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Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity,
memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the
hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms
regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal
neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric
disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological
significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered.
Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise
therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments
may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant
role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective

treatment.

1. Introduction

Mental disorders are debilitating conditions that significantly
impair the function of the central nervous system and
degrade the quality of life. About one-quarter of adult Amer-
icans are diagnosed with mental disorders such as major
depression, anxiety, and schizophrenia [1]. Understanding
the neurobiological basis of mental disorders, determining
effective treatments, and alleviating the respective symptoms
are major forces driving modern psychiatry today.

The hippocampus, an area of the brain important
in memory, cognitive function, and mood regulation, is
particularly vulnerable to chronic stress and mental disorders
[2, 3]. Several landmark clinical studies have demonstrated
that major depression is accompanied by a decrease in
the volume of hippocampus and consequent deficits in
hippocampal function [4, 5]. Similarly, in schizophrenic

patients, shape deformations, cell loss, and volume reduction
in the hippocampus were found using neuroimaging analysis
[6-8]. Reversal of these alterations has successfully improved
the behavioral and cognitive symptoms associated with these
disorders. Such evidence has encouraged consideration of
whether improving hippocampal structure and function
could be a potential therapeutic target in treating mental
disorders [9, 10].

Since the pioneering discovery of mammalian postnatal
neurogenesis in the 1960s [58], adult neurogenesis has
been unambiguously investigated in discrete brain regions
across mammals including humans. Adult neurogenesis in
all mammals, including humans, occurs throughout life
within two specialized neurogenic niches, the subventricular
zone (SVZ) of the lateral ventricle and the subgranular
zone (SGZ) of the hippocampal dentate gyrus [59]. In
particular, adult neurogenesis in dentate gyrus has attracted
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interest since newborn neurons contribute to enhanced
neural plasticity that could sustain specific brain functions
such as spatial learning, pattern discrimination, and mood
regulation [47, 60, 61]. In addition, adult hippocampal
neurogenesis in the mature brain represents a striking
example of activity-dependent neural plasticity such as stress,
antidepressants, and brain injuries [62]. Extensive studies
have shown that voluntary exercise, enriched environments,
and antidepressants contribute to overall brain health by
robustly promoting adult hippocampal neurogenesis [37,
53, 63]. Decreased neurogenesis in the hippocampus via
aging or stress has been implicated in the pathogenesis of
cognitive deficits, anxiety and depression [64, 65]. In fact,
adult hippocampal neurogenesis not only plays an important
role in antidepressant action [47] but also plays a role in
ameliorating various pathological disease conditions [25, 46,
66, 67]. Therefore, a better understanding of the molecular
and cellular mechanisms that regulate adult hippocampal
neurogenesis may offer new therapeutic targets.

In this paper, we will highlight three major psychiatric
disorders that have been associated with adult hippocampal
neurogenesis. We will present and interpret the significance
of the results in regards to the mechanism of cognitive and
neurological disorders. Finally, we will lay out some current
and potential therapeutic treatments that are used to counter
these psychiatric disorders.

