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Abstract
The principle of equipartition of (kinetic) energy for all-atom Cartesian molecular dynamics states
that each momentum phase space coordinate on the average has ½kT of kinetic energy in a
canonical ensemble. This principle is used in molecular dynamics simulations to initialize
velocities, and to calculate statistical properties such as entropy. Internal coordinate molecular
dynamics (ICMD) models differ from Cartesian models in that the overall kinetic energy depends
on the generalized coordinates and includes cross-terms. Due to this coupled structure, no such
equipartition principle holds for ICMD models. In this paper we introduce non-canonical modal
coordinates to recover some of the structural simplicity of Cartesian models and develop a new
equipartition principle for ICMD models. We derive low-order recursive computational algorithms
for transforming between the modal and physical coordinates. The equipartition principle in modal
coordinates provides a rigorous method for initializing velocities in ICMD simulations thus
replacing the ad hoc methods used until now. It also sets the basis for calculating conformational
entropy using internal coordinates.

1 Introduction
The equipartition theorem1 for canonical ensembles is one of the fundamental principles
used in the statistical mechanics theory for molecular systems. This theorem can be used to
show that the principle of equipartition of energy holds for Cartesian molecular models.1,2

For the kinetic energy, this principle states that each momentum coordinate in the canonical
phase space has ½kT of thermal energy on the average (where k is the Boltzmann constant
and T is the thermodynamic temperature). This equipartition principle is used for initializing
atomic velocities in Cartesian molecular dynamics simulations with a Boltzmann
distribution of thermal energy. The equipartition theorem has also been used to connect the
classical variance to the quantum harmonic oscillator to derive the equations for calculating
absolute entropies using internal coordinates.3

In contrast with Cartesian models, internal-coordinate molecular dynamics (ICMD) models
utilize relative, instead of absolute, generalized coordinates. A well known example of
ICMD internal coordinates are the bond length/angle/torsional (BAT) coordinates4 which,
while providing an alternative coordinate representation, retain the full system degrees of
freedom. Another example of ICMD models is the torsion angle molecular dynamics
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(TAMD) model. These are BAT models, with additional holonomic constraints that freeze
the bond and angle coordinates. Thus TAMD models have a smaller number of coordinates
than the Cartesian or BAT models.5–8 While the TAMD models are attractive for tracking
the low frequency motion in biomolecules, they give rise to qualitatively different dynamics
compared to Cartesian models. Unlike the Cartesian case, the Hamiltonian for ICMD
models is not separable because the kinetic energy depends not just on the momentum, but
also on the generalized coordinates. The consequent dynamical cross-coupling among the
coordinates makes the ICMD models more complex. This increases the difficulty in deriving
energy conserving integration schemes similar to Velocity Verlet for Cartesian models.

The intuitive presumption that constrained ICMD models behave as the limiting case of
increasingly stiff Cartesian models was shown to be incorrect in a series of careful
investigations.9–11 It was shown that statistical mechanics ensemble averages of
conformation dependent quantities from constrained ICMD models differed systematically
from those obtained using arbitrarily stiff Cartesian models. The recognition of these
differences led Fixman to propose the use of a mass matrix tensor based compensating
potential to correct for such discrepancies12 and its validity has been verified via numerical
experiments.13–15 The difficulty in evaluating the compensating potential and its gradient
have led researchers to investigate evaluation techniques16,17 and the development of a
spatial operators based solution and low-order computational algorithms.18,19

Therefore it is important to address these differences between ICMD and Cartesian models
to make the ICMD simulations more robust and straightforward to use for biomolecular
simulations. This work takes a step forward in maturing the understanding and use of ICMD
models. We show that the application of the equipartition theorem to the ICMD model does
not yield an equipartition principle analogous to that for Cartesian models. Instead, the
ensemble averages involve configuration dependent, and coupled coordinates, that are not
easy to interpret or use. We introduce a coordinate transformation to define new ICMD
modal coordinates. These modal coordinates transform the system kinetic energy into a
decoupled form similar to that for Cartesian models. Moreover, we show that an
equipartition principle analogous to that for Cartesian models holds for these modal
coordinates. This principle holds even though the modal coordinates are not canonical
coordinates in the Hamiltonian sense.

