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Abstract
Iron oxide core nanoparticles are attractive imaging agents because their material properties allow
the tuning of pharmacokinetics as well as attachment of multiple moieties to their surface. In
addition to affinity ligands, these include fluorochromes and radioisotopes for detection with
optical and nuclear imaging. As the iron oxide core can be detected by MRI, options for
combining imaging modalities are manifold. Already, preclinical imaging strategies combine non-
invasive imaging with higher resolution techniques such as intravital microscopy to gain
unprecedented insight into steady state biology and disease. Going forward, hybrid iron oxide
nanoparticles will likely help to merge modalities, creating a synergy that enables imaging in basic
research and, potentially, also in the clinic.
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Introduction
Advances in cellular and molecular imaging increasingly allow to study biology during
steady state and disease in vivo. In addition to a deeper understanding of disease processes
in basic research, these may also transform clinical practice. Tracking disease-promoting
cells and molecules could lead to customized therapy and facilitate preventive medicine
through personalized risk assessment. Two disease areas that create the biggest health
burden in today’s society dominate molecular imaging research: cardiovascular disease and
cancer. Atherosclerosis is often detected when alterations in blood flow occur and heart
muscle or brain tissue infarct -- a late stage of disease with irreversible organ damage.
Similarly, many cancerous lesions have already progressed to advanced disease and
spawned metastases at the time of detection, hindering curative therapy. Clinical molecular
imaging may detect disease earlier, facilitate staging, monitor patient's recovery and assess
treatment efficacy (1–4).

Nanoparticles comprise a key molecular imaging agent class. Often composites of different
materials, their diameter is typically below 100nm. Among the manifold nanoparticles
described, dextran coated iron oxide nanoparticles are proven work horses for multimodality
preclinical imaging as they allow MRI as well as nuclear (PET, SPECT) and optical
(fluorescence imaging) detection, if derivatized with appropriate beacons. While we have
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seen numerous basic research applications, iron oxide core nanoparticles are not yet
established in clinical practice, however, the number of promising translational studies with
human patients is steadily growing (5–12). In this review we provide an overview on recent
advances in multimodality/multiscale imaging while focussing on iron oxide-based
nanoparticle-facilitated applications in preclinical and clinical imaging of cardiovascular
disease and cancer.

Nanoparticles
Nanoparticles have unique properties (these may be magnetic, optical or structural) that
differ from either individual atoms or the bulk material (13–18). Various nanoparticle
classes have been proposed for preclinical molecular targeting. Quantum dots for
fluorescence imaging (19; 20), composites of iron oxides or gadolinium with silica or gold
(21), micelles (22; 23), proteins (24) or dendrimers (25) have extensively been studied and
are reviewed elsewhere (26–31).

In this review we will focus on derivatized dextran-coated magnetic nanoparticles with an
iron oxide core. Growing experience with iron oxide nanoparticles over the last decades
have influenced investigation and guided different methods of nanoparticle synthesis (e.g.
microemulsions, hydrothermal reactions, sol-gel syntheses)(27). Superparamagnetic iron
oxides are commonly produced using a precipitation method from alkaline solution
containing a mixture of iron salts and a polymer coating to stabilize the compound in
physiological solution (32–34). Tuning the surface coating may modify particle size and
pharmacokinetics (35; 36). Dextran polymers, which are frequently used as coating
materials, have previously been used in plasma expanders in the clinic (37). To prevent
desorption of dextran from the iron oxide core, composites can be treated with
epichlorhydrin to covalently cross-link the coating with the iron oxide core (cross-linked
iron oxide nanoparticle, CLIO). Alternatively, carboxylated dextran can form the primary
coating, a clinically viable alternative (5; 38; 39). Dextran coating provides for efficient
conjugation chemistry through introduction of amines into the nanostructure (40). A high
quantity of carboxylic or amine groups provides sufficient handles to label CLIO with
affinity ligands or radioactive isotopes and fluorochromes for detection (Figure 1). Click
chemistry (41–43), e.g. bioorthogonal cycloaddition reaction between 1,2,4,5-tetrazene and
trans-cyclooctene (called “BOND” for bioorthogonal nanoparticle detection) (44; 45) can be
used to rapidly add ligands. This may be particularly attractive for attachment of fast-
decaying radioisotopes such as Fluorine-18 (46). If derivatized with appropriate affinity
ligands, iron oxide particles can actively bind to targets. Alternatively, depending on the
surface design, iron oxide nanoparticles are internalized by phagocytic or other cell types
(47; 48). Phagocytes, including monocytes and macrophages, are often a focus of interest
due to their key role in disease promotion. Suitable cell-specific nanoparticles can be
identified with library approaches, in which their surface is randomly modified with small
molecules. The fluorescence label allows for rapid screening of particle library uptake. This
“trial and error” concept also facilitates nanoparticle selection with reduced phagocytic
background uptake for targeting ligand strategies (49; 50). Further, libraries may be used to
rapidly assess effects of nanoparticle toxicity (51).