2. Adult Neurogenesis and Mental Disorders

2.1. Depression. Major depression is among the most preva-
lent psychiatric disorders and has high morbidity worldwide.
Chronic stress represents a key risk factor in developing
depression [68—70]. Despite a tremendous amount of study,
the underlying mechanisms associated with the pathophys-
iology of depression remain poorly understood. The neu-
rogenesis hypothesis of depression originated from studies
using animal stress models. Because of the lack of a patho-
physiologically reliable animal depression model, stress is
primarily used to cause depression in animal models. These
studies demonstrate that stress inhibits newborn neuron
proliferation in the dentate gyrus of the hippocampus [71,
72]. All antidepressant classes are now known to promote
adult hippocampal neurogenesis [38, 47]. The underlying
cellular and molecular mechanisms of adult neurogenesis
in regulating the suppressive effect of stress have been
examined using various stress paradigms including physical
and psychosocial stresses (Table 1). For example, physical
stress such as repeated restraint [11] and inescapable foot
shock [12] inhibits one or more steps of adult neurogenesis
in the dentate gyrus. Similarly, chronic psychosocial stress
using the social defeat paradigm leads to an inhibitory
effect on cell proliferation and survival of newborn granule
neurons in rodents [17]. In addition, the effect of depression
on hippocampal volume in humans has been studied [4,
5, 73-75]. Early onset depression has been associated with
a reduction in hippocampal volume [75], and in patients
older than 60, depression has been associated specifically
with a reduction in right hippocampal volume [74]. Further,
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hippocampal grey matter which undergoes reduction in
depressed patients could be increased through antidepressive
treatment like citalopram [73]. While such changes have
been observed, postmortem studies have found no change
in cell proliferation between major depression patients
and control samples [76, 77]. Intriguingly, antidepressant
treatment does increase cell proliferation in the dentate
gyrus of major depression patients [77]. Such differential
effects between rodents and humans on cell proliferation
in the dentate gyrus might be due to biological differences
implying different cellular mechanisms [78]. Determining
the processes of adult neurogenesis in humans, such as
fate determination, survival, differentiation, and integration
across both spectrums will be helpful in reconciling the
differences.

Preclinical models of depression generally show one or
more suppressed steps during the sequential adult neuroge-
nesis process. Such evidence has raised questions regarding
the causality between neurogenesis and depression. Using
a variety of methods ablating newborn neurons in the
adult dentate gyrus, evidence correlates adult hippocampal
neurogenesis with depression. However, the results are
controversial [47, 48, 76, 79]. For example, ablating adult
hippocampal neurogenesis using X-ray irradiation does not
affect anxiety- and depressive-like behaviors as measured
by novelty-suppressed feeding, open-field, light-dark, and
elevated plus maze [47, 48, 79]. Further, pharmacological
treatment with an anti-mitotic drug, methylazoxymethanol
(MAM) which decreases cell proliferation in the dentate
gyrus, does not induce an anhedonic-like state in rats [80].
On the contrary, genetically inhibiting hippocampal neuro-
genesis using Nestin-rtTA/Tet-Bax bigenic mice does increase
anxiety-related behavior but does not affect depressive-
like behavior [81]. Also, deletion of adult neurogenesis
using GFAP-TK mice influences depressive-like behavioral
response as shown by increased immobility time in the
tail suspension test and induction of an anhedonic-like
response in sucrose-preference test, but shows no effect
in novelty-suppressed feeding or elevated plus maze [82].
This group further suggests that suppression of neurogenesis
predisposes the animal to stress-induced anxiety/depression-
like behavior response and that newborn neurons in the
hippocampus buffer this depressive-like behavior [82]. At
this juncture, the results do not quite support that decreased
neurogenesis is associated with a risk factor in development
of depressive behavior. It may be more pertinent to conclude
that newborn neurons may be a major contributor in
normalizing or ameliorating against disease state rather than
being causally involved in the etiology of depression in the
animal model.

2.2. Schizophrenia. Schizophrenia is a multifactorial psychi-
atric disorder resulting from a complex interplay of genetic
and environmental susceptibility factors [3]. Establishing
the major etiology, neuropathology and pathophysiology of
schizophrenia have proven difficult.