The transformations between the physical ICMD velocity/momentum coordinates and the
modal coordinates involve the square root of the configuration dependent ICMD mass
matrix and its inverse. These matrices can be especially expensive to evaluate for
constrained ICMD models. We use spatial operators to develop analytical expressions for
these coordinate transformation matrices based on closed-form spatial operator
factorizations of the ICMD mass matrix and its inverse. Subsequently, these operator
expressions lead to recursive, low-order computational algorithms for carrying out the
coordinate transformations that entirely avoid the explicit evaluation of the coordinate
transformation matrices. The equipartition principle in modal coordinates can now be
applied to assigning initial velocities to the internal coordinates according to Boltzmann
distribution. We have demonstrated the use of modal coordinate velocities for velocity
initialization in the TAMD simulations of protein structure folding and refinement.20,21 The
theoretical groundwork presented in this paper sets the stage for future calculations of other
properties such as conformational entropy from ICMD models.
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1.1 Generalized equipartition theorem

Let  and  denote the Hamiltonian and the Lagrangian respectively for a n-
dimensional dynamical system, with  denoting the generalized coordinates and

 the conjugate momenta. The elements of p satisfy

(1)

For a temperature, T, the canonical ensemble partition function, , is defined as1

(2)

where h is Planck's constant, and the αi and γi integration limits are determined by the
geometry of the problem. The ensemble average of a function f(q,p) is

(3)

In particular, with yi and yj denoting a pair of phase space coordinates, the equipartition

theorem1,22 states that the ensemble average of the function  is

(4)

where δi=j denotes the Dirac delta function which is unity only when i = j and zero
otherwise. A more detailed derivation of this result using integration by parts is included in
the supplementary material.

In this powerful theorem, the yi and yj coordinates can be any of the elements of the q or p
coordinates. However, the theorem does require that the q and p be canonical phase space
coordinates. Gathering up the ensemble average values in Eq. 4 for all i and j, we can re-
express it in matrix form as

(5)

where I2n denotes the 2n × 2n identity matrix.

1.2 Cartesian molecular dynamics model
The Hamiltonian for an Cartesian molecular dynamics model with n atoms has the form

(6)

where  denotes the atom position generalized coordinates,  the potential
energy, and pi a linear momentum component for an atom with mass mi. For this
Hamiltonian it follows from the Eq. 4 equipartition theorem (with yi = yj = pi) that
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(7)

This implies that the average kinetic energy in each conjugate momentum coordinate is kT/
2. This result is also referred to as the principle of equipartition of kinetic energy.1,2 This
singular principle is a consequence of the following special properties of the Cartesian
Hamiltonian in Eq. 6:

• the quadratic (or harmonic) form of the kinetic energy

• the absence of cross terms in the kinetic energy expression

• the separable nature of the Hamiltonian, i.e., the kinetic energy is independent of
the generalized coordinates.

2 ICMD models
While Cartesian models use the absolute location of the atoms with respect to a reference
frame as generalized coordinates, ICMD models use atom-atom relative coordinates as
generalized coordinates. The bond length/angle/torsional (BAT) coordinates are well known
examples of such ICMD coordinates. BAT coordinates provide an alternative representation
of the phase space while retaining the dimensionality of the Cartesian model's coordinate
space. Torsion angle molecular dynamics (TAMD) ICMD models are BAT models with
additional holonomic constraints that freeze the bond and angle degrees of freedom. TAMD
models thus have fewer coordinates than the corresponding BAT or Cartesian models.

For an ICMD model with  configuration degrees of freedom, we use  to denote its
set of generalized coordinates. The ICMD model's kinetic energy depends on a configuration

dependent mass matrix  and takes the form

(8)

where the conjugate momenta vector  is given by the expression

(9)

The x* notation used here denotes the transpose of a vector or matrix x. The  mass
matrix is symmetric and positive definite. Unlike the case of Cartesian models, the ICMD
mass matrix is configuration dependent and dense. As a consequence, the system kinetic
energy includes cross-terms from the generalized velocity and momentum components (in
contrast with Eq. 6 for Cartesian models). The ICMD Hamiltonian is

(10)

Observe that the dependency of the kinetic energy on the generalized coordinates implies
that the Hamiltonian is not separable. The ICMD partition function, , is

(11)

From Eq. 10 it follows that

Jain et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2013 August 14.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(12)

 above denotes a vector with all zero elements except for the jth element being 1. Using the
equipartition theorem Eq. 4 we thus obtain

(13)

The ,  notation identifies the equation(s) used to establish equalities. While the
ensemble average term on the left has the units of energy, it does not lend itself to an
interpretation as a principle of equipartition of kinetic energy. This is because pi depends on
multiple velocity coordinates and not just .

Combining Eq. 13 together for all i and j, the overall ensemble averages can be expressed in
matrix form as

(14)

Unlike the Cartesian Eq. 7, there is no clear way to use this ensemble average relationship to
assign the thermal energy across the ICMD model degrees of freedom with a Boltzmann
distribution.