Imaging Techniques
Magnetic resonance imaging

MRI is a modality with high spatial resolution and excellent soft tissue contrast (52). By
adding molecular and cellular information to assessment of morphology, nanoparticles
facilitate integration of anatomic, physiological and molecular data (53). The presence of
iron oxide nanoparticles modulates proton spins, which is typically detected in T2/T2*-
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weighted sequences, capitalizing on the strong T2 relaxivity of the iron oxide core. While
particles are not directly visualized, interaction with surrounding protons leads to powerful
signal amplification. This concept has been applied to detect phagocytic cells in liver, spleen
and lymph nodes (54–56) and in diseased tissues with phagocyte accumulation, such as
vascular inflammation (57–62) or cancer (38; 63). The negative MRI contrast associated
with iron oxide nanoparticles limits their use to target tissue with high initial signal and
impairs the detection of the nanoparticle-specific signal decrease in the lung. Discrimination
between nanoparticle-induced negative contrast and artifacts (e.g. air, motion, blood flow
and interfaces with high susceptibility differences) can be difficult. Acquisition of pre- and
post-injection images or positive contrast sequences for iron oxide detection, providing
bright iron signals, address some of the technical challenges and improve specificity (64–
68).

Nuclear Imaging
Nuclear imaging is known for its high sensitivity (10−10 to 10−12 mol/l), and its quantitative
capabilities. Disadvantages are exposure to radiation, limited spatial resolution and the
relative lack of anatomic detail. The latter is overcome by fusion of nuclear with anatomic
imaging in hybrid techniques such as PET/CT or PET/MRI. For detection with nuclear
imaging, nanoparticles are derivatized with radioisotopes such as Indium-111, Fluorine-18,
Copper-64 or Zirconium-89. Often, this may be achieved by attachment of a chelator to the
nanoparticle, and addition of the isotope just before injection (69). The ability to quantify
very sparse targets with low doses of nanoparticles makes nuclear detection of nanoparticles
highly attractive. Differences to detection by MRI are the positive and particle-specific
increase in imaging signal.

Optical Imaging
Fluorochromes have long played a major role in biotechnology by facilitating techniques
such as histology, flow cytometry, and sequencing. Advantages are the versatility,
multispectral capabilities, cost-effectiveness and sensitivity of optical detection.
Fluorochromes such as indocyanine green are non-toxic and therefore qualify for human
use. Expansion to the near infrared (NIR, 650–900 nm) spectrum overcame some of the
limitations of optical imaging, including photon absorption, scattering, and background from
endogenous tissue autofluorescence (70). Shifting to the NIR spectrum also allows deeper
tissue penetration, and facilitated whole body tomography of rodents (71) and intravital
microscopy of structures up to hundreds of micrometers within the tissue by confocal and
multiphoton mode (72). The simplicity of planar fluorescence reflectance imaging (FRI) led
to widespread research application, and clinical translation in endoscopic fluorescence
imaging, intravascular fluorescence catheters or intraoperative fluorescence imaging is being
explored (73–75). Tomographic fluorescence techniques (fluorescence molecular
tomography, FMT) resolve the quantitative limitations of planar imaging and generate
volumetric, three-dimensional maps of fluorochrome concentration (76). Here,
fluorochrome-labeled nanoparticles can be detected and the concentration rapidly quantified
with high sensitivity (77) while spectrally resolved fluorochromes enable multichannel
imaging (78). In addition, upconverting nanoparticles containing rare earths such as yttrium
oxide may be useful. These nanoparticles absorb light in the near infrared spectrum and emit
their signal at shorter wave length, a phenomenon called Anti-Stokes emission (79; 80). The
changed emission spectrum avoids tissue autofluorescence and improves specificity of
detection.