Initial studies from postmortem hippocampal tissue
have indicated a reduction in neural progenitors and hip-
pocampal volume in patients diagnosed with schizophrenia
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[76]. Supporting this, a growing number of studies have
identified susceptibility genes associated with schizophrenia
that are involved in regulation of adult neurogenesis [22,
83] (Table 2). One such gene is disrupted-in-schizophrenia
1 (DISC1) which was originally identified as a potential
susceptibility gene for schizophrenia and related psychiatric
disorders in a large Scottish pedigree [84, 85]. It is widely
expressed during embryonic neurogenesis and postnatal
development with high expression persisting in the adult
hippocampus, especially in the dentate gyrus [86, 87].
The expression pattern of DISC1 may implicate a role of
DISC1 in neuronal development. Using various approaches
including genetic mutants and short-hairpin RNA (shRNA)
knockdown, several lines of evidence have converged to
indicate that DISC1 function is involved in distinct steps of
adult neurogenesis and behavioral response. First, mutant
DISC1 mice with selective impairment in working memory
showed reduced number of neural progenitors and immature
neurons, as well as misoriented apical dendrites of immature
neurons in the adult hippocampal dentate gyrus [21]. In
the same DISCl mutant mice, altered axonal targeting
and short-term plasticity in the hippocampus were also
observed [21]. Second, knockdown of DISC1 via lentiviral-
mediated shRNA also led to decreased newborn cells and a
depressive-like behavioral response [22]. Third, knockdown
of DISCI via retroviral-mediated shRNA approach to label
dividing cells and their progeny results in aberrant dendritic
development including an enhancement of dendritic out-
growth, soma hypertrophy, overextended migration, accel-
erated synapse formation, mistargeted axonal mossy fibers,
and presynaptic differentiation of newborn granule neurons
in the adult mouse dentate gyrus [18, 19]. Further, the same
group also indicated that AKT-mTOR signaling pathway is
a critical DISCI target in regulating dendritic development
of newborn granule neurons in the adult dentate gyrus [88].
Taken together, these results suggest that DISCI orchestrates
the tempo of functional integration in the adult brain. It also
demonstrates the major roles a susceptibility gene could play
in neuronal development and the pathogenesis of the disease.
Other susceptibility genes for schizophrenia linked to
adult neurogenesis have been identified. NPAS, a bHLH
transcription factor that is broadly expressed in the devel-
oping neuroepithelium, was identified as a risk factor for
schizophrenia and associated with cognitive deficits in an
affected mother and her daughter [89, 90]. Mice lacking
Npas3 show developmental brain abnormalities including a
reduction in size of the anterior hippocampus, hypoplasia
of the corpus callosum and enlargement of the ventricles
[23]. In addition, mice lacking Npas3 exhibit behavioral
abnormalities including locomotor hyperactivity, subtle gait
defects, impairment of prepulse inhibition of acoustic startle,
deficit in recognition memory, and altered anxiety-related
responses [23]. Finally, Npas3-deficent mice also display a
significant reduction of adult neurogenesis by 84% relative
to their wild-type littermates, which may suggest that adult
neurogenesis impairment is involved in the pathogenesis of
schizophrenia [22]. However, direct causal evidence linking
adult neurogenesis to schizophrenia needs to be examined.
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In addition to using genetic animal models for schizo-
phrenia, a prenatal injection of synthetic double-stranded
RNA polyriboinosinic polyribocytidylic acid (Polyl:C) into
mice has been used as an animal model for schizophrenia
[26, 91]. These mice displayed behavioral deficits in the
open-field test and prepulse inhibition of the startle response
[26]. A recent study demonstrated that these infected animals
showed behavioral impairments accompanied by decreased
adult hippocampal neurogenesis [25]. Interestingly, these
abnormalities were rescued by increasing adult hippocampal
neurogenesis via exercise, indicating that enhancing neuro-
genesis may help aid recovery for schizophrenia [25].

2.3. Drug Addiction. Drug addiction is a chronic relapsing
disorder characterized by a loss of the ability to control drug
intake and a compulsive drug-seeking and -taking behavior
[92]. Generally, the mesolimbic dopaminergic system in
the brain is thought to be an important brain area in
the neurobiology of addiction [93]. The hippocampus has
received great attention because abusive drugs are potent
negative regulators of adult hippocampal neurogenesis and
as a result may impair cognitive function [27, 94-96]
(Table 3).