2.1 Modal coordinates
Since the ICMD mass matrix  is symmetric and positive definite, there exists an

invertible matrix  such that

(15)

Let  denote the inverse of m(θ) so that

(16)

Define the modal coordinates  as

(17)

The  notation should be read as “is defined as” and is used within definitional
expressions. Using the ν modal coordinates, the Eq. 10 Hamiltonian can be expressed as

(18)

In contrast with Eq. 10, the kinetic energy in this Hamiltonian expression has a decoupled
structure without any cross-terms involving the νi elements. In addition, the kinetic energy
no longer explicitly depends on the θ generalized coordinates. These properties are the
motivation for referring to these coordinates as “modal” coordinates.

Unlike p, the ν coordinates are not conjugate momenta of the θ generalized coordinates, and
thus the (θ, ν) pair are not canonical phase space coordinates in the Hamiltonian sense. Now
we change the integration variables from the pi momentum coordinates to the νi modal
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coordinates. Eq. 17 implies the following relationship between infinitesimal volumes in the
two coordinate spaces:

(19)

Using this in Eq. 11, the partition function is given by

(20)

The ensemble average of a function f(θ,p) ≡ f(θ, ν) is given by

(21)

Define

(22)

Using this, Eq. 21 can be re-expressed as

(23)

In particular, the ensemble average of f(ν) = νiνj is

(24)

Integrating over the generalized and modal coordinates we obtain

(25)

Recalling from Eq. 18 that  is the kinetic energy for the νi modal coordinate, this result
implies that the i modal coordinate components are uncorrelated with each other, and
moreover, the average kinetic energy in each of these coordinate elements is ½kT. The νi
modal coordinates are decoupled in a manner similar to that of the velocity and momentum
coordinates for the Cartesian model. Thus Eq. 25 represents an equipartition principle for
ICMD models that is the analog of the principle for Cartesian models in Eq. 7.

Unlike the case for Cartesian models, this equipartition principle holds even though (θ, ν)
are non-canonical coordinates. Indeed, no such principle holds for the (θ, p) canonical
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coordinates. Together with the decoupled (no cross-terms) nature of the Eq. 18 kinetic
energy expression, the “modal” properties of ν coordinates are seen to disentangle the
dynamical cross-coupling between the canonical momentum coordinates for ICMD models.
Combining Eq. 25 for all i and j elements we obtain the matrix expression

(26)

Eq. 26 is the matrix version of the equipartition principle for ICMD models.

Having established the theory and nature of the equipartition principle for constrained and
unconstrained ICMD models, we now turn to further exploring the properties of the m(θ)
transformation matrix needed for defining the modal coordinates. In the following sections
we derive closed-form analytical expressions that hold for general ICMD models for these
quantities. These analytical expressions form the basis of low-order computational
algorithms for working with modal coordinates, and consider the tractable use of our
theoretical results in practical applications.

3 Physical to modal coordinate transformations
When working with multiple coordinate representations, as a practical matter(e.g. during
molecular dynamics simulations) there is a need to be able to transform between the
physical and modal coordinates. In our case we need to be able to go between the ν modal
and the  physical velocities. From Eq. 17 we observe that the m(θ) and  matrices are
needed to carry out these coordinate transformations so that

(27)

We now look into the issue of obtaining these coordinate transformation matrices. The

configu-ration dependent  Jacobian matrix relates Cartesian generalized
velocities ẋ to the ICMD  velocities via the expression

(28)

This Jacobian can be used to obtain the following expression for the ICMD mass matrix

(29)

where  denotes the constant, diagonal matrix with the atom masses along the
diagonal. M is in fact the mass matrix for the Cartesian model.

For BAT models, , and  is square and invertible. The structure of the BAT
system Jacobian and its determinant play an important role in entropy studies for molecular
systems.10,23 Indeed, for BAT models m(θ) is simply

(30)

This expression for m(θ) is both square and invertible and together with its inverse provides
the desired coordinate transformation matrices for BAT ICMD models.

Jain et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2013 August 14.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



The situation is quite different once holonomic constraints are present such as for TAMD
ICMD models. Due to the constraints, . While Eq. 28 and Eq. 29 still hold, the 
matrix for constrained ICMD models is neither square, nor invertible. Thus Eq. 30 is no
longer usable since it yields a non-square (and thus non-invertible) m(θ) matrix. An option
then is to use Eq. 29 to explicitly evaluate the mass matrix followed by a numerical
factorization step to obtain a square and invertible m(θ) matrix.

