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Abstract
Computationally efficient modeling of complex neuromuscular systems for dynamics and control
simulations often requires accurate analytical expressions for moment arms over the entire range
of motion. Conventionally, polynomial expressions are regressed from experimental data. But
these polynomial regressions can fail to extrapolate, may require large datasets to train, are not
robust to noise, and often have numerous free parameters. We present a novel method that
simultaneously estimates both the form and parameter values of arbitrary analytical expressions
for tendon excursions and moment arms over the entire range of motion from sparse datasets. This
symbolic regression method based on genetic programming has been shown to find the
appropriate form of mathematical expressions that capture the physics of mechanical systems. We
demonstrate this method by applying it to (i) experimental data from a physical tendon-driven
robotic system with arbitrarily routed multiarticular tendons and (ii) synthetic data from
musculoskeletal models. We show it outperforms polynomial regressions in the amount of training
data, ability to extrapolate, robustness to noise, and representation containing fewer parameters –
all critical to realistic and efficient computational modeling of complex musculoskeletal systems.

Index Terms
moment arm; tendon excursions; symbolic regression; polynomial regression; extrapolation

I. Introduction
Computational modeling of complex musculoskeletal systems is sensitive to accurate
representation of tendon routing, insertion points, and moment arm values [1], [2]. The most
commonly used technique to obtain moment arm variations over the range of motion of a
joint is the tendon and joint displacement method [3]. Implementation of this method
generally involves fitting explicit analytical expressions for tendon excursions as functions
of joint angles. Tendon excursions arise from changes in length of a musculotendon either
due to active contraction or passive stretching. Hence they are directly related to muscle
length changes and the maximal force a muscle can generate, as determined by the force-
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length properties [4]. Moment arms over the range of motion can then be obtained by taking
partial derivatives of these tendon excursion expressions with respect to the corresponding
joint angle changes. This standard approach has been used extensively in the literature to
understand the contribution of different muscles towards the production of joint torque and
limb motion (Eg. [5], [6], [7], [8]). It has also been used to validate musculoskeletal models
representing bone geometry and musculotendon pathways [9], [10]. Simulation of
musculoskeletal dynamics for the development and testing of theories of motor control also
specifically require analytical expressions for tendon excursions and moment arms as
functions of joint angles [11], [2]. Very often, dynamic equations of the system (which
include the moment arm functions) need to be evaluated iteratively (perhaps tens of
thousands of times) to solve for an optimal control law for each cost function and task goal
[12]. Such algorithms require accurate, computationally-efficient analytical expressions for
moment arms for the entire range of motion.

Analytical expressions for moment arms and tendon excursions are of two kinds: (i)
Idealized geometric models, or (ii) Empirical models. The coefficients of the analytical
expressions in both these approaches are regressed from experimental data. These data
consist of joint angles and tendon excursion measurements, often obtained from cadaveric
specimens [5], [3], [6], [13], [14], [8]. In the first case, idealized geometric models, tendon
routings are approximated by simple geometric shapes and the mathematical forms of the
expressions are derived using trigonometry (Eg. [15], [16], [17]). While this might be
sufficient to obtain approximate values of moment arms and tendon excursions in some
simple cases, it may not necessarily be accurate for all muscles and is heavily dependent on
assumptions about the anatomy. It is likely not appropriate for the complex routing of many
tendons around joints, as well as non-uniform bone geometry, deformity, surgical
modification and injury. Therefore, most studies in biomechanics use the second approach:
empirical models. These almost always consist of polynomial expressions (including
splines, which are piecewise polynomials stitched together) mapping joint angles to tendon
excursions, and are regressed from experimental measurements, such as using cadaveric
specimens [6], [13], [14], [8], [18], [19]. But these polynomial regressions have several
inherent mathematical pitfalls; they can fail to extrapolate, may require large datasets to
train, are not robust to noise, and often have numerous free parameters [20]. Hence they may
not be the best choice to model multiple degree-of-freedom biomechanical systems where (i)
obtaining a rich dataset from the entire range of motion can be difficult [21], (ii) data are
generally sparse and contain noise from measurement errors and skin deformations [22],
[23], and (iii) are susceptible to common errors in the estimation of axes of joint rotation and
accurate joint angles [24]. In addition, polynomial functions are inherently a type of
mathematical expression that is likely not reflective of the geometry and physics of tendon
routing which even in the ideal case often contain trigonometric functions [15].