Cocaine abuse, a powerful and addictive psychostimulant
drug, is associated with dynamic regulation of adult neuroge-
nesis in the hippocampal dentate gyrus and its corresponding
memory function [30]. Studies have shown that both a high
dose of cocaine or chronic cocaine exposure can decrease
the proliferation of neural progenitors in the rat dentate
gyrus [28] and cause working memory dysfunction [30].
In addition, chronic treatment of cocaine increased adult
neurogenesis in mice in some studies [97], but the same effect
is not observed in the rat dentate gyrus [27, 31, 98, 99]. While
most studies support evidence that chronic administration of
cocaine diminishes proliferation of neural progenitors in the
adult hippocampus, the effect on survival and maturation
of neural progenitors is not always consistent. Possible
explanations for the discrepancy might be due to the dif-
ferences in animal strain, methods, and duration of cocaine
treatment. Therefore, more evidence is needed to determine
the timing, duration and consequences of impaired adult
hippocampal neurogenesis caused by cocaine. Recently, role
of adult hippocampal neurogenesis in cocaine-taking and
cocaine-seeking behavior was explored. Using X-ray irradi-
ation approach, ablation of adult hippocampal neurogenesis
increased cocaine-taking and cocaine-seeking behavior, sug-
gesting that impaired neurogenesis may result in increased
susceptibility in the animal model of cocaine addiction
[100]. Interestingly, withdrawal from cocaine administration
normalizes the reduction of neural progenitors and enhances
maturation of neural progenitors in the adult dentate gyrus
[27]. This indicates that the normalization of the cocaine-
induced neurogenesis deficit may help decrease susceptibility
to relapse and related cognitive deficits.

The correlation between alcohol dependence and hip-
pocampal neurogenesis has been extensively studied. Among
other anatomic changes, alcoholic patients undergo struc-
tural changes in hippocampal volume [101-103]. Animal
models have been used to examine the cellular effects and
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underlying mechanisms. Converging studies have associ-
ated alcohol consumption and dependence with a selective
decline in adult hippocampal neurogenesis [32, 104-107].
Acute or chronic administration of ethanol treatment in
mice inhibits neural progenitor cell proliferation and survival
in the adult rat hippocampus [32, 108]. Clinically relevant
animal models have been used to confirm this wherein
alcohol dependence reduced proliferation of neural progen-
itors, as well as consequent differentiation and maturation
[34]. More recently, chronic alcohol treatment over 11
months in adolescent macaque monkeys produced selective
and long-lasting decrease in hippocampal neural progenitor
proliferation [36]. Alterations in synaptic plasticity are also
associated with chronic alcohol treatment resulting in the
reversible inhibition of long-term potentiation (LTP) in the
rat hippocampus [109]. Besides LTP changes, functional or
behavioral changes as measured via active avoidance, and
spatial memory also occur following alcohol consumption
indicating learning and memory deficits [110, 111]. An absti-
nence state following alcohol consumption can contribute
to depression-like behavior with a concurrent reduction
in the neural progenitor and immature neuron population
in dentate gyrus in mice [35]. This was counteracted
via desipramine which alleviated both the structural and
functional phenotypes associated with this comorbidity [35].
Whether adult neurogenesis can regulate alcohol-drinking
or -seeking behavior remains to be studied. Understanding
this causality will allow us to develop improved therapeutic
intervention in treating the pathological symptoms associ-
ated with alcohol dependence.

3. Therapeutic Interventions

Adult neurogenesis is affected by a variety of external stimuli
that influence neuronal activity. The therapeutic effects
of electroconvulsive therapy, antidepressants, exercise, and
others such as deep brain stimulation have been utilized for
their therapeutic efficacy. These have been associated with
adult hippocampal neurogenesis and will be discussed below.

3.1. Electroconvulsive Therapy and Deep Brain Stimulation.
One of the more intense therapeutic treatments for severe
psychiatric disorders, especially depression, is electroconvul-
sive therapy (ECT) [112]. In the 1940s and 50s, ECT was
used in extreme cases in humans when patients did not
respond to other treatments [112, 113]. Despite extensive
research, the mechanism of action of ECT had not been
discovered. Recently, it was linked to neurogenesis, providing
a possible explanation for the mechanism that helps to relieve
symptoms [37, 38] (Table 4).

