Induction of *ARI12* **upon broad band UV-B radiation is suppressed by UVR8 and cryptochromes**

Lisi Xie and Marie-Theres Hauser*

Department of Applied Genetics und Cell Biology; BOKU-University of Natural Resources and Life Sciences; Vienna, Austria

Keywords: UV-B, ARI12, phytochrome, cryptochrome, phototropin, UVR8

Abbreviations: ARI12, ARIADNE12; UVR8, UV RESISTANCE LOCUS; CRY1/2, CRYPTOCHROME 1/2; PHOT1/2, PHOTOTROPIN 1/2; PHYA/B, PHYTOCHROME A/B; GUS, beta-glucuronidase; COP1, CONSTITUTIVELY PHOTOMORPHOGENIC 1; Arabidopsis, Arabidopsis thaliana; CHS, CHALCONE SYNTHASE; HY5, ELONGATED HYPOCOTYL 5; HYH, HOMOLOG OF ELONGATED HYPOCOTYL; TUB9, TUBULIN BETA-9; HFR, high fluence rates

ARI12 belongs to a family of 16 potential E3 ligases in Arabidopsis and is strongly induced in leaves upon low and high fluence rates (HFR) of UV-B. We have shown that *ARI12* is a downstream target of the UV-B receptor, UVR8, and the transcription factors HY5 and HYH under low fluence rates. However under HFR of broad band UV-B *ARI12* expression was still downstream of HY5 and HYH but increased in *uvr8* mutants. To determine if other photoreceptors are responsible for the induction of ARI12 we quantified its expression in double mutants of the UV-A and blue light receptors, *CRY1/2* and *PHOT1/2*, and the red light receptors *PHYA/B*. While the expression of ARI12 was increased in cry1/2 it was unaffected in *phot1/2* and *phyA/B*. Therefore *ARI12* expression is suppressed by UVR8 and cryptochromes, and independent of phototropins and phytochromes A and B upon HFR of broad band UV-B.

Following the depletion of the stratospheric ozone layer increasing solar UV (UV)-B (280–315 nm) radiation will reach the earth. The increased UV-B radiation will have significant effects on natural and agricultural ecosystems.1-3 While low doses of UV-B serve as signal to control growth and development, high doses inhibit growth and reduce yield.4 Moreover high UV-B radiation causes DNA damages but also induces the production of UV-B protecting flavonoids.^{4,5} While photoreceptors for UV-A, blue and red light have been known for decades the existence of an UV-B specific receptor has only recently been confirmed.^{6,7} *UVR8* was identified in Arabidopsis because *uvr8* mutants were hypersensitive to UV-B, exhibit reduced UV-B-induced flavonoid biosynthesis and *CHS* expression.8 Furthermore UVR8 mediates low fluence rates UV-B-dependent photomorphogenesis.9 UVR8 is constantly expressed and present as inactive dimer in the cytoplasm. Upon UV-B radiation, UVR8 monomerises due to the disruption of salt bridges between arginines in the proximity of two tryptophanes that serve as UV-B chromophores and interact in the nucleus with the ubiquitin E3 ligase and central light regulator COP1.7,10,11 Downstream of the UVR8-mediated signaling cascade are two transcription factors HY5 and HYH which have been proposed to regulate all UVR8 dependent genes.¹²

ARI12 is a member of a family of potential ubiquitin E3 ligases in Arabidopsis.13 Under white light conditions, *ARI12* is expressed in roots and hypocotyls and hardly detectable in leaves.¹⁴ We have recently shown that *ARI12* expression is strongly induced upon low and high fluence rates of UV-B radiation and under both conditions this expression depends on the transcription factors HY5 and its homolog HYH.15

While *ARI12* expression depended on UVR8 at low fluence rates, *ARI12* was higher expressed in *uvr8* mutants upon broad band HFR conditions. To determine if other photoreceptors are responsible for the induction of *ARI12* upon HFR we extended the expression analyses to mutants of the UV-A, blue light and the red light receptors. The receptors responsible for UV-A and blue light (320–500 nm) perception are cryptochromes and phototrophins.16,17 The genome of Arabidopsis codes for two redundantly acting cryptochromes (CRY1 and 2) and phototropins (PHOT1 and 2) and a family of five phytochromes (PHYA-E) that perceive red and far-red light (600-700 nm).^{18,19} PHYA and PHYB are the most prominent members^{20,21} and both act through the transcription factor HY5.²²