Miniaturized Detection Approaches (Diagnostic Magnetic Resonance - DMR Chip)
The use of labeled dextran-coated iron oxide nanoparticles as biosensors for diagnostic
magnetic resonance is a relatively recent development for the ex vivo detection of analytes
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(Figure 2) (81; 82). DMR devices, meant to be used at the point of care, employ magnetic
nanoparticles for detection of DNA, proteins, receptors, cells, bacteria or toxins with high
sensitivity. The devices resemble miniaturized MR systems, with a small permanent magnet
and smart phones or tablets serving as the "console". For DMR, fluid samples of optically
opaque test material (blood, sputum, biopsies) are incubated with nanoparticles that carry
target-specific affinity ligands. By sensing changes in the T2 relaxivity of the sample, the
analyte can rapidly be detected, without the need of extensive sample processing. In clinical
translation, DMR of human tumor tissue from fine needle aspirates was shown to provide
accurate measures of multiple tumor markers in less than one hour, much faster than
conventional histology techniques (83).

Multimodality Imaging
Imaging modalities strongly vary in sensitivity, spatial and temporal resolution, and
quantitative capabilities. An ideal imaging technique that maximizes all of the above has yet
to be developed. To overcome specific modality limitations, multimodality imaging
combines techniques with complementary strength. Co-registration of anatomical detail to
physiological and molecular data allows exact signal localization and correlation to
physiology (69; 84; 85). Theoretically, spectrally resolved fluorescence channels could be
combined with MRI and radionuclide imaging to follow multiple distinct nanoparticle
batches with different affinities, and hence molecular targets, simultaneously. We found that
radionuclide and optical signals originating from the same nanoparticle correlate well
between modalities (Figure 3) (86). Thus, while nuclear imaging of nanoparticles may be the
most sensitive clinical route to translation, optical imaging could be used to accelerate
preclinical development, minimizing the hurdles and costs associated with radioisotope
handling. Fluorochromes do not decay like nuclear isotopes and provide convenient access
to higher resolution agent localization techniques as FRI or fluorescence microscopy.
Additionally, fluorochrome-derivatized nanoparticles can be detected by flow cytometry,
which facilitates the quantitation of cellular uptake into specific cell populations identified
by surface antigen expression (Figure 4).

Multimodal Nanoparticles for Imaging of Atherosclerosis
The development of atherosclerosis is a chronic inflammatory multi-step process leading to
vulnerable, rupture-prone plaques (87; 88). Hence, methods that elucidate immunobiological
changes within the vessel wall may be suitable to detect a future culprit lesion (89).
Molecular imaging has targeted early and late events in the inflammatory cascade of
atherothrombosis (reviewed in 1; 77; 90; 91). Many preclinical and several clinical studies
used nanoparticles to follow cardiovascular targets. If early disease events are of interest,
one can detect vascular cell adhesion molecule-1 (VCAM-1) using affinity peptide-
derivatized, fluorochrome-labeled iron oxide nanoparticles (CLIO-Cy5.5) (59). Targeting of
oxidized LDL with lipid-coated iron oxide nanoparticles as well as gadolinium(Gd)/
fluorescence-derivatized HDL facilitates detection of lipid rich atherosclerotic plaques in
apolipoprotein E deficient (apoE−/−) mice (92; 93).

Phagocytic myeloid cells, especially monocytes and macrophages, are key innate immune
cells furnishing vascular wall inflammation. The detection and quantification of myeloid cell
infiltration provides a valuable marker of inflammatory activity. Dextran-coated iron oxide
nanoparticles, labeled nanocrystal-core HDL or affinity ligand derivatized Gd-
immunomicelles are all avidly internalized into phagocytes and can be used to efficiently
detect macrophage presence in atherosclerotic plaque with MR, optical and nuclear imaging
techniques (69; 94; 95). Nanoparticle imaging with PET reduces the dose required for
detection of inflammatory cells (60). Furthermore, fluorescent co-labeling enables the
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localization of the nanoparticle to the atherosclerotic plaque and ultimately to the cellular
source by ex vivo FRI, fluorescence microscopy or flow cytometry of vascular target tissue.