The first study to demonstrate the influence of ECT
on adult hippocampal neurogenesis showed that a single
treatment of ECT results in stimulation of adult neural
progenitors that survive up to 3 months afterward [37]. A
subsequent study confirmed that ECT promotes neural pro-
genitor proliferation [38]. Further, ECT also reversed long-
term neurogenesis deficits and hippocampal-dependent fear
memory disrupted by X-ray irradiation [114]. This matches
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clinical observations that ECT is the most effective treatment
for depression. It may also suggest that adult hippocampal
neurogenesis is a critical neurobiological component under-
lying the clinical effect of ECT. A detailed characterization
of hippocampal progenitors affected by ECT has been
reported. At the cellular level, ECT stimulates proliferation
of quiescent progenitor cells and at a later phase increases
the proliferation of amplifying progenitor cells [39], which
may lead to a net increase in the number of mature
adult-born neurons [40]. Functionally, electrophysiological
analysis shows that chronic treatment of ECT induces long-
term-potentiation-(LTP-) like synaptic changes in the adult
dentate gyrus [115]. Given that LTP results in increased
proliferation of neural progenitors in the dentate gyrus [116],
enhanced neurogenesis caused by ECT could potentially
alter hippocampal circuitry which may contribute to the
functional effects of ECT.

Exactly how ECT stimulates specific niche signals to
regulate the sequential process of adult neurogenesis remains
unclear. Growing evidence in the past decade has deter-
mined a number of factors that regulate adult neurogenesis
in response to ECT in the hippocampus. Among those
factors, induction of neurotrophic growth factors has been
extensively identified. These include brain-derived neu-
rotrophic factor (BDNF), fibroblast growth factor-2 (FGF-
2), and vascular endothelial growth factor (VEGF) [105,
106, 117]. BDNF, a member of the nerve growth factor
family expressed throughout the brain, is known to be
responsible for synaptic strength, survival, and growth of
mature neurons via activation of its receptor TrkB. While
both acute and chronic treatments of ECT induce BDNF
and TrkB gene expression, the level of BDNF gene expression
remains prolonged during chronic treatment of ECT [106].
FGF family of growth factors and corresponding receptors
are involved in angiogenesis and early stages of neural
development [118, 119]. Expression of FGF-2 mRNA in
rodent hippocampus is increased in both acute and chronic
treatments of ECT [117]. In addition, infusion of BDNF
and FGF into rodent hippocampus results in antidepressant-
like effects [120, 121], while blockade of BDNF and FGF in
the dentate gyrus induces behavioral deficits and decreases
adult hippocampal neurogenesis [121, 122]. These findings
indicate that such factors can be strong candidates in ECT
treatment to mediate antidepressant effects. A recent study
demonstrated ECT promoting DNA demethylation in the
BDNF and FGF promoter regions and adult neurogenesis
in dentate gyrus through growth arrest and DNA-damage-
inducible protein 45 beta (Gadd45b) [42]. These results
suggest that dynamic epigenetic DNA modifications may
serve as an essential mechanism to translate neurogenic
niche signals for sustained regulation of adult neurogenesis
and antidepressant action of ECT. Lastly, VEGF is known
as a regulator for vascular growth and also a stimulator
of neurogenesis [123]. The effect of ECT is dependent
upon VEGF signaling for induction of quiescent neural
progenitor cell proliferation and is sufficient to produce an
antidepressant effect [39]. Taken together, ECT is one of the
strongest stimuli of hippocampal neurogenesis. It increases
the rate of proliferation and maturation of new neurons in
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the dentate gyrus which could have a significant effect on
hippocampal circuitry. ECT’s therapeutic efficacy may be a
result of this, proving to be an effective treatment for severe
depression and other mood disorders.