Here we present a novel method to find analytical functions for tendon excursions and
moment arms as functions of joint angles that does not assume a specific mathematical form
apriori. Rather, it simultaneously estimates directly from experimental data both appropriate
mathematical forms of the analytical expressions for moment arms and tendon excursions,
and their best-fit parameter values. Previously we have called attention to the need for
biomechanical modeling to go beyond parameter estimation and engage in the search for
appropriate model forms [25]. Here we show an example of how to perform this
simultaneous search of mathematical form, i.e. the structure consisting of mathematical
building blocks; and parameter values, i.e. the coefficients and other constants
accompanying each building block of the mathematical expression, using a software
package called Eureqa (http://creativemachines.cornell.edu/eureqa). Eureqa implements
symbolic regression using genetic programming [26]. While symbolic regression and
genetic programming have been used for over 15 years [27] in the field of machine learning,
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Eureqa is a recent improvement that ensures faster convergence and more accurate solutions
[28], [29]. Unlike other machine learning techniques that use a ‘black box’ approach to
model input-output relationships, Eureqa has been shown to obtain computationally
efficient, analytical expressions that can capture the physics of the system being modeled. In
this paper, we compare polynomial regression (the state-of-the-art used by the
musculoskeletal modeling community to represent these systems) to our method. We apply
the traditional polynomial regression approach and our novel machine learning method to
both experimental data from a multi-articular tendon-driven robotic system, and computer-
generated synthetic data from many simulated musculoskeletal systems with experimentally
realistic noise added.

II. Methods
A. Symbolic regression using genetic programming

Symbolic regression is a machine learning technique that searches the space of mathematical
operators, functions and parameter values to obtain analytical expressions that model
available data based on a fitness criterion [27]. Evolutionary algorithms are generally used
to guide this search in what is an infinite dimensional space. Here we use a software package
called Eureqa that performs symbolic regression using genetic programming to infer implicit
and explicit analytical functions to model input-output data [26]. In our case, Eureqa
searches for explicit analytical expressions of the form s = f (θ) mapping joint angles, θ to
each tendon’s excursion s (Fig. 1). The three joint angles and the excursion of the tendon of
interest at any time step constitute a data point. Many such data points from the entire time
series of the experiment form a dataset. We use sum of deviations of inferred analytical
function predictions for the tendon excursions from true measurements (coming from
experimental testing or computer simulation) over an entire dataset as the fitness criterion,
i.e. the fitness-error to be minimized. In addition to this, Eureqa also penalizes the equation-
complexity, defined as the sum of the number of parameters and terms in the analytical
expressions being inferred. The search space consists of analytical expressions formed by
parameter values and combinations of mathematical operations performed on the input
variables (θ). In our case, we restricted the mathematical operations to addition, subtraction,
multiplication, division, sine, cosine, tangent and square root1. Polynomial expressions are
automatically generated by repeated multiplication of the input variables. In addition,
Eureqa uses the concept of coevolution of fitness predictors, described in detail in [28], for
faster and improved convergence of solutions. Instead of using the entire time history of the
training dataset to calculate the fitness of evolving analytical expressions, it finds and uses a
small set of data points (called fitness predictors) that can best distinguish between
analytical expressions of otherwise equal fitness. Fitness predictors are chosen in every
generation of evolution in parallel with the search for analytical expressions modeling the
experimental data.