Myocardial Infarction
Infarct healing and cardiac remodeling involve a complex set of interconnected cellular and
molecular events, many of which are still incompletely understood. Visualization and in
vivo detection of the underlying biology helps to understand the tissue changes after MI.
Initially, ischemia leads to loss of cardiomyocytes due to necrosis and apoptosis. While
necrotic cells are permanently lost, apoptosis is potentially reversible and thus a potential
therapeutic target. Delayed Gd-DTPA enhancement MRI identifies the infarcted area, but
cannot differentiate between necrotic and apoptotic cells. An annexin 5-labeled CLIO-Cy5.5
nanoparticle detected cardiomyocyte apoptosis early after myocardial infarction with high
sensitivity using T2* weighted MRI. Specificity of the signal was tested by co-localization
on ex vivo fluorescence imaging (96; 97). Cell death next elicits a robust inflammatory
response (98). Early neutrophil infiltration is followed by monocytes supplied by the bone
marrow and the splenic reservoir (99). Inflammation seems essential for initiation of wound
healing, while an excessive or insufficient inflammatory response may both be detrimental,
leading to adverse remodeling, left ventricular dilation and heart failure (100). Thus,
investigating inflammatory cell recruitment to the infarcted area (101), possibly in
conjunction with other healing biomarkers like protease activity (78), could provide insight
into biomarker networks. In a multi-channel MRI/FMT offline fusion approach, injection of
fluorescent iron oxide nanoparticles allowed the monitoring of phagocytic recruitment to the
myocardium (99). A co-injected cathepsin protease fluorescence sensor utilized a spectrally
distinct channel on FMT to assess proteolytic activity induced by inflammatory cells. Ex
vivo analysis then confirmed the source and location of the signal. In clinical practice,
monitoring of infarct healing, for instance by MRI of iron oxide nanoparticle uptake into
monocyte/macrophages recruited to the infarct scar shortly after the ischemic injury, could
identify patients at risk and guide therapy that aims to prevent heart failure.

Transplant Rejection
The ability to non-invasively image the pathophysiology of acute or chronic transplant
rejection is an advance that promises to support clinical surveillance of grafts, which
currently relies on repetitive tissue biopsies. For instance, radiolabeled antibodies detected
cardiomyocyte injury (102). MRI combining biological (inflammation, cell injury) and
functional (wall movement, ejection fraction) information would comprehensively assess a
transplanted heart in one single investigation. Since phagocytes invade a rejecting organ,
iron oxide particles can detect allograft rejection and would facilitate graft monitoring (103).
A multimodality CLIO-Cy5.5 nanoparticle quantified phagocytosis during graft rejection,
and was detected with MRI and FMT (104). A co-injected fluorescence protease-sensor
additionally allowed the assessment of protease activity via a spectrally distinct FMT
channel. Ex vivo analysis exploited the fluorescence label on the nanoparticle for FRI and
flow cytometry to confirm macrophage uptake (104). Alternatively, Hitchens et al.
investigated a 19F-fluorescence-labeled perfluorocarbon particle for macrophage infiltration
of organ grafts by Fluorine-19 MRI (105). The advantage of this approach is the highly
specific positive contrast created by the injected imaging agent, however, this may come
with the cost of lower sensitivity.

Aortic Aneurysms
Current guidelines recommend invasive repair for abdominal aortic aneurysms once the
diameter exceeds 5.5 cm or the size progresses more than 1 cm/year (106). As most patients
are asymptomatic and invasive aneurysm repair is associated with a high peri-operative
mortality, the interest in alternative decision-making strategies is growing (107; 108).
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Preclinical molecular imaging strategies now offer the assessment of the cellular and
molecular pathobiology behind aneurysm formation and rupture. Infiltrating inflammatory
cells secrete matrix metalloproteinases which promote degradation of extracellular matrix
and compromise the integrity of the vascular wall. These inflammatory processes support
the progression of aneurysms and ultimately cause aneurysm rupture (109). A CLIO
platform labeled with the PET isotope Fluorine-18 and a fluorochrome was used in the
apoE−/− mouse aneurysm model (46). PET/CT quantified macrophage infiltration in the
vascular wall and may be a prognostic marker for aneurysm progression. The fluorescence
label on the nanoparticle confirmed its cellular uptake profile by flow cytometry (46). Klink
et al. used CNA-35 gadolinium micelles to image collagen in the wall of abdominal aortic
aneurysm. Concomitant fluorescence labeling facilitated confirmation of target binding.
With progression of aneurysm size, collagen loss in the aortic wall correlated to aneurysm
“instability” and the likelihood to rupture (110). A recent clinical pilot study on iron oxide
nanoparticle MRI in patients with aortic aneurysms demonstrated feasibility and showed
promise for predicting aneurysm growth in the clinical setting (11). Ultimately, one could
envision a clinical situation in which a large but biologically inactive aneurysm is not
surgically treated but followed with watchful waiting, while smaller but highly inflamed
aneurysms are treated aggressively. This may reduce both, rupture prevalence and surgery-
related risk in stable patients.