Another possible treatment for neuropsychiatric disor-
ders is deep brain stimulation (DBS). DBS is an extreme
treatment for a wide range of neurological disorders such
as Parkinson’s disease, dystonia, chronic pain, and tremors
[124]. Tt has proven effective in treating these disorders in
initial trials [125, 126] and also in treating major depression
especially in patients that do not respond to chemical
antidepressants [127]. Growing evidence has focused on
multiple anatomical targets in the brain with different
stimulation frequencies, pulse width, and amplitude in order
to obtain the ideal setting for conferring an antidepressant
response (Table 4). The limited number of studies that have
been conducted thus far suggests that DBS may proceed
via an increase in adult neurogenesis and survival rate of
mature neurons integrating into the hippocampal circuitry
(Table 4). The first evidence reported by [44] demonstrated
that high frequency stimulation of the rat thalamus increased
adult neurogenesis and restored experimentally suppressed
neurogenesis in the dentate gyrus. One study shows that
stimulation of the anterior thalamic nuclei has the effect of
promoting proliferation of ANPs, similar to fluoxetine [45].
Similarly, other studies have identified specific stimulation
of the entorhinal cortex, a major source of input to the
hippocampus, promoting proliferation of progenitors which
increase the survival rate and formation of mature neurons
integrating into the hippocampal circuitry [46]. This finding
was supported by increased performance in the water-maze
memory tests. DBS may prove to be a significant approach
in combating psychiatric disorders. However, direct involve-
ment of adult neurogenesis conferring antidepressant action
of DBS as well as its mechanism of action needs to be
determined.

3.2. Chronic Treatment of Chemical Antidepressants. Multiple
classes of antidepressants have been shown to positively
influence aspects of adult hippocampal neurogenesis in
a chronic time course manner (Table5). Most selective
serotonin reuptake inhibitor (SSRI) treatments are associated
with a delayed onset of therapeutic efficacy consistent with
the time course of maturation of newborn neurons [66].
Stimulation of neurogenesis is required for antidepressant
efficacy. Studies in monkeys and rodents confirm that in con-
ferring antidepressant action, chronic fluoxetine treatment
stimulates adult hippocampal neurogenesis and mediated
depressive-like behavioral effects [38, 47, 116].

The cellular basis of fluoxetine action within the neuronal
differentiation cascade has been identified. Using a nestin-
cyan fluorescent protein (CFP)nuc mouse line where the
reporter is fused to a nuclear localization signal that allows
identification and classification of early neuronal progeni-
tors, fluoxetine was shown to increase symmetric divisions
of the amplifying neuronal progenitor (ANP) cell class
while not affecting division of stem-like cells in the dentate
gyrus [49]. These results suggest that the cellular target
for fluoxetine’s therapeutic action to increase new neurons
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arises due to a resultant expansion of this ANP cell class.
Another study by Wang et al. [48] showed that fluoxetine
stimulates dendritic development of newborn neurons and
neurogenesis-dependent LTP in the dentate gyrus which
results in behavioral alteration induced by fluoxetine. By
ablating adult neurogenesis using X-ray irradiation, they
indicated that fluoxetine-induced LTP and behavior response
both require adult hippocampal neurogenesis [17]. Thus,
the effects of chronic fluoxetine administration on the
maturation and functional properties of newborn neurons
may translate into enhanced synaptic plasticity in the
appropriate neural circuits, which subsequently exhibit a
behavioral response to antidepressant action. Besides study-
ing fluoxetine, various other classes of antidepressant drugs
have been tested. For instance, similar results were seen in
rodent administration of SSRI citalopram [50] and tricyclic
antidepressant imipramine [51], although this effect was
observed in the stressed condition. The mood stabilizers
including lithium have been shown to significantly increase
both neural progenitors and survival [128]. Although a more
detailed characterization of the cellular process needs to be
determined, these studies support the notion that regulation
of adult neurogenesis may provide potential therapeutic
targets for treatment of depression.