Unlike conventional optimization that would minimize fitness-error in a ‘single line search’
and find either the global minimum or one of the local minima of the fitness landscape,
Eureqa uses multi-objective optimization to produce a family of multiple ‘optimal’
analytical expressions (15–20 expressions) that map joint angles to the tendon excursions.
Each analytical expression has different levels of fitness-error and equation-complexity
(defined above). This family of analytical expressions constitutes a Pareto front of fitness-
error vs. equation-complexity. In this multi-objective optimization, the tradeoffs between the
fitness criteria are made explicit to the user. The advantage of this approach is that it

1Eureqa allows several mathematical building blocks including trigonometric functions, logarithmic functions, boolean operations,
etc. Please see the entire list in the Eureqa documentation: http://creativemachines.cornell.edu/eureqa.
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provides multiple analytical expressions that may be more or less sparse, accurate,
computationally efficient, or revealing of the physics of the problem – either of which may
be given more weight as ‘optimal’ by the user as desired. We chose to define as the optimal
solution the one analytical expression that had the lowest extrapolation error (root mean
squared error when tested with data points outside the range of training datasets). However,
the user is free to weigh other aspects more heavily. Our choice was driven by the need for
analytical functions to have the ability to extrapolate as it ensures that they are capturing the
physics of the system and not simply overfitting to the training data points. Each search in
Eureqa starts with an initial set of multiple, random analytical functions, and terms are
added/subtracted in discrete steps as the search progresses. Eureqa provides the support to
run a search very easily on parallel computers that are connected in a network without
requiring any special network architecture or hardware. On average, we ran each search in
parallel for 12 hours on 20 computers (Dual Dualcore AMD Opteron 2.0 GHz ) at the USC
High-Performance Computing and Communications (www.usc.edu/hpcc) computer cluster.
As is necessary in most machine learning problems without closed-form solutions, a
stopping/convergence criterion needs to be defined. We defined the search to have
converged if the fitness of the solution with the lowest fitness error remained unchanged for
more than two hours. We repeated the entire search five times to test for consistency of
results. The family of ‘optimal’ solutions was not necessarily of identical form in every
repeat but of different representations of functions that modeled the data best with consistent
RMS errors.

B. Comparison against polynomial regression
The state-of-the-art technique is to regress tendon excursions as polynomial functions of
joint angles (Eg. [6], [13], [14], [8], [18]). We regressed the coefficients of multivariable
linear, quadratic, cubic and quartic polynomials (all cross terms considered) using
MATLAB © (Version R2009b, Math-Works, Natwick, MA). Polynomials of order greater
than four overfit to the training data and performed worse than polynomial regressions of
lower orders, and hence were not considered in this paper. This is also the case with spline
functions, which are piecewise polynomials stitched together [9]. Moreover, to evaluate
dynamic equations of the system, for example to solve for an optimal controller, simple
analytical functions modeling the behavior of the system throughout the range of motion are
required. Splines or other piecewise surface fits would not be not suitable for this purpose
and hence were not considered in this paper. We compared the performance of analytical
expressions from the multivariable linear, quadratic, cubic and quartic regressions against
those from symbolic regression by testing with a cross-validation dataset (data points not
selected for training, but within the range of training) and an extrapolation dataset (data
points outside the range of training). We used root mean squared (RMS) error between the
true tendon excursions (experimentally measured or simulated) and the analytical function
predictions (coming from symbolic or polynomial regressions), normalized by the range of
movement for that tendon and expressed as a percentage, as the fitness error criterion for the
comparison. RMS errors were determined for cross-validation and extrapolation datasets.

C. Experimental data from a tendon-driven robotic system
We used a planar robotic finger with three links, three joints and three tendons to produce
the motion capture data (Fig. 1). The three tendons were routed such that the first tendon
flexed all joints (similar in action to the flexor digitorum profundus in the human finger), the
second tendon, extended one joint and flexed the remaining two joints (similar to an intrinsic
tendon) and the third tendon, extended all joints (similar to the extensor digitorum
communis). We moved the robotic finger manually to span the full three-dimensional joint
configuration space of flexion-extension in a human finger. Servo dc motors maintained a
constant tension of 1.5 N in every tendon to prevent tendons from going slack. As we moved
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the robotic finger, optical encoders measured tendon excursions at a sampling frequency of
10 Hz. A 6-camera optical motion capture system, manufactured by Vicon (Lake Forest,
CA), tracked reflective markers adhered to each segment of the robotic finger at a frequency
of 30 Hz. The mean calibration residual error of the marker position reconstruction was less
than 0.2 mm. We processed the 3D coordinates of the markers generated by the Vicon
Nexus software to obtain joint angle changes for the entire duration of movement and then
downsampled them to 10 Hz.

