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The molecular etiology of human progenitor reprogramming into
self-renewing leukemia stem cells (LSC) has remained elusive. Al-
though DNA sequencing has uncovered spliceosome gene muta-
tions that promote alternative splicing and portend leukemic
transformation, isoform diversity also may be generated by RNA
editing mediated by adenosine deaminase acting on RNA (ADAR)
enzymes that regulate stem cell maintenance. In this study, whole-
transcriptome sequencing of normal, chronic phase, and serially
transplantable blast crisis chronic myeloid leukemia (CML) progen-
itors revealed increased IFN-γ pathway gene expression in concert
with BCR-ABL amplification, enhanced expression of the IFN-re-
sponsive ADAR1 p150 isoform, and a propensity for increased
adenosine-to-inosine RNA editing during CML progression. Lenti-
viral overexpression experiments demonstrate that ADAR1 p150
promotes expression of the myeloid transcription factor PU.1 and
induces malignant reprogramming of myeloid progenitors. More-
over, enforced ADAR1 p150 expression was associated with produc-
tion of a misspliced form of GSK3β implicated in LSC self-renewal.
Finally, functional serial transplantation and shRNA studies dem-
onstrate that ADAR1 knockdown impaired in vivo self-renewal
capacity of blast crisis CML progenitors. Together these data pro-
vide a compelling rationale for developing ADAR1-based LSC de-
tection and eradication strategies.

Although advanced malignancies are diverse in phenotype,
they often exhibit stem-cell properties including enhanced

survival, differentiation, quiescence, and self-renewal potential
(1, 2). Early insights into the molecular pathogenesis of cancer
stemmed from the discovery of the Philadelphia chromosome
(Ph+) and its constitutively active BCR-ABL1 tyrosine kinase in
chronic myeloid leukemia (CML) (3–5). Tyrosine kinase inhibitor
(TKI) therapy targeting BCR-ABL1 suppresses CML during the
chronic phase (CP) of the disease in most patients able to tolerate
long-term therapy (6). Although the CP stage of CML often can
be controlled for long periods of time with standard TKI thera-
pies, subsequent genetic and epigenetic alterations promote pro-
genitor expansion and the generation of self-renewing leukemia
stem cells (LSC) that fuel disease progression and blast crisis (BC)
transformation along with TKI resistance (7, 8). Furthermore,
TKI discontinuation usually results in CML resurgence, suggesting
that quiescent progenitors persist despite therapy (9–12).
Mutations in spliceosome genes and alternative splicing of

coding and noncoding RNAs are emerging as important drivers
of transcriptomic diversity that fuel leukemic progression and
therapeutic resistance (7, 8, 13). Moreover, previous studies re-
veal extensive RNA editing in the human transcriptome (14–17),
primarily in primate-specific Alu sequences (18–20), which pro-
motes splice isoform diversity. RNA editing activity is mediated
by the adenosine deaminase acting on dsRNA (ADAR) family of
editases (21), which includes ADAR1 (also known as ADAR),
ADAR2 (ADARB1), and ADAR3 (ADARB2). ADAR1 and

ADAR2 are active in embryonic cell types (18), and ADAR3
may play a nonenzymatic regulatory role in RNA editing activity
(22). ADAR enzymes regulate fetal and adult hematopoietic stem
cell (HSC) maintenance and stem cell responses to inflammation
(23–26). ADAR-mediated adenosine-to-inosine (A-to-I) RNA
editing in an Alu sequence containing dsRNA hairpin structures
(14, 20) can generate alternative donor or acceptor splice sites
(27, 28), alter RNA structure (21), modulate regulatory RNAs
and gene silencing activities (29), and introduce codon sequence
alterations (29). Interestingly, ADAR deregulation has been im-
plicated in a variety of malignant cell types (30, 31). However, the
functional effects of RNA editing in leukemia have not been
elucidated. Here we examined the role of ADAR1-mediated
RNA editing in malignant reprogramming of myeloid progenitors
into LSC that drive BC transformation in CML.
Whole-transcriptome sequencing coupled with quantitative