What underlies the neurogenic action of antidepressants?
Extrinsic factors such as BDNF and VEGF that regulate
the microniche of adult neurogenesis may hold the answer.
BDNF serves as a key regulator of various aspects in adult
hippocampal neurogenesis including proliferation, survival,
dendritic growth, maturation, and synaptic plasticity, which
could make BDNF a potential mediator of the antidepressant
action induced by different chemical antidepressants [129].
Emerging evidence shows that BDNF and TrkB mRNA levels
in the hippocampus are dramatically induced by chronic
treatment of different chemical antidepressants including
fluoxetine, tranylcypromine, sertraline, desipramine, and
mianserin [130]. Infusion of exogenous BDNF into the hip-
pocampus exhibits antidepressive-like behavioral responses
[120]. Further, behavioral abnormalities found in het-
erozygous BDNF (BDNF+/—) mice and mice lacking the
TrkB are counteracted by chronic antidepressants including
fluoxetine [131]. This data coupled with evidence that
BDNF-signaling enhances adult neurogenesis in the dentate
gyrus [132] led to the suggestion that antidepressants
may represent an enhancement of neural plasticity such
as adult neurogenesis and behavioral alteration, which in
turn could be regulated by increasing the level of BDNF
[130]. However, a direct link between adult hippocampal
neurogenesis and antidepressive-like behavioral action of
antidepressants through BDNF is still lacking.

The other promising molecular target is VEGE, which
shows increased mRNA levels with chronic treatment of
fluoxetine and desipramine in the hippocampus [133]. VEGF
is also sufficient to promote basal level of adult hippocampal
neurogenesis [134] and is necessary for the antidepressant
action [133]. Conversely, a significant role of VEGF is
demonstrated when VEGF signaling diminishes induction
of adult neurogenesis and antidepressant action in response
to chronic treatment of fluoxetine [133]. Taken together,
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an important action of antidepressants may be to increase
neurogenesis in the hippocampus through a variety of
molecular mechanisms which have an impact on depressive
symptoms.

3.3. Exercise Therapy. Physiological stimulation in the form
of exercise has been shown to stimulate cell proliferation
and adult hippocampal neurogenesis [53, 55, 56, 135] and
enhance the learning and memory function in both mice
[57, 136] and human [137]. The plastic nature of the
mammalian brain, especially neurogenesis continuing in the
hippocampus well into adulthood, has allowed for exercise
to exert its effects at the cellular level. This not only holds
promise for brain diseases such as Alzheimer’s or Parkinson’s
disease, but also for schizophrenia and major depression.
A recent clinical trial demonstrated how exercise therapy
can improve the mental health and cardiovascular fitness
in patients with schizophrenia [138]. The use of exercise in
treating depression has also received increased attention in
recent years.

The cellular effects of running on hippocampal neu-
rogenesis have been closely investigated in a number of
notable studies (Table 6). Using BrdU labeling, one of the
earlier studies showed how mice with free access to a
running wheel nearly doubled the number of surviving
newborn cells [53]. Another study has shown that running
actually activates the quiescent radial population in the
hippocampus [55]. These activated cells eventually give rise
to mature neurons that are functionally integrated into the
hippocampal circuitry. Hippocampal structure and function
has been closely studied in relation to cognitive or mental
function. Running has been shown to improve neurogenesis
with a corresponding enhancement in learning and long-
term potentiation [57, 136]. Physical exercise has all been
implicated in the distinct encoding of spatial information.
In one study, young and aged mice undergoing running
exercise were compared to each other with the result that
running enhanced spatial pattern separation when exercise
was correlated with increased hippocampal neurogenesis
[56]. The effect of exercise-induced neurogenesis has been
studied in humans as well. Cerebral blood volume (CBV)
maps in hippocampal formation have been generated in both
exercising mice and humans [54]. Similar to mice, exercise
specifically targeted the dentate gyrus CBV in humans and
was correlated with increased cognitive function.