We then partitioned the datasets to test for robustness of the inferred analytical expressions
to (1) size of the training dataset and (2) range of extrapolation.

1. Reducing the size of the training dataset: We divided the experimental data into
training, cross-validation and extrapolation datasets (training and cross-validation
datasets coming from the same range of data and the extrapolation dataset
consisting of data points outside the range of training). Then, we created nine
independent training datasets by systematically reducing the number of training
data points keeping the range fixed (n, n/2, n/3, etc. in Fig. 3). We performed
symbolic and polynomial regressions using these nine different training datasets
and tested the resulting analytical expressions with the fixed cross-validation and
extrapolation datasets. This was repeated five times for each training dataset, for
each tendon (S1, S2 and S3), by re-sampling the training data points with
replacement (Eureqa picked multiple random initial analytical functions at the
beginning of each search). This was done to ensure that the observed results were
consistent and not simply due to chance.

2. Increasing the range of extrapolation: We compared the regressions against one
another in their ability to extrapolate, by performing regressions on training
datasets and then testing with data points from six different ranges of extrapolation
(25%, 50%, etc. in Fig. 4). We expressed each extrapolation range as percentage by
volume of the training dataset (in joint angle space) where 0% means no
extrapolation and 150% extrapolation refers to the situation where the volume of
extrapolation is 150% of the volume of the training dataset range (in joint angle
space).2 This was also repeated five times by re-sampling of training data points
with replacement for each tendon (S1, S2 and S3).

D. Computer-generated synthetic data
For validation purposes, we also tested our inference algorithm using synthetic (i.e.,
computer-generated) data because in this case, we would have access to the ground truth,
and also be able to corrupt the datasets with noise in a systematic manner. Landsmeer’s
models I, II and III [15] are well-accepted analytical expressions mapping joint angles to
tendon excursions describing three different kinds of tendon routings for limbs and fingers
[5], [30], [31]. Landsmeer obtained these expressions using trigonometry assuming
simplified geometry for anatomical systems [15]. We generated synthetic datasets consisting
of joint angles and tendon excursions from the 27 possible combinations (with repetition,
3×3×3) of the three Landsmeer models (Fig. 2). We then tested how well symbolic (i.e.,
Eureqa) and polynomial regressions could infer these hidden target expressions from input-
output datasets. This allowed us to test whether or not the results obtained using the tendon-
driven robotic finger also generalized to arbitrary combinations of anatomical tendon

2For example consider a one-joint one-tendon system where the complete range of motion is 0–100 degrees. If we use 0–80 degrees as
the range of training dataset for the regressions and test with joint angles between 80–100 degrees, it would be considered 25%
extrapolation since we are extrapolating to a range that is 25% larger than the training range.
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routing. We are not, however, suggesting that these Landsmeer’s models are particularly
accurate or realistic representations of real musculoskeletal systems.

We then compared the robustness of symbolic and polynomial regressions to (1) noise in the
data and also (2) the number of free parameters in the analytical expressions obtained by the
two regression techniques.

1. Robustness to noise: We added experimentally realistic noise of ±5% in joint
angles and ±1% in tendon excursions to the synthetic data generated by the 27
combinations of the three Landsmeer models (Tendon excursions are generally
measured directly using a ruler or position encoders whereas joint angles are
inferred from motion capture marker positions or measured using a goniometer.
The latter are subject to larger variations due to errors in marker/segment positions,
joint axes estimations, skin deformations, etc [24], [22]). We then performed
symbolic and polynomial regressions on the noisy datasets and compared how well
they model the noisy data by testing with the cross-validation and extrapolation
datasets.