RT-PCR (qRT-PCR) analysis demonstrated increased IFN-re-
sponsive ADAR1 expression in LSC from primary BC CML pa-
tient samples as compared with CP CML and normal cord blood
progenitors. This increase coincided with enhanced expression of
inflammatory pathway genes during the progression from CP to
BC. Moreover, ADAR1 p150 mRNA expression correlated with
BCR-ABL amplification and increased A-to-I editing with dif-
ferential expression of ADAR target genes in BCCML. Lentiviral
ADAR1 p150 expression induced PU.1 expression that promotes
expansion of myeloid progenitors and was associated with pro-
duction of a misspliced form of glycogen synthase kinase (GSK)-
3β that has been implicated in LSC self-renewal (7). Lentiviral
ADAR1 knockdown also reduced BC LSC self-renewal capacity
in RAG2−/−γc−/− mice. These data shed light on the contribution
of ADAR1-mediated RNA editing to malignant progenitor
reprogramming driving leukemic progression.

Results
Inflammatory Mediator-Driven RNA Editing Portends Blastic Trans-
formation. To investigate the mechanisms driving malignant
reprogramming of myeloid progenitors into LSC, we performed
whole-transcriptome sequencing (RNA-seq) on FACS-purified
CD34+CD38+Lin− progenitor cells isolated from primary CML
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Fig. 1. Inflammatory mediator-driven RNA editing portends blastic transformation. (A) Significantly over-represented pathways enriched for 2,228 differ-
entially expressed genes in BC (n = 8) versus CP (n = 8) CML progenitors. (B) Human ADAR1 p150 and p110 were analyzed in CD34+CD38+Lin− progenitors
from normal cord blood (n = 8), CML CP (n = 6), and CML BC (n = 7) by qRT-PCR. Ratios of p150 to p110 were determined (overall P = 0.0067; *P < 0.05
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archical clustering (see SI Materials and Methods) separated CP and BC samples. A select subset of genes (boxes) discriminated BC from cord blood (n = 3).
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patient samples (Table S1). We identified 2,228 genes that were
differentially expressed in BC and CP progenitors, and pathway
analysis demonstrated overrepresentation of inflammatory IFN-
related and proteoglycan-related pathways involved in hemato-
logical development (Fig. 1A) in BC as compared with CP CML.
Among the significantly affected networks identified using
Ingenuity Pathway Analysis (IPA), IFN-γ, cytokine, and TNF
signaling pathways (Fig. S1A) along with self-renewal and re-
programming factors (KLF family and LEF1; Fig. S1B) were
found to be enriched for differentially expressed genes in BC as
compared with CP CML.
Analysis of inflammatory mediator splice isoform expression

revealed up-regulation of numerous inflammation-associated re-
ceptors and signaling molecules (Fig. S2A). The most signifi-
cantly up-regulated transcripts included an LSC marker, IL-3Rα
(CD123), IFN receptors, and TNF receptors (TNFRSF) (Fig. S2A).
Notably, transcription of the IFN-responsive isoform of ADAR1 has
been shown to be stimulated by a variety of inflammatory molecules
(32, 33). Because of known functional differences between ADAR1
p150 and p110 that are not evident by whole-gene expression studies,
we performed a sensitive qRT-PCR analysis in CD34+CD38+Lin−

progenitor cells fromprimary CMLpatient samples (Table S1) using
splice isoform-specific primers (Table S2). Expression levels of the
inflammation-responsive ADAR1 p150 isoform were increased ap-
proximately eightfold in CML BC progenitors in comparison with
normal cord blood (Fig. S1C), but levels of the constitutively active
p110 isoform did not differ significantly among groups (Fig. S1D).
Analysis of the ratio of p150 to p110 showed a relative enrich-
ment of the p150 ADAR1 isoform associated with CML pro-
gression (Fig. 1B) and BCR-ABL amplification in BC CML
progenitors (Fig. 1C). We observed similar patterns of increased
ADAR1 p150 expression in the granulocyte/macrophage pro-
genitor (GMP) fraction of primary CML samples (Fig. S1E),
which expands during CML progression (Fig. S1F) (34). To
confirm sensitivity of HSC to inflammatory mediator-induced
ADAR1 p150 expression, qRT-PCR analysis was performed on
CD34+ cord blood cells treated with IFN-γ or TNF-α, and results
showed a twofold up-regulation of ADAR1 p150 (Fig. S1G).
Additional analysis of ADAR family gene expression in the