It is still unclear whether benefits from physical exercise,
namely, in cognitive function, are conferred by the increase in
neurogenesis. Any causal relationship between the increased
neurogenesis and benefits in learning and memory is still
being studied, and at least, current evidence is not decisive
[139]. BDNE, as previously noted playing a role in both
ECT and antidepressants, has again been suggested as
a strong contender and possible mediator of the causal
relationship being observed. A recent clinical trial demon-
strated that exercise training increased hippocampal volume,
effectively reversing age-related loss in volume [137]. This
increased hippocampal volume was also associated with
greater serum levels of BDNF [137]. In the review of
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Bekinschetein et al.,, a number of studies are mentioned
indicating a strong causal link between BDNF and learning
and memory. Physical activity has been associated with
increased BDNF mRNA levels in the rat hippocampus,
especially the dentate gyrus [140, 141]. Specific deletion of
the BDNF-receptor TrkB reduced survival of newborn neu-
rons, impaired neurogenesis-dependent LTP, and increased
anxiety-like behavior [142]. Indeed, ablation of TrkB in
neural progenitors also prevented behavioral improvements
conferred by exercise [132], bolstering the role of BDNE.
Other factors, namely, NMDA receptors and downstream
effectors such as calcium/calmodulin protein kinase II and
mitogen-activated protein kinase, could be involved in the
mechanism by which BDNF effects synaptic plasticity [143].
Further evidence may ascertain the mechanism by which
BDNF operates.

In an effort to treat neuropsychiatric disorders in relation
to aberrant neurogenesis, it is important to study and
classify important stimuli that can have a lasting effect
on neurogenesis and hippocampal function. ECT, DBS,
antidepressants, and physical exercise all seem to have
their own effect on neurogenesis, and in combination with
proper administration, they could prove vital in discovering
potential treatments for psychiatric disorders that continue
to disable the population.

4. Conclusion

Significant progress has been made in the past decade
documenting the function and regulation of adult neu-
rogenesis. Many offer a neurobiological understanding of
the role of adult neurogenesis in psychiatric disorders.
These studies demonstrate how these disorders may proceed
through an impairment of neural progenitor proliferation
in the hippocampus, and how an ablation of neurogenesis
may predispose an animal to depressive-like behaviors. A
pathophysiologically reliable animal model is, however, still
required to confirm data across the cellular and behavioral
spectrums. Further, genetic manipulations of susceptibility
genes in loss-of-function transgenic models may be used to
rescue cognitive deficits and confirm their roles via cellular
and behavioral studies. These may bolster a causal link
between adult neurogenesis and the disorder.

However, with our current knowledge, several questions
remain to be answered. We do not yet have a clear
understanding of how external stimuli in current treatments
mediate the induction and function of factors in the neuro-
genic niche that stimulate adult hippocampal neurogenesis.
We also do not know how the regulation of neurogenic
niche via niche signals and neurotrophic factors may be
altered by X-ray irradiation which is used to ablate and study
neurogenesis. The role of BDNF has been evidenced in ECT,
DBS, antidepressants, and exercise therapy. Going forward,
its downstream effects would need to be studied to determine
how BDNF mediates synaptic plasticity. Further, in the case
of relatively new treatments such as DBS, conclusive evidence
of its antidepressant effect and mechanism of action will
bolster the significant role it could play in treating psychiatric
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disorders. Finally, we are yet to obtain a conclusive causal
relationship between adult neurogenesis and depression,
as well as adult neurogenesis and cognitive function or
learning and memory. How drug abuse may alter these
relationships especially in the maturation and integration
of newborn neurons in the hippocampus will be useful.
Current evidence when coupled to such a characterization
may provide evidence of the cellular mechanism at play in
many widely used treatments.

Adult neurogenesis is important in synaptic plasticity
with overarching roles in memory, learning, and mood.
Such roles have been established via a plethora of studies
which show that the process is dynamically regulated and
demonstrates striking structural plasticity in response to
internal and environmental cues. It is strongly regulated by
stress signals, and stimulated by antidepressants, which may
serve to potentially alter the hippocampal circuitry. Current
evidence indicates a significant role for adult neurogenesis in
the neurological impairments of psychiatric disorders. At this
critical juncture, it is important we distinguish whether adult
neurogenesis is causally involved in the etiology or plays a
significant role in ameliorating the disease state symptoms.
A clear understanding of this relationship in regard to the
pathogenesis of the disease will be invaluable in aiding
our understanding of the causes at play, and how effective
treatments may be designed to alleviate the symptoms.
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