Similar to the previous analyses with *uvr8* and *hy5/hyh* mutants, double mutants of the photoreceptors *cry1/2*, *phot1/2* and $p\frac{h\cancel{1}}{B}$ were cultivated under 140 μ mol m⁻² s⁻¹ white

light conditions and were exposed on day 25 for 90 min with 4.0 μmol·m-2·s-1 broad band UV-B. Leaves were harvested before and at different time points after UV-B exposure. *ARI12* expression was quantified by qRT-PCR as reported by Lang-Mladek et al.15 While the expression of *ARI12* is very low before UV-B exposure in wildtype plants (**Fig. 1A**) it is significantly higher in *uvr8-6* mutants indicating that UVR8 might act as a suppressor of *ARI12* expression in white light and UV-B. However histochemical analyses of the *ARI12* promoter GUS reporter (*pARI12:GUS*) in *uvr8-6* does not support the qPCR results of the white light conditions (**Fig. 1B and C**). Since the expression of *ARI12* in the *uvr8-6* background is very low, the difference might be due to the lower sensitivity of the reporter construct compared with the qPCR quantification. Consistently, the difference of the *ARI12* expression between *uvr8-6* and wildtype is apparent with the histochemical staining after UV-B exposure probably because of its at least one magnitude higher expression (**Fig. 1D and E**). Independent of the mutant background the RNA abundance of *ARI12* peaked at about 2 h after UV-B exposure. The expression of *ARI12* in *phot1/2* and *phyA/B* was not significantly different from their wildtype backgrounds, indicating that these two photoreceptors are not involved in the UV-B specific induction of *ARI12.* That phototropins and phytochromes are not involved in *ARI12* expression agrees with our survey of the public available microarrays that have been

explored with the Bio-Array Resource and the Genevestigator tool.23,24 In these data sets *ARI12* was not significantly induced by blue, red nor high or low light conditions nor differently regulated in *phyA* or *phyB* mutants.²⁵⁻²⁸

In contrast *ARI12* was higher expressed in *uvr8-6* and the double mutant *cry1/2* at 2 h after UV-B exposure indicating that upon HFR of broad band UV-B radiation UVR8 and the CRYs are probably inhibiting *ARI12* expression.

In summary we present evidences that UVR8 and CRY1/2 are required to avoid excess of *ARI12* expression under HFR conditions. Thus *ARI12* is the first gene that is positively regulated by HY5/HYH and negatively by UVR8 at HFR of UV-B. The functional significance of this specific regulation however has to be determined yet.

Disclosure of Potential Conflicts of Interest

There were no potential conflicts of interest to expose.

Acknowledgments

We thank Gareth Jenkins for *cry1/2*, *phot1/2* and *phyA/B* double mutants, Roman Ulm for *uvr8-6* and Christina Lang-Mladek for the *pARI12:GUS* line. The research was supported by the Austrian Science Fund (FWF) projects (P17888-B14, F3707) to M. -T. H. and the COST-FA0906 action UV4growth. LSX received a China scholarship council (CSC) fellowship.