RNA-seq data demonstrated that although total ADAR1 (ADAR)
expression was detectable in all samples, ADAR2 and ADAR3
expression was below detection thresholds (Fig. S2B). This result
is consistent with previous reports showing that ADAR1 is the
most highly expressed RNA-editing enzyme in tumor cells (35,
36) and suggests that ADAR1 is likely the primary functional
A-to-I RNA editase in CML LSC.
To investigate the contribution of ADAR1 up-regulation to

RNA editing during CML progression, RNA-seq analysis of

CML CP and BC CD34+CD38+Lin− progenitors was compared
with the genomic coordinates of putative A-to-I editing sites
identified in a previously published dataset (35). In eight CP and
eight BC CML primary patient samples, the fraction of sites that
contained guanosine bases (representing inosine substitution)
compared with adenosine bases was calculated for each patient
sample. This comparison revealed a striking enrichment of A-to-
G changes in ADAR target sites in BC compared with CP pro-
genitors (Fig. 1D), demonstrating a shift toward increased RNA
editing during CML progression. Furthermore, volcano plot
analysis of editing at ADAR target sites revealed ∼16-fold more
editing sites with significantly increased editing ratios during BC
transformation (Fig. 1E). A total of 274 sites exhibited signifi-
cantly different editing rates (Dataset S1), and these sites were
located predominantly within Alu repeat sequences (Fig. 1F).
These data suggest that RNA editing activity is not only cell type-
and context-specific but also is disease stage-specific and there-
fore could be a harbinger of disease progression.
By examining the relative levels of ADAR target gene (35)

transcripts, we found that 175 of 2,593 putative ADAR target genes
were differentially expressed in BC and CP progenitors (Fig. 1G).
Differential expression of a subset of ADAR target genes clearly
distinguished BC from CP or cord blood progenitors (Fig. 1G).
In addition, nonnegative matrix factorization, using 200 random
start sites, recapitulated these major groupings (Fig. S1H). Fi-
nally, cophenetic correlation coefficients calculated using this
human myeloid progenitor dataset, compared with a randomized
dataset, also supported three major groupings in the data (Fig. S1I).
To investigate whether there was evidence of a link between

aberrant RNA editing and alternative splice isoform expression in
BC versus CP CML, editing ratios at ADAR target sites were
calculated for transcripts that were differentially expressed (Fig. S2
C and D). Editing ratios were found to be increased for signifi-
cantly differentially expressed transcripts (Fig. S2C). Moreover,
differential isoform expression of ADAR target genes revealed
distinct clustering of CMLBC versus CP (Fig. S2D). Thus, the shift
in transcriptional patterns associated with increased RNA editing
may reflect malignant reprogramming of progenitors in CML.

BCR-ABL Expression Enhances Inflammatory Mediator Gene Expression.
Because qRT-PCR analyses revealed that ADAR1 p150 expres-
sion correlated with BCR-ABL levels in BC CML (Fig. 1C), we
sought to investigate the potential mechanisms driving ADAR1
induction in BC CML and the relationship between ADAR1
p150 and BCR-ABL. Both qRT-PCR analyses and RNA-seq
studies were performed with CD34+ cord blood transduced with
lentivirus expressing BCR-ABL p210 tagged with GFP or vector
control (Fig. 2A and Fig. S3A). Increased phosphorylation of the
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and vector controls (P < 0.05 by DESeq).
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BCR-ABL substrate Crkl by nanoproteomics analysis confirmed
functional BCR-ABL activation (Fig. 2B). These analyses sug-
gested that BCR-ABL may regulate ADAR1 indirectly. In support
of this possibility, RNA-seq analyses of lenti-BCR-ABL–trans-
duced cord blood compared with vector-transduced controls
identified 45 differentially expressed genes (Fig. 2C). BCR and
ABL1 were up-regulated along with inflammatory mediators such
as TNFRSF9 (Fig. 2C). Other differentially expressed genes in-
cluded factors involved in ECM function or intercellular junctions
(Fig. 2C). Because TNF pathways, receptors, and other inflam-
matory mediators also were up-regulated during CML progression
(Fig. 1A and Figs. S1A and S2A), it is conceivable that BCR-ABL
regulates ADAR1 p150 through the induction of inflammatory
receptor expression.