2. Number of free parameters: We compared the number of free parameters in the
expressions inferred by symbolic regression against the number of coefficients in
each form of polynomial regression. Expressions with fewer parameters are
preferable not only because they are more computationally parsimonious and
compatible with Occam’s Razor, but also because expressions with a large number
of parameters/coefficients tend to overfit to the training data, and naturally require
larger training datasets.

III. Results
A. Results for the experimental tendon-driven robotic system

Symbolic regression could infer analytical expressions that had cross-validation and
extrapolation RMS errors below 10% for each of the tendons of the experimental tendon-
driven robotic system for all training dataset sizes and ranges of extrapolation. Table I shows
examples of expressions obtained using the different regressions for one of the tendons of
the robotic system in one of the cases. Below are the comparisons against polynomial
regression:

1. Effect of reducing the size of the training dataset: We saw that symbolic regression
was much more robust to reduction in the size of the training dataset (range being
fixed) as compared to the polynomial regressions. As described above, this
robustness was tested for cross-validation and extrapolation datasets. In general,
symbolic regression required fewer training data points than polynomial
regressions to obtain RMS errors of 5% in tendon excursion predictions (Fig. 3).
When tested with the cross-validation dataset, cubic and quartic regressions had
lower RMS errors than symbolic regression for large training dataset sizes, but had
much larger errors when the number of training data points was small. However,
when tested with the extrapolation dataset, all polynomial regressions had much
larger errors compared to symbolic regression, independent of the size of the
training dataset (Fig. 3). These observations were consistent across all three
tendons (S1, S2 and S3 in Fig. 1).

2. Effect of increasing the range of extrapolation: Symbolic regression could
extrapolate further away from the training datasets compared to polynomial
regressions for the same RMS error in tendon excursion predictions. It could
extrapolate to ranges beyond 150% of the range of the training dataset (by volume)
for tendons one and two and up to 125% for tendon three and still maintain RMS
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errors below 5%. In comparison, linear, quadratic and quartic regressions could not
extrapolate beyond 50–75% in most cases, and cubic regression up to 100% for the
same RMS error of 5% in tendon excursion predictions (Fig. 4).

Figure 5 summarizes the comparison between symbolic and polynomial regressions for the
experimental data from the tendon-driven robotic finger. It shows the achievable percentage
extrapolation for the different regression techniques with reduction in training dataset size to
obtain 5% RMS error in tendon excursion predictions. Symbolic regression could
extrapolate to much larger ranges of data, compared to the polynomial regressions, for all
the training dataset sizes.

B. Results for the computer-generated synthetic data
All regressions produced very low errors for the computer-generated synthetic data when no
noise or extrapolation was involved. We observed that of the 27 possible combinations of
the three Landsmeer’s models, symbolic regression tended to infer the exact target ground-
truth expressions for joints with models I and II, and found expressions equivalent or closely
related to the original expression (e.g., Taylor series terms or alternative trigonometric
forms) for joints with model III (Table II). The training, cross-validation and extrapolation
RMS errors were below 0.4% for all 27 combinations.

1. Robustness to noise: When experimentally realistic noise was added to the training
datasets, cubic and quartic regressions overfit to the noise and performed poorly
when tested for cross-validation and extrapolation (Fig. 6). In contrast, symbolic
regression outperformed the polynomial regressions for all tendons when tested
with extrapolation datasets and matched quadratic regression when tested with
cross-validation datasets. The box plot in Fig 6 shows that for the 27 combinations
of Landsmeer’s models with noise added, on average symbolic and quadratic
regressions had equivalent cross-validation errors, whereas symbolic was 8% better
than quadratic regression when tested with the extrapolation dataset. Hence,
symbolic regression would be the regression of choice to model tendon excursions
in physiological systems from experimental data, where measurement noise cannot
be avoided.

