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The arbuscular mycorrhizal (AM) 
symbiosis, which forms between 

plant hosts and ubiquitous soil fungi of 
the phylum Glomeromycota, plays a key 
role for the nutrient uptake of the major-
ity of land plants, including many eco-
nomically important crop species. AM 
fungi take up nutrients from the soil 
and exchange them for photosyntheti-
cally fixed carbon from the host. While 
our understanding of the exact mecha-
nisms controlling carbon and nutrient 
exchange is still limited, we recently 
demonstrated that (i) carbon acts as an 
important trigger for fungal N uptake 
and transport, (ii) the fungus changes its 
strategy in response to an exogenous sup-
ply of carbon, and that (iii) both plants 
and fungi reciprocally reward resources 
to those partners providing more benefit. 
Here, we summarize recent research find-
ings and discuss the implications of these 
results for fungal and plant control of 
resource exchange in the AM symbiosis.

Introduction

The arbuscular mycorrhizal (AM) sym-
biosis between fungi from the phylum 
Glomeromycota and the roots of approxi-
mately 65% of land plant species1 is char-
acterized by an exchange of nutrients, 
such as phosphorus (P) and nitrogen (N), 
from the fungus for carbon (C) from the 
host. AM fungi are obligate biotrophs and 
depend almost exclusively on host derived 
C to complete their life-cycle and it has 
been estimated that the host transfers up 
to 20% of its photosynthetically fixed C to 
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the fungus.2 This dependency of the fun-
gus has led to the assumption that the host 
is in control of the symbiosis, and that 
the nutrient transport in the mycorrhi-
zal symbiosis is primarily driven by host 
plant demand.3-5 In contrast, recent results 
indicate that, despite its high host depen-
dency, the fungus can gain control in the 
symbiosis by adjusting its nutrient trans-
fer in response to the C supply from the 
host.6-8 Both plants and fungi are able to 
detect variation in the resources supplied 
by their partners, allowing them to adjust 
their own resource allocation accord-
ingly. This reciprocal reward mechanism 
ensures ‘fair trade’ between the symbiosis 
partners.9 Here, we discuss these recent 
research findings in relation to strategies 
that both partners may use to regulate and 
maximize their nutritional benefit from 
the AM symbiosis.

Control of Nutrient Uptake  
Pathways in Mycorrhizal Roots

Mycorrhizal plants can acquire nutrients 
via two uptake pathways.10 The direct 
pathway (DP) involves the uptake of 
nutrients from the soil-root interface by 
high affinity P and N transporters located 
in the root epidermis and its root hairs. 
The mycorrhizal pathway (MP) involves 
the uptake of nutrients from the fungal-
soil interface by the extraradical mycelium 
(ERM), translocation to the intraradical 
mycelium (IRM) and uptake by the host 
from the fungal-plant interface (Fig. 1) via 
mycorrhiza-inducible P and N transport-
ers in the periarbuscular membrane.11,12 
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interface.19 It has previously been shown 
that an increase in the C availability for 
the AM fungus stimulates the P transport 
in the AM symbiosis.7,8 Our more recent 
work demonstrated that C also acts as a 
trigger for fungal N uptake and transport, 
and that the stimulation in N transport is 
driven by changes in fungal gene expres-
sion (Fig. 1).6

Woolhouse in 1975 was the first to 
speculate that C and P transport in the 
AM symbiosis are directly linked,24 and 
this hypothesis was recently supported by 
the demonstration that the mycorrhiza-
inducible plant P transporter Pt4 and the 
fungal monosaccharide transporter MST2 
are co-localized in the AM interface, 
and that their expression level is tightly 
linked.22 Phosphate transfer and the 
expression of Pt4 is essential for the AM 
symbiosis; the absence of this transporter 
in the periarbuscular membrane leads to a 
premature degradation of arbuscules and 

ratio between the two uptake pathways 
toward the MP and will result in a higher 
mycorrhizal dependency of the host. It is 
interesting to speculate that the AM fun-
gus could use the downregulation of the 
DP to increase its C availability. A higher 
dependence on the MP for nutrient uptake 
has been shown to stimulate the C alloca-
tion to the root system.17,18

Carbon as Trigger for Nutrient 
Uptake and Transport in the AM 

Symbiosis

The host provides the fungus with C 
in the form of sucrose (Fig. 1), which is 
broken down by plant derived acid inver-
tase19,20 or sucrose synthase21 into hexoses 
which the fungus takes up via a high 
affinity monosaccharide transporter.22 
AM fungi are unable to use sucrose as a C 
source23 so they induce the expression of 
the plant acid invertase in the mycorrhizal 

Plant uptake transporters of the DP are 
downregulated in mycorrhizal roots,13,14 
and the MP can represent the main uptake 
pathway even in plants in which no posi-
tive growth benefit is observed.15 Whether 
the suppression of the DP in mycorrhizal 
roots is a host driven or a fungal mediated 
response is not known. The expression 
of plant uptake transporters of the DP is 
normally regulated by host plant demand, 
and the lower transcript levels in mycor-
rhizal roots could only be the result of an 
improved P supply.13 On the other hand, 
some transporters that are downregulated 
in mycorrhizal roots are not controlled by 
the P supply.16 It has been suggested that 
the suppression of the DP by AM fungi 
can even lead to growth depressions in 
mycorrhizal plants when the MP does not 
compensate for the reduced uptake of the 
DP.15 AM fungi differ in their efficiency 
with which they suppress the DP,14 and a 
strong suppression of the DP will shift the 

Figure 1. Nutrient uptake via the direct pathway (dP) or mycorrhizal pathway (mP) in mycorrhizal roots. High affinity nutrient uptake transport-
ers of the dP are downregulated in mycorrhizal roots (dotted line), and instead mycorrhiza-inducible transporters of the mP are expressed at the 
mycorrhizal interface. the erm takes up inorganic N from the soil/fungal interface and N is assimilated and converted into arginine via glutamine 
synthetase (GS), carbamoyl-phosphate synthase glutamine chain (cPS), argininosuccinate synthase (ASS), and argininosuccinate lyase (AL). the 
basic amino acid arginine (Arg) acts as charge balance and is co-transported to the irm with negatively charged polyphosphates (polyP) that are 
synthesized in the erm from P taken up from the soil.PolyP are remobilized in the irm and release inorganic P (Pi) and Arg, which is re-converted 
into NH4

+ via the catabolic arm of the urea cycle and the activity of a fungal arginase (ArG) and urease (ure). Plants transfer sucrose into the inter-
facial apoplast, which is hydrolyzed by the activity of a plant invertase (iNV) into hexoses. the carbon supply of the host stimulates N and P uptake 
and transport via the mP in the Am symbiosis (hatched line). the supply of a carbon source (acetate) independent from the c supply of the host 
reduces N transport in the Am symbiosis.
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strategy when the fungus has access to a 
C source independent from a single host 
and (ii) that the C supply of the host may 
play an important role for the allocation 
of nutrients within a CMN. Recent work 
from our lab in whole plant systems sug-
gests that AM fungi allocate N and P 
resources in CMN according to the C 
benefit that different hosts are able to pro-
vide (Fellbaum et al., unpublished).

While significant progress has been 
made in understanding transport and 
allocation processes in the AM symbiosis, 
much more work is needed to understand 
the mechanistic strategies of both part-
ners, and how these strategies are medi-
ated by external resources. This will allow 
us to make predictions about mycorrhizal 
functioning under global change, and  
allow us to maximize the benefits of the 
mutualism to increase the nutrient effi-
ciency of crops in environmentally sus-
tainable agriculture.
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