ADAR1 Promotes Malignant Myeloid Progenitor Expansion and Alter-
native Splicing. Lentiviral ADAR1 overexpression and shRNA
knockdown studies were performed to examine the functional
consequences of ADAR1 p150 up-regulation. Transduction effi-
ciency of lentiviral vectors driving human ADAR1 (p150) over-
expression (lenti-ADAR1) or ADAR1-targeting shRNA (lenti-
shADAR1) was validated in normal cord blood (Fig. S3 B–E).
Myeloid lineage skewing was observed in colony-forming assays
performed with CD34+CD38+Lin− cord blood progenitors trans-
duced with lenti-ADAR1 p150, as demonstrated by an increase in
the number of macrophage colonies and a corresponding decrease
in the number of erythroid burst-forming unit (BFU-E) colonies
(Fig. 3A). This myeloid lineage bias coincided with up-regulation
of PU.1—a myeloid transcription factor—and down-regulation of
GATA1—an erythroid transcription factor—in colonies from cord
blood progenitors transduced with ADAR1 p150 lentivirus (Fig. 3
B and C) and in CML BC progenitor-derived colonies (Fig. 3 D
and E). RNA-seq analyses demonstrated an increase in the PU.1/
GATA1 ratio in BC versus CP progenitors (Fig. 3F). Additionally,
network analysis of RNA-seq data revealed down-regulation of
genes involved in GATA1-dependent processes (Fig. 3G).
Short-term culture of normal progenitors transduced with

lenti-ADAR1 at increasing multiplicity of infection (MOI) con-
firmed a positive correlation between PU.1 and ADAR1 expres-
sion, whereas the levels of GATA1 expression remained constant
(Fig. S3F). The ADAR1-mediated myeloid lineage skewing
recapitulates qRT-PCR data reported with aged human HSC (37)
and the expansion of GMP (34) during progression of CML from
CP to BC (Fig. S1F). Because we previously identified pro-
duction of a misspliced form of GSK3β lacking exons 8 and 9 (7)
associated with GMP expansion in CML BC, and because acti-
vation of ADAR1 might promote alternative splicing (27), we
performed splice isoform-specific qRT-PCR for GSK3β variants
in individual colonies derived from lenti-ADAR1–transduced
cord blood or CML CP progenitors. Although GSK3β exon 8–
9del was undetectable in cord blood progenitors, in CML CP
samples mRNA levels of this variant were increased relative to
the exon 9del form, which represents a predominant GSK3β
transcript in normal hematopoietic tissues (Fig. S3G) (7). To-
gether, these results demonstrate that ADAR1 overexpression
drives hematopoietic differentiation toward the myeloid lineage,
coincident with PU.1 up-regulation and alternative splicing of
GSK3β in CML progenitors.

ADAR1 Knockdown Impairs Malignant Myeloid Progenitor Self-
Renewal. Previous reports demonstrate that ADAR1 mediates
mouse HSC maintenance (23, 24); however the relative effects
of down-modulating ADAR1 expression in human LSC versus
normal HSC have not been established. In support of a favorable
therapeutic index for ADAR1 inhibitory strategies in CML pro-
genitors versus normal cord blood, shRNA knockdown and col-
ony assay experiments showed that lenti-shADAR1 knockdown
in normal cord blood progenitors did not affect hematopoietic
differentiation (Fig. S3H), whereas CML CP progenitors trans-
duced with lenti-shADAR1 produced fewer macrophage colonies
coupled with increased numbers of BFU-E colonies (Fig. S3I).