2. Number of free parameters as a practical measure of the complexity of the
analytical expression: Analytical expressions obtained using symbolic regression
had fewer free parameters and lower cross-validation, extrapolation errors
compared to polynomial regressions for experimental data from the tendon-driven
robotic system as well as for the synthetic data with no noise and with noise added
(Fig. 7).

IV. Discussion
We have presented a novel method based on symbolic regression that can infer accurate
analytical expressions mapping joint angles to tendon excursions from sparse datasets.
Symbolic regression outperforms polynomial regression, the state-of-the-art technique used
in musculoskeletal modeling, in that it requires smaller training datasets, can extrapolate to
ranges outside that of the training dataset, and does not contain an arbitrary number of free
parameters that can lead to overfitting the training datasets and/or their noise. We have
demonstrated these advantages of symbolic regression using both experimental and
synthetic data and strongly suggest that this approach may be a more suitable choice to
model tendon mechanics for neuromuscular systems.

Obtaining the necessary experimental data to create valid analytical expressions to represent
the musculoskeletal system is invariably difficult and costly. This is true for both cadaveric
specimens and human subjects. Hence it is critical to be able to extract functionally accurate
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analytical expressions from as sparse a dataset as possible. Moreover, because the ground
truth is not usually known, it is important to have confidence that the expressions found are
unaffected by unavoidable measurement noise, that enough data are available/used, that the
form of the analytical expressions is appropriate and parsimonious, and that the analytical
functions are valid for the entire natural workspace of the limb. We have demonstrated here
that symbolic regression, as implemented in Eureqa [26], outperforms polynomial
regression, the state-of-the-art in musculoskeletal modeling, with respect to these
performance criteria.

For the physical system of tendons traveling over joints with smoothly varying mechanical
behavior, it is critical that the tendon excursion expressions model data even outside the
range of the experimentally obtained data points on which they are trained to ensure they
capture the true behavior of the system, and not just overfit to the training data points.
Moreover, obtaining data spanning the entire range of motion of a multiple degree-of-
freedom biomechanical system is very difficult. It would also necessitate a larger training
dataset. Polynomial models do not extrapolate well again due to their overfitting behavior
whereas symbolic regression avoids this problem and can model points well beyond the
range of training data.

Experimental data from biomechanical specimens is unavoidably polluted by measurement
noise and/or uncertainty. These can arise from skin deformation, motion capture errors and/
or estimation of axes of joint rotation, measurement errors and/or noise, etc. Small errors in
these measurements lead to large errors in the inferred joint angle kinematics [24], [22],
[23]. While experimental data are often filtered, filtering introduces artifacts and reduces the
resolution of the measurements. Hence it is important that the regression technique
employed be robust to noise and capture the true underlying system behavior with the
highest resolution possible. We show that polynomial regression models, especially higher
order polynomials, overfit to the noise and can be poor representations of the real underlying
behavior of the system. In contrast, symbolic regression is seen to be robust to noise and is
more accurate than polynomial regressions in modeling noisy data.

The form of the analytical function must also strike a balance between parsimony and
accuracy. Functions with a large number of free parameters require a large training dataset
for the estimation of the values of those parameters. They also have a greater tendency to
overfit to the training dataset when compared to models with fewer parameters. On the other
hand, analytical functions with too few parameters will fail to accurately represent the
functional nonlinearities of the system. The symbolic regression algorithm in Eureqa
explores multiple potential forms for the analytical function while also penalizing the
number of parameters; and prioritizes low fitness error solutions with fewer parameters over
those with more parameters. In many of the cases we present, polynomial functions of
higher orders have a large number of free parameters compared to the more parsimonious
analytical functions found by symbolic regression.