Cancer Inflammation and Cell Tracking
Cancer is associated with an inflammatory response of the innate and acquired immune
system (111). Tumor cells recruit inflammatory cells which modulate the stroma, including
extracellular matrix, and the tumor microenvironment. Infiltration of tumor associated
macrophages (TAMs) promoting angiogenesis, invasion and metastasis represents a
potential prognostic marker. We used CLIO-Cy5.5 to detect TAMs in murine cancer (112)
and to explore co-localisation with additional biomarkers of inflammation (protease activity
and integrins) using PET-FMT/CT (86). Others investigated iron oxide-fluorescence
nanoemulsions of different sizes for uptake by tumor cells and TAMs (113). An alternative
strategy is to image tumor cells directly via targeting of specific cell epitopes. Here,
attachment of affinity ligands provides sensitivity for specific cancer cell lines (114–119).
Targeting αvβ3 expression in murine cancer using magnetofluorescence (120; 121) or
radiomagnetic (122) nanoparticles enabled the visualization of nanoparticle binding to
integrin expressing cells with SPECT, PET, MRI and optical techniques (FMT, FRI or
fluorescence microscopy) (120). Gianella et al. additionally incorporated glucocorticoids
into a magnetofluorescent nanoemulsion platform for drug delivery (123). Furthermore,
nanoparticles can also be applied for in vivo tracking of hematopoietic, possibly also
neoplastic cells (124). Derivatization of the dextran coat with a membrane translocation
signal (HIV-Tat peptide)(125) caused internalization of the nanoparticle, specifically into
CD34+ cells, which was followed with MRI and fluorescence imaging.

Clinical Studies
Clinical translation of complex multimodality nanoparticles faces considerable obstacles,
including regulatory hurdles. One approach to clinical translation may be simplification of
nanoparticle structures or the use of approved building blocks to better navigate regulatory
concerns (126). Nevertheless, first imaging probes have passed the hurdle to clinical
translation. Several studies investigated macrophage infiltration into inflamed
atherosclerotic plaques (6–8). Trivedi et al. imaged symptomatic carotid stenosis of 30
patients scheduled for carotid endarterectomy with MRI before and after injection of iron
oxide nanoparticles. Increased contrast was detected in 80% of the plaques and correlated
significantly with histopathological data and staining for macrophages (9). Consequently,
Patterson et al. applied iron oxide enhanced MRI to monitor the effects of statin treatment
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on carotid plaque inflammation over a course of 12 weeks (10). High dose treatment resulted
in significantly reduced MRI contrast, when compared to low dose statin therapy.
Macrophage infiltration as a marker of inflammation of the vascular wall was followed in a
clinical pilot study of abdominal aortic aneurysms. Richards et al. imaged 29 patients with
aortic aneurysms before and after administration of iron oxide nanoparticles. Macrophages
were detected in the aneurysm wall and iron oxide uptake into these cells was confirmed by
histology. Interestingly, patients with higher nanoparticle uptake had significantly higher
aneurysm growth rates, indicating the potential of this technique to guide clinical
surveillance and treatment decisions (11). The idea to use nanoparticles for early detection
and monitoring of disease is also supported by recent work by Gaglia et al. (39). The authors
correlated MRI contrast changes after injection of iron oxide nanoparticles to insulitis in
patients with recent-onset type 1 diabetes. As inflammatory phagocytes infiltrate pancreatic
islets before the onset and with progression of diabetes, iron oxide nanoparticles could
facilitate early detection of the disease and patient surveillance.

Molecular imaging has probably gained most clinical momentum in the early detection and
staging of cancer. Harisinghani et. al. investigated 80 patients with prostate cancer and
targeted phagocytic myeloid cells in lymph nodes with iron oxide nanoparticles. Using MRI,
lymph node metastases were identified as areas that did not decrease in signal after
nanoparticle injection, down to lesions of 2 mm in diameter (5). Comparison to surgical
biopsies showed an excellent sensitivity and specificity. The use of ex vivo diagnostics that
rely on nanoparticle detection (83) faces less hurdles for clinical translation and may
therefore evolve rapidly.