References

- 1. Searles PS, Flint SD, Caldwell MM. A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 2001; 127:1-10; http://dx.doi. org/10.1007/s004420000592.
- 2. Kakani VG, Reddy KR, Zhao D, Sailaja K. Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 2003; 120:191-218; http://dx.doi. org/10.1016/j.agrformet.2003.08.015.
- 3. Flint SD, Ryel RJ, Caldwell MM. Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. Agric For Meteorol 2003; 120:177-89; http://dx.doi.org/10.1016/j. agrformet.2003.08.014.
- Jenkins GI. Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 2009; 60:407-31; PMID:19400728; http://dx.doi.org/10.1146/annurev. arplant.59.032607.092953.
- 5. Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol 2010; 186:786- 93; PMID:20569414; http://dx.doi.org/10.1111/ j.1469-8137.2010.03269.x.
- 6. Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, et al. A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 2005; 102:18225-30; PMID:16330762; http://dx.doi.org/10.1073/pnas.0507187102.
- Rizzini L, Favory J-J, Cloix C, Faggionato D, O'Hara A, Kaiserli E, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011; 332:103- 6; PMID:21454788; http://dx.doi.org/10.1126/science.1200660.
- 8. Kliebenstein DJ, Lim JE, Landry LG, Last RL. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 2002; 130:234-43; PMID:12226503; http:// dx.doi.org/10.1104/pp.005041.
- 9. Favory J-J, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 2009; 28:591- 601; PMID:19165148; http://dx.doi.org/10.1038/ emboj.2009.4.
- 10. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O'Hara A, et al. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 2012; 335:1492- 6; PMID:22323738; http://dx.doi.org/10.1126/science.1218091.
- 11. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, et al. Structural basis of ultraviolet-B perception by UVR8. Nature 2012; 484:214-9; PMID:22388820; http:// dx.doi.org/10.1038/nature10931.
- 12. Brown BA, Jenkins GI. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 2008; 146:576- 88; PMID:18055587; http://dx.doi.org/10.1104/ pp.107.108456.
- 13. Eisenhaber B, Chumak N, Eisenhaber F, Hauser MT. The ring between ring fingers (RBR) protein family. Genome Biol 2007; 8:209; PMID:17367545; http:// dx.doi.org/10.1186/gb-2007-8-3-209.
- 14. Mladek C, Guger K, Hauser MT. Identification and characterization of the ARIADNE gene family in Arabidopsis. A group of putative E3 ligases. Plant Physiol 2003; 131:27-40; PMID:12529512; http:// dx.doi.org/10.1104/pp.012781.
- 15. Lang-Mladek C, Xie L, Nigam N, Chumak N, Binkert M, Neubert S, et al. UV-B signaling pathways and fluence rate dependent transcriptional regulation of ARIADNE12. Physiol Plant 2012; 145:527-39; PMID:22188380; http://dx.doi.org/10.1111/j.1399- 3054.2011.01561.x.
- 16. Christie JM. Phototropin blue-light receptors. Annu Rev Plant Biol 2007; 58:21-45; PMID:17067285; http://dx.doi.org/10.1146/annurev. arplant.58.032806.103951.
- 17. Jiao Y, Lau OS, Deng XW. Light-regulated transcriptional networks in higher plants. Nat Rev Genet 2007; 8:217-30; PMID:17304247; http://dx.doi. org/10.1038/nrg2049.
- 18. Aihara Y, Tabata R, Suzuki T, Shimazaki K-i, Nagatani A. Molecular basis of the functional specificities of phototropin 1 and 2. Plant J 2008; 56:364-75; PMID:18643969; http://dx.doi.org/10.1111/j.1365- 313X.2008.03605.x.
- 19. Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 2011; 21:664-71; PMID:21852137; http://dx.doi. org/10.1016/j.tcb.2011.07.002.
- Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. In: Marja CPT, ed. Current Topics in Developmental Biology: Academic Press, 2010:29-66.
- 21. Franklin KA, Quail PH. Phytochrome functions in Arabidopsis development. J Exp Bot 2010; 61:11- 24; PMID:19815685; http://dx.doi.org/10.1093/jxb/ erp304.
- 22. Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, et al. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 2003; 17:2642-7; PMID:14597662; http:// dx.doi.org/10.1101/gad.1122903.
- 23. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An "Electronic Fluorescent Pictograph" browser for exploring and analyzing largescale biological data sets. PLoS One 2007; 2:e718; PMID:17684564; http://dx.doi.org/10.1371/journal. pone.0000718.
- 24. Zimmermann P, Hennig L, Gruissem W. Geneexpression analysis and network discovery using Genevestigator. Trends Plant Sci 2005; 10:407- 9; PMID:16081312; http://dx.doi.org/10.1016/j. tplants.2005.07.003.
- 25. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 2007; 50:347-63; PMID:17376166; http://dx.doi.org/10.1111/j.1365-313X.2007.03052.x.

Figure 1. *ARI12* expression in *uvr8-6*, *cry1/2*, *phot1/2* and *phyA/B* single and double mutants upon high fluence rates of broad band UV-B radiation. (**A**) Time course of *ARI12* expression before (no UV-B, 140 μmol m-2 s-1 white light), immediately (im) and at different times after a 90 min addition of 4 μmol m-2 s-1 of UV-B. qRT -PCR data were normalized to the expression of the reference gene *TUB9*. Data represent means and standard errors of at least three independent biological replicates. Significant difference were calculated with Student's T-tests and * indicates p-values of ≤ 0.05, and *** of ≤ 0.001, respectively. (**B–E**) Histochemical staining of *pARI12:GUS* (**B,D**) and *pARI12:GUS* in *uvr8-6* mutants (**C,E**) before (**B,C**) and 6 h after UV-B exposure (**D,E**). Pictures were taken with the same magnification and the size bar in B corresponds to 20 mm.

- 26. Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, et al. High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 2011; 67:869-84; PMID:21575090; http://dx.doi. org/10.1111/j.1365-313X.2011.04640.x.
- 27. Foreman J, Johansson H, Hornitschek P, Josse E-M, Fankhauser C, Halliday KJ. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J 2011; 65:441-52; PMID:21265897; http://dx.doi.org/10.1111/j.1365- 313X.2010.04434.x.
- 28. Leivar P, Tepperman JM, Cohn MM, Monte E, Al-Sady B, Erickson E, et al. Dynamic antagonism between phytochromes and PIF family basic helixloop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. Plant Cell 2012; 24:1398- 419; PMID:22517317; http://dx.doi.org/10.1105/ tpc.112.095711.