The ability of symbolic regression to infer the nonlinear target expressions of the Landsmeer
models shows that our method can capture the underlying physics of the system directly
from input-output data. This is particularly the case here because the target expressions were
derived by Landsmeer by hand using principles of geometry and anatomy. As argued
elsewhere [26], the fact that symbolic regression did not only infer adequate mathematical
expressions but those target expressions is worth noting. At the very least, this says that
those target expressions are parsimonious and that Eureqa is able to favor parsimonious
expressions. In addition, this demonstrates how the analytical expressions for tendon
excursions or moment arm variations generated by symbolic regression may contain insight
on the geometry of the tendon routing – and therefore capture the physics of the system.
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Unlike conventional optimization that is based on a ‘single line search’ and finds the global
optimum or one of the local optima of the fitness landscape, Eureqa converges on a family
of optimal solutions that lie on the Pareto front of the fitness error-complexity plane. The
user is then free to choose the solution they want based on the features of the analytical
expressions most important to them such as (i) Observation and knowledge of the system
being modeled, (ii) Fitness error alone, (iii) Cross-validation or extrapolation error (as we
chose to in this paper), etc. Polynomial regressions or other functional regressions do not
offer this choice. Currently, selection of suitable functions is mostly driven by the properties
and pitfalls of polynomial fitting as opposed to giving the freedom to the investigator to
choose functions for scientific or computational reasons.

Until recently, measuring tendon excursions accurately was only possible in cadaveric
specimens. But with advances in the field of magnetic resonance and ultrasound imaging, it
has become possible to record moment arms in live subjects [32], [33], [34]. While in this
paper we have demonstrated the use of symbolic regression to extract analytical functions
mapping joint angles to tendon excursions assuming direct measurements in cadaveric
systems, it will soon be possible to measure tendon excursions and moment arms non-
invasively in vivo –and our techniques will be applicable to those measurements. This
would enable estimation of accurate, subject-specific models of moment arm variation that
are critical, for example, in the cases of deformity, surgical modification, injury, or the
development of functional electrical stimulation controllers [35] and for patient-specific
diagnosis and rehabilitation.

The analytical functions obtained are selected to be computationally efficient for iterative or
real-time use, but they can be costly to find off-line. One of the major limitations of
symbolic regression is computational cost, since it uses genetic programming that involves
searching a high dimensional space for optimal or near-optimal solutions. Eureqa was
designed to execute on a cluster of parallel computers by automatically parallelizing the
search process, where the computation time is reduced linearly with the number of
processors available. Also, while it might be computationally expensive to infer these
analytical expressions, it needs to be done only once. The resulting analytical expressions
can then be used as part of the model in the research of interest. In fact, once inferred, the
computational cost of implementing the expressions is lower given that parsimony (and
therefore computational efficiency) is an explicit fitness criterion. Eureqa’s graphical user
interface allows the user to continuously monitor the fitness error as well as the family of
optimal analytical functions throughout a search. The user can pause and continue, or
terminate the search at any point. In addition, the user has the flexibility to select the set of
mathematical operations that are to be the possible options defining the space of feasible
functions to be generated. While choosing more operations would make the search more
generic and thus could increase computational cost for function inference (exponential
increase in the worst case), restricting the solution space too much can also lead to
inappropriate or inaccurate analytical functions3. Hence an informed choice needs to be
made based on knowledge of the system being modeled, the purpose of the analytical
functions, and availability of computational power.

State-of-the-art biomechanical modeling involves assuming a fixed topology/form for the
system being modeled and estimating the parameter values from experimental data. In our
previous work [25], we have demonstrated that modeling of certain complex biomechanical
systems requires simultaneous inference of both model topology and parameter values
directly from experimental data. Here, as a continuation of that work, we have demonstrated
that the conventional method of assuming a fixed polynomial form and regressing

3In practice, including appropriate mathematical operations that fit the data well would accelerate the search.
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coefficients from experimental data, suffers from certain drawbacks which can be overcome
by using symbolic regression that simultaneously infers both the form and the parameter
values of the analytical expressions directly from experimental data.

