hz

ongoing modulations in the temporal envelope applied to the

spectral distribution across broad frequency ranges encom-

passing multiple harmonics.

The semantic labels of D3, noisy and small instrument,
go along with its solely spectral acoustic nature (namely,

spectral shifts to more energy at higher frequencies, and

greater bandwidth). D4 could similarly be considered mainly

“spectral” both in its semantic description, steady pitch,

compact, and pure, and in its acoustic correlation with

slower spectral modulations (below �6 Hz). These spectral

modulations are principally centered �1/2F0 corresponding

to a prominence of alternating harmonics. The odd harmon-

ics of the clarinet (Fletcher and Rossing, 1998, p. 463) exem-

plify this as a peak at 1.6 cycles/kHz, or half the spectral

modulation corresponding to the resonance at this pitch

[Fig. 4(b)]. Yet MDS D4 is also correlated with temporal

amplitude modulations >6 Hz at very low spectral modula-

tions of the overall amplitude envelope. As for MDS D1,

these fast modulations distinguish transients in the attack,

but in D4 they are further characterized by a positive correla-

tion with temporal skew (although skew plays a small
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overall role judged by adjusted R2). The last significant

dimension (D5) from tuba to oboe d’amore has mostly spec-

tral coefficients concentrated �1/2F0 with slow (<6 Hz)

development.

It is worth noting the relatively small effect of pitch

invariant spectral modulations at <1/8F0 of very low tempo-

ral modulation (<2 Hz). We ascribe these to linear resonan-

ces of the instruments at fixed formants, in contrast with

larger nonlinear effects dependent on pitch that cause, e.g., a

prominence of alternating harmonics, or nonlinear distor-

tions in brass (Beauchamp, 1979).

Our MPS analysis would need to account for phase in

order to detect shifts along the frequency spectrum. Such

properties are critical for describing D3, and only the tradi-

tional features of the spectral mean and standard deviation

captured it. Phase would also be required, e.g., to distinguish

temporal modulations due to the attack vs the decay. How-

ever, the conclusions from regression did not change signifi-

cantly when we calculated MPSs for the beginning and end

segments of each sound and performed the analysis using

both as regressors. Most of the effect is thus caused by differ-

ences in ongoing amplitude dynamics but is also influenced

by the attack segment of the envelope. This result is not sur-

prising since it has been shown that including attacks

improves listener categorization of instrument tones, whereas

removal of decay segments does not impair instrument identi-

fication (Saldanha and Corso, 1964; Wedin and Goude, 1972).

In summary, through our new methodology for multidi-

mensional psychophysical analysis and our combination of

complementary acoustic descriptions of the sounds, we have

made an unprecedentedly full account of orchestral timbre

perception. We found a five dimensional space with four spec-

trotemporal dimensions and one mostly spectral. The primary

two dimensions are orthogonal in both semantic labeling and

sound structure, with one dimension sensitive to faster tempo-

ral modulations (>6 Hz) and the other sensitive to slower tem-

poral modulations (�6 Hz). These signature features

correspond to dynamics in the transient and steady-state parts

of the sound, respectively. Both dimensions also depend on

spectral features: for the first dimension these are related to

the harmonic structure of the sound, whereas for the second

dimension both harmonic and nonharmonic features are

modulated at intermediate rates. The third dimension is

mostly “spectral,” driven by energy in higher harmonics. The

fourth accompanies energy in alternating harmonics and

includes spectral structure related to nonlinear filtering as well

as linear formants. Although these dimensions are ordered by

fraction of the variance explained, this ordering should differ

for other types of sound groups, such as vocalizations in

which formants play an important role.

Our results make two predictions for the purpose in au-

ditory neuroscience of uncovering the neural basis of timbre

perception. First, we expect there to be two distinct neural

populations tuned to temporal dynamics above or below

�6 Hz. Second, we predict that neural computations relevant

to more spectral percepts of timbre will be tightly coupled to

pitch computations, whereas those with other relevance will

not. For example, representations of both the fast changes in

the whole resonance observed in D1, and of the slower

spectral changes in D4 ascribed to nonlinear filtering proper-

ties, will be tightly coupled to neural representations of the

natural harmonic complex at particular pitches. In contrast,

low spectral modulations in D1, D2, and D4 ascribed to fixed

formants could be uncoupled from pitch computations. An

analysis of neural tuning for spectrotemporal modulations

could be useful in discovering neural populations that are

tuned for timbral features but pitch independent (Woolley

et al., 2009). In future investigations of the neural basis of

timbre perception, the relationship between timbre and pitch

computations should be examined closely.

The traditional and spectrotemporal MPS representa-

tions of acoustic features correlating with perceptual dimen-

sions of timbre hold promise for making the first constitutive

definition of timbre (Handel, 1995). Psychophysical tests of

the perceptual relevance of correlated features could inform

synthesis of sounds with extreme timbres. Sustained orches-

tral timbre could then be defined as some combination of the

five essential acoustic patterns associated with each of the

five perceptual dimensions (Fig. 10).
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