To examine the role of ADAR1 in CML progenitor survival
and self-renewal capacity in vivo, CD34+ human BC CML pro-
genitors were transduced with lenti-shADAR1 or shRNA back-
bone (lenti-shControl) and transplanted intrahepatically into
neonatal RAG2−/−γc−/− mice (Fig. 4A). In addition, qRT-PCR
analysis was performed to confirm ADAR1 p150 knockdown.
Similar to experiments in normal cord blood (Fig. S3C), ADAR1
p150 levels before transplantation were reduced by ∼50% in
CML BC progenitors transduced with lenti-shADAR1 as com-
pared with vector controls (Fig. 4A).
By 10 wk after transplantation, robust leukemic engraftment

was detectable in hematopoietic tissues by FACS analysis of
human CD45+ cells (Fig. 4B). Similar levels of human hemato-
poietic cell engraftment were detected in bone marrow from
mice transplanted with lenti-shADAR1–transduced BC progen-
itors and lenti-shControl (Fig. 4 C and D). qRT-PCR analysis
confirmed that pooled human progenitors from primary transplant-
recipient bone marrow maintained reduced levels of ADAR1
p150, consistent with continued activity of the ADAR1 shRNA
after primary engraftment (Fig. 4A). We transplanted equal
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numbers of human CD34+ progenitors derived from the bone
marrow of primary recipients of lenti-shControl or lenti-shADAR1–
transduced cells into secondary recipient mice, and the bone
marrow was analyzed for human cell engraftment and CD34+
CD38+Lin− progenitors by FACS (Fig. 4 E and F). Notably,
serial engraftment potential of shADAR1-transduced CML BC
progenitors was reduced considerably (∼20%) compared with
shControls (∼50%) (Fig. 4E). Although leukemic burden was
not diminished significantly, the LSC self-renewal capacity was
irrevocably reduced by ADAR1 knockdown, suggesting that
ADAR1 plays a pivotal role in the propagation of leukemia
driven by self-renewing malignant progenitors.

Discussion
Activation of IFN-responsive ADAR1 p150 in primary CML
progenitors correlated with increased A-to-I RNA editing follow-
ing blastic transformation. Full transcriptome RNA-seq analyses
suggest that up-regulation of ADAR1 p150 in BC CML may be
related to the activation of inflammatory pathways such as cyto-
kines and TNF in advanced disease. Hematopoietic progenitor
studies demonstrated that lentivirally enforced ADAR1 p150 ex-
pression promotes human myeloid differentiation fate. Lentiviral-
shRNA knockdown of ADAR1 in a xenotransplantation model
impaired self-renewal capacity of BC LSC. Together, these data
suggest that an inflammatory mediator-driven isoform switch fa-
voring ADAR1 p150 expression drives expansion of malignant
progenitors and contributes to CML progression.
ADAR-mediated RNA editing can regulate myriad molecular

processes including RNA interference (29), microRNA function
(38), and RNA stability, localization, nuclear retention, degra-
dation, and alternative splicing (27, 39–41). Moreover, high levels
of ADAR-mediated RNA editing activity may reflect a reversion
to a primitive transcriptional program typical of embryonic stem
cells (18). A previous study demonstrated that ADAR1 was
among the top 5% of genes expressed in the mutational evolution
of lobular breast cancer (36), indicating that activation of ADARs
may correlate with disease progression in multiple malignant cell
types (31). Although previous studies have shown ADAR1 p110
up-regulation in a murine leukemia model (42) and in pediatric
acute leukemias (43), it should be emphasized that human he-
matopoietic tissues undergo dramatic changes during aging (44,
45) that are caused in part by increased inflammation and ge-
nomic instability (46).
Our data suggest that inflammatory cues may facilitate selec-

tive up-regulation of the IFN-responsive ADAR1 p150 isoform in
hematologic malignancies. Using whole-transcriptome sequencing
analysis, we found that inflammatory signaling receptors were dif-
ferentially expressed in BCR-ABL–expressing cord blood. Inflam-
matory cytokines such as IFN, TNF-α, and other interleukins have
been shown to stimulate ADAR1 p150 expression (32, 33), and IFN
regulates HSC quiescence (47). Together, BCR-ABL–mediated
up-regulation of inflammatory pathway receptors could sensitize