3.1 Analytical expressions for m(θ) and 
In this section, we use spatial operators to develop analytical expressions that lead to
recursive, low-order computational algorithms for transforming between the ν and 
coordinates. The end result will be an algorithm that implements the Eq. 27 transformations
without requiring the explicit evaluation of the m(θ) and  matrices. While these
procedures are valid with or without holonomic constraints, they are essential when
holonomic constraints are present. The developments we describe assume that the ICMD
model has a tree topology (such as for BAT and TAMD models). The extensions for closed-
chain topology models are possible using constraint embedding techniques19 but are not
discussed here.

Spatial operators are a valuable technique for analyzing the dynamics of ICMD models and
developing computational dynamics algorithms.19 They have been used to develop the

 algorithms for solving the ICMD equations of motion6 that have been applied to
study molecular dynamics problems.20,21 The following describes key analytical spatial
operator expressions for the square factorization and inversion of the mass matrix:19

(31)

The first expression defines the Newton-Euler operator factorization of the mass matrix 
in terms of the H hinge articulation, the ϕ rigid body propagation and the M link spatial
inertia operators. While this factorization has non-square factors, the second expression
describes an alternative factorization involving only square factors with block diagonal 
and block lower-triangular  matrices. This factorization involves new spatial
operators that are associated with the articulated body (AB) forward dynamics
algorithm24,25 for the system. The next expression describes an analytical expression for the
inverse of the  operator. Using this leads to the final analytical expression for the
inverse of the mass matrix. These operator expressions hold generally for tree-topology
systems irrespective of the number of bodies, the types of hinges, the specific topological
structure and even for the case of non-rigid links.19

From the second equation in Eq. 31, we can identify a square m(θ) that satisfies Eq. 15's
 relationship to obtain the following analytical expressions for the

desired coordinate transformation matrices for ICMD models:

(32)

We have thus obtained explicit expressions for the transformation matrices needed to go
between the and the ν  coordinates, and which lead to the following version of the
transformation expressions in Eq. 27:
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(33)

Evaluation of either of the above expressions in principle requires  computations for
the evaluation of the matrices and and the matrix/vector products.

However, the special internal structure of the spatial operators allows us to entirely avoid
evaluating these matrices, and instead carry out the required matrix/vector products
recursively with just  cost19,25 and the recursive algorithms corresponding to the Eq.
33 transformations are shown in Table 1. Each of these recursions proceeds from the ICMD
base towards the tips of the ICMD tree. The algorithm on the left transforms the physical 
velocities into the ν modal coordinates, while the algorithm on the right does the converse.

The intermediate  quantity in the recursions is the combined angular and linear
velocity of the kth coordinate frame. The computational cost of these algorithms scales
linearly with the number of degrees of freedom. For notational simplicity, the algorithms in
the table are for serial topology systems, and the more general tree topology versions are
described in reference.19

In summary, the spatial operator results in this section provide a way to carry out the
coordinate transformations with  cost, and without requiring the expensive evaluation
of any of the configuration dependent , m or ℓ matrices.

4 Theoretical implications for velocity initialization
At the start of a molecular dynamics simulation, initial velocities need to be assigned to the
generalized velocity coordinates in a manner that is consistent with the Boltzmann
distribution of thermal energy. The simulation temperature for the simulation determines the
overall kinetic energy to be assigned to the system.

4.1 Cartesian models
For Cartesian simulations, the equipartition principle in Eq. 7 implies that the kinetic energy
can be independently assigned to each of the ẋ(i) velocity coordinates using an Boltzmann
distribution with mean of ½kT such that

(34)

4.2 Unconstrained ICMD models
Since the equipartition principle does not hold for the physical (θ, p) coordinates in an
ICMD model, such a procedure cannot be directly used to initialize the  generalized
velocities to properly distribute the thermal energy. Since the equipartition principle is
available for Cartesian models, a commonly used option is to begin by assigning the ẋ
Cartesian atom velocities using the above described Cartesian equipartition principle, and
then transition to the  ICMD generalized velocities. For the full-dimensional BAT ICMD
models, such a transition to  is easily carried out using the relationship

(35)

We can check that this procedure is correct by verifying that the ICMD equipartition
principle in Eq. 26 holds. Towards this, observe that
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(36)

Thus, as we might intuitively expect, we can conclude that for BAT coordinates, the
procedure of initializing the Cartesian velocities, followed by a transformation to the BAT
velocities via Eq. 35 is statistically correct.