We have demonstrated the advantages of using this method in a tendon-driven robotic
system. We are currently applying it to infer analytical expressions modeling tendon
excursions in the human fingers from cadaveric data.
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Fig. 1.
A three-joint planar robotic system with three arbitrarily routed tendons was moved
manually to span a range of joint angles. The tendon excursions were recorded and joint
angles calculated from motion capture data.
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Fig. 2.
Synthetic data consisting of tendon excursions and joint angles were generated using models
formed by combinations of Landsmeer’s models I, II and III ([I I I],[I I II],…[III III III]).
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Fig. 3.
Effect of reducing the size of the training dataset: Comparison of RMS errors of symbolic
and polynomial regressions with reduction in the number of training data points. The plots
show mean and standard errors calculated across five runs for each regression type and
training dataset size for the three tendons of the experimental robotic finger. When tested
with the cross-validation dataset (interpolated from the same range as the training dataset),
cubic and quartic regression had lower RMS errors compared to symbolic regression for
large training datasets and quadratic regression had errors comparable to symbolic
regression for small training datasets. But when tested with the extrapolation dataset (data
points outside the range of training upto 50% of the volume of the training dataset),
symbolic regression had lower errors than all polynomial regressions for all the different
training dataset sizes. The stem plots show the training dataset size required to obtain a 5%
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RMS error using each of the regression techniques. Symbolic regression requires the fewest
training data points compared to the different polynomial regressions for 5% cross-
validation and extrapolation errors.
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Fig. 4.
Effect of increasing the range of extrapolation: Comparison of RMS errors of symbolic and
polynomial regressions across increasing ranges of extrapolation, expressed as a percentage
by volume of the region in θ – θ – θ space enclosed by the training dataset. The plots show
mean and standard errors calculated across five runs for each regression type and training
dataset size for the three tendons of the experimental robotic finger. While cubic and quartic
regressions have lower RMS errors for data points within the range of training (0%
extrapolation), symbolic regression outperforms polynomial regressions for all ranges of
extrapolation. The stem plots show the percentage of extrapolation achievable with each
regression type to maintain the RMS error below 5%. Symbolic regression can extrapolate
to much larger ranges of data compared to the different polynomial regressions for the same
RMS prediction error.
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Fig. 5.
Summary of the comparison between symbolic and polynomial regressions in their ability to
extrapolate and their performance with training dataset reduction. The achievable percentage
extrapolation for models trained over different training dataset sizes to maintain RMS errors
below 5% is shown for each regression technique for the three tendons of the planar robotic
system. For each training dataset size, symbolic regression can extrapolate to larger ranges
beyond the training dataset compared to polynomial regressions.
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Fig. 6.
Comparison of root mean squared errors between symbolic and polynomial regressions for
the 27 combinations of Landsmeers models with no noise and with ±5% noise added to joint
angles and ±1% to tendon excursions. While cubic and quartic regressions have lower errors
than symbolic regression for data with no noise, when experimentally realistic noise is
added, symbolic regression has much lower errors than these polynomial regressions. The
box plot on the right shows the ratio of RMS errors of symbolic to quadratic regression (best
among polynomial regressions) for the data with noise. The median ratio is close to one for
cross-validation testing demonstrating that symbolic and quadratic regressions are
equivalent with respect to RMS errors in this case whereas for extrapolation testing, the
median ratio is 0.92 indicating that on average, symbolic regression has 8% lower RMS
errors than quadratic regression across the 27 models.
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Fig. 7.
Comparison of RMS errors and number of parameters across symbolic and polynomial
regression models for experimental data from the three tendons of the planar robotic system
and synthetic data generated using the 27 combinations of Landsmeers models with no noise
and with experimentally realistic noise added. In all cases, symbolic regression models have
fewer parameters and lower RMS errors compared to the polynomial regressions.
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TABLE I

Examples of analytical expressions obtained using symbolic and the different polynomial regressions for one
of the tendons of the robotic system.

Regression Expressions

Symbolic 13.7sin(θ1 − 0.78) + 12.3θ2 + 8.48θ3 + 4.02θ3sin (θ3) + 14.5

Linear 9.26θ1 + 12.6θ2 + 11.8θ3 + 7.26

Quadratic

Cubic

Quartic
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