hematopoietic progenitors to inflammatory stimuli that drive
ADAR1 expression and promote CML LSC self-renewal.
Whole transcriptome-based RNA editing analyses revealed

that CML progression is accompanied by differential RNA
editing. Recent in-depth transcriptomic studies have shown that
gene products with predicted A-to-I editing events are signifi-
cantly enriched in cancer-related pathways (35). The present
study provides further evidence supporting a role for ADAR-
directed RNA editing in splice isoform diversity in cancer and
demonstrates the activation of inflammation-associated RNA
editing during the progression of hematologic malignancies.
Our results suggest that ADAR1 p150 up-regulation may con-
tribute to blastic transformation of CML driven by the CD34+
CD38+Lin− progenitor and GMP subpopulations. Because
ADAR-mediated RNA editing occurs primarily in primate-
specific Alu repeat sequences (14, 19, 20), the activation of
RNA editases in human cells may fuel species-specific malig-
nant reprogramming of progenitors to adopt a more primitive
stem cell fate under pathological conditions.
Myeloid lineage skewing was observed in response to enforced

ADAR1 p150 expression, concomitant with PU.1 activation.
Although a previous study in an in vitro model implicated PU.1
in the regulation of murine ADAR1 expression (48), cell type-
and niche-specific stimuli may have differential effects on RNA
editing, and our studies in human cells, in which 90% of RNA
editing occurs in primate-specific Alu sequences, suggest that the
converse may occur also. It is conceivable that ADAR1 directly
controls PU.1 through RNA editing-dependent effects or via
potential transcriptional regulation related to its Z-DNA binding
function (41, 49). In support of the former possibility, DARNED
(50), a database compiling RNA editing sites from multiple
publications, reports that transcripts of Spi1 (a gene encoding
PU.1; chromosome 11, start: 47379732, end: 47400127) showed
evidence of A-to-I RNA editing at 28 sites (14). Future gene-
expression analyses and identification of de novo RNA editing
sites through analysis of whole-genome and transcriptome DNA-
RNA differences (15) in normal HSC harboring enforced
ADAR1 p150 expression and LSC will be necessary to dissect
further the link between ADAR1 activation PU.1 expression.
In addition to up-regulation of PU.1 in response to ADAR1

p150 overexpression, we also detected production of a misspliced
GSK3β variant in colonies derived from CML CP progenitors
transduced with lentiviral ADAR1 p150. We have shown pre-
viously that this particular form of GSK3β harbors reduced ac-
tivity and promotes LSC self-renewal via activation of β-catenin
(7). In support of a role for ADAR1 in CML LSC self-renewal,
we showed in humanized CML xenograft mouse models that
ADAR1 knockdown reduced the potential of CML BC LSC for
serial transplantation. Given that these CML BC progenitors
expressed significantly higher levels of ADAR1 p150 than did
normal cord blood progenitors, we expect that LSC are rela-
tively more dependent on IFN-responsive ADAR1 activity (24).
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Together these data suggest that inflammation-dependent acti-
vation of the ADAR1 p150 editase promotes CML progression.
Aberrant ADAR1 activation in CML endows myeloid progeni-
tors with self-renewal capacity leading to LSC generation. Thus,
inhibition of ADAR1 activity could represent an effective strategy
to prevent LSC-driven relapse in CML while sparing normal HSC
populations. Furthermore, ADAR1-mediated RNA editing acti-
vation could prove to be a diagnostic and prognostic indicator of
disease progression with important implications for other cancer
stem cell-driven malignancies.

Materials and Methods
Primary samples from CML patients were obtained from consenting patients
at the University of California San Diego, Stanford University, and the Uni-
versity of Toronto Health Network. FACS-purified progenitor cells from

primary samples or normal cord blood were processed for RNA-Seq, qRT-PCR,
and for in vitro and xenotransplantation studies. Detailed methods are
available in SI Materials and Methods.
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