4.3 Constrained ICMD models
For constrained ICMD models, this procedure for transforming Cartesian velocities to
ICMD velocities breaks down. For the constrained case,  and the  Jacobian is
non-square and non-invertible, and Eq. 35 cannot be used. Instead, the Cartesian velocities
need to be mapped to the lower-dimensional ICMD velocities space. Let  denote
such a mapping matrix so that

(37)

We again evaluate 〈νν*〉 along the lines of Eq. 36 to obtain

(38)

For this expression to be consistent with the ICMD equipartition principle in Eq. 26 requires
that the P mapping matrix be such that m*PP*m is the identity matrix. One value of P that
satisfies this requirement is

(39)

because then

This P is indeed the correct mapping matrix that ensures that the Cartesian model procedure
for distributing thermal energy does so correctly for the ICMD model as well. Unlike the ad
hoc projection techniques used in practice,26 this procedure provides a thermodynamically
rigorous method for initializing the velocities in ICMD models from Cartesian velocity
assignments. While theoretically correct, a practical disadvantage is that the P matrix in Eq.
39 requires the expensive computation of the mass matrix inverse.

Instead, of this expensive Cartesian velocities based initialization technique, we can exploit
the ICMD equipartition principle to develop a much simpler and direct procedure for
correctly initializing (constrained and unconstrained) ICMD simulations where the kinetic
energy assignment obeys the required Boltzmann distribution. The procedure makes use of
the modal coordinates equipartition principle in Eq. 26 to initialize the νi ICMD velocity
variables with mean ½kT energy distributed in accordance with the Boltzmann distribution.
Once all the modal coordinates have been initialized, we convert them to , ICMD physical
velocities, using the  recursive algorithm on the right of Table 1 as was discussed in
Section 3.1. Observe that in contrast with Eq. 39, this procedure does not require the explicit
computation of the mass matrix inverse.
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5 Conclusions
Cartesian MD models are widely used, and a rich body of accompanying theory has evolved
that addresses a broad range of topics including statistical mechanics, free energy
computations, canonical models, numerical integration techniques etc. to guide their correct
use. In contrast, the use of ICMD models, especially constrained ICMD models, is not
common. This stems from their added complexity as well as a lack of theoretical
understanding of their behavior given the fundamentally different nature of such models. We
have begun addressing several issues related to ICMD models to improve the effective use
of ICMD simulations. In this paper we have derived the equipartition principle for ICMD
models, by introducing a new set of non-canonical modal coordinates. This principle applies
to both the unconstrained and constrained types of ICMD models. This sets the stage for
rigorous velocity initialization and calculation of torsional entropy from ICMD
trajectories.5,6,9–11,18,27 We have implemented and tested the use of modal coordinate
velocities in ICMD simulations and applied it to study protein folding and protein homology
model refinement.20,21 Much still remains to be done in developing, validating and maturing
ICMD techniques in areas such as choice of constraints, structure preserving numerical
integrators, entropy analysis and their application to problems such as studying protein
domain motion, protein structure refinement etc.

Turning our attention to computational issues, we use spatial operators to obtain analytical
expressions for the transformations needed to go between the modal and physical velocity
coordinates. Additionally, we show that the transformations can be carried out via low-order
recursive algorithms that entirely avoid the expensive need for computing the transformation
matrices. The availability of such low-order computational algorithms allows us to consider
ideas beyond theory and explore the use of modal coordinates for other ICMD dynamics
problems.

Such modal coordinates were originally identified as a set of diagonalizing coordinates that
decoupled the ICMD (non-Hamiltonian) equations of motion.19,28 A remarkable property of
the modal coordinates is the orthogonality to the Coriolis forces term in the equations of
motion - a property that does not hold for equations of motion based on physical velocity
coordinates. This orthogonality property has been shown to simplify control and stability
analysis for constrained ICMD like systems. We believe that modal coordinates hold
promise for the development of model reduction and numerical integration techniques for
ICMD dynamics that we plan to address in future research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Recursive, base-to-tip algorithms for converting between the  and v coordinates using Eq. 33 for serial-
topology systems.

v = D

1
2 I + HϕK ∗θ

.
θ
.

= I − HψK ∗D
−

1
2 v

             V(N + 1) = 0              V(N + 1) = 0

for k = N ⋯ 1 for k = N ⋯ 1

     V+(k) = ϕ ∗(k + 1, k)V(k + 1)      V+(k) = ϕ ∗(k + 1, k)V(k + 1)

         v(k) = D

1
2 (k) θ

.
(k) + G∗(k)V+(k)          θ

.
(k) = D

−
1
2 (k)v(k) − G∗(k)V+(k)

         V(k) = V+(k) + H∗(k)θ
.
(k)          V(k) = V+(k) + H∗(k)θ

.
(k)

end loop end loop
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