Summary
Multimodal protocols are already changing the way we image, and some of these advances
are supported by hybrid nanoparticles. Nanoparticles that are detectable across modalities
are frequently used for validation purposes. For instance, after in vivo nuclear or magnetic
resonance imaging, fluorescence serves to pinpoint the nanoparticle signal to specific
tissues, cells and molecular targets. Further, nanoparticles with multiple detection options
are used in multiscale experiments, in which targets are followed non-invasively first, and
subsequently with higher resolution techniques such as intravital fluorescence microscopy or
flow cytometry. The combination of different scales connects non-invasive with potentially
more specific invasively gained data, and thus facilitates insight into complex basic biology.
Finally, multiscale imaging may enhance clinical diagnostics in the near future. A
hypothetical application could be the non-invasive whole body detection of nanoparticles by
PET (in inflamed atherosclerotic plaque or tumors), which could be followed by real-time
optical visualization of particle deposition during invasive therapeutic procedures. These
could include local detection of inflammatory plaque by intravascular fluorescence-sensing
wires (127) during stent implantation, or detection of tumor margins by intra-operative
fluorescence imaging (128; 129). Future work will provide additional proof-of-concept and
hopefully clinical data in support of these concepts.
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CLIO Cross Linked Iron Oxide

CT Computed Tomography

Cy5.5 Cyanine 5.5

DMR Diagnostic Magnetic Resonance

FM Fluorescence Microscopy

FMT Fluorescence Molecular Tomography

FRI Fluorescence Reflectance Imaging

Gd Gadolinium

HDL High Density Lipoprotein

LDL Low Density Lipoprotein

LV Left Ventricle

MRI Magnetic Resonance Imaging

NIR Near-InfraRed

TAM Tumor Associated Macrophages
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Figure 1.
Concept of a multimodal iron oxide core nanoparticle. (a) Iron oxide core is engulfed by a
polymer shell (e.g. dextran). Amine groups bind affinity ligands and beacons for various
imaging modalities (b–d). (b) Surface derivatization with radionuclides promotes nuclear
imaging, e.g. positron emission tomography (PET, nanoparticles targeting tumor-associated
macrophages)(86) or single photon emission computed tomography (SPECT, targeting
activated platelets)(130). (c) Superparamagnetic iron oxide core cause signal decrease in T2*
weighted MRI (arrows show atherosclerotic plaque in apoE−/− mouse aorta)(131). (d)
Fluorochromes attached to the nanoparticle surface enable optical imaging such as
fluorescence molecular tomography (FMT), fluorescence reflectance imaging (FRI) or
florescence microscopy (FM) (86). Images adapted with permission.
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Figure 2.
Diagnostic magnetic resonance (DMR) applies iron oxide nanoparticles to detect analytes in
blood, sputum, and biopsies with high sensitivity. (a) Miniaturized NMR as a point-of-care
device. (b) Schematic of integrated DMR using a small permanent magnet. (c) DMR can be
run by a smart phone application. Images adapted with permission (83).
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Figure 3.
Multimodality imaging combines complementary imaging techniques for optimizing
sensitivity, temporal and spatial resolution and quantification. (a) Animal bed for transfer
between imaging modalities (i.e. FMT, PET and MRI). (b) Fiducial markers (arrows) for
image fusion are detected in all modalities. (c) FMT/CT image of tumor protease activity.
(d) PET/CT image of phagocyte activity after co-injection of 64Cu-CLIO in the same mouse.
(e) FMT-PET/CT image fusion integrates phagocyte and protease activity data (86). Images
adapted with permission.
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Figure 4.
Multiscale experiment with 18F-CLIO-VT680 in a murine model for aortic aneurysm (46).
Macroscopic: Non-invasive PET/CT shows signal in the aneurysmatic thoracic aorta.
Mesoscopic: Fluorescence reflectance imaging (FRI) of the excised aorta indicates specific
nanoparticle uptake in aortic aneurysm with higher resolution. Microscopic: Fluorescence
microscopy (FM) and flow cytometry (FACS) co-localize nanoparticles with macrophages
in the aortic wall (46). Images adapted with permission.
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