Table 2.
Performance comparison of different methods using five-fold cross-validation for different datasets.
Dataset | Method | AUC | ACC | SEN | SPE | MCC | PPV |
---|---|---|---|---|---|---|---|
Sollner | BEEPro | 0.9987 | 0.9929 | 0.9604 | 0.9946 | 0.9281 | 0.9042 |
AntiJen#1 | BEEPro | 0.9930 | 0.9731 | 0.9680 | 0.9735 | 0.8491 | 0.7688 |
AntiJen#2 | BEEPro | 0.9907 | 0.9580 | 0.9700 | 0.9562 | 0.8402 | 0.7668 |
LEPS | NA | 0.7381 | 0.2672 | 0.8448 | 0.1010 | 0.2885 | |
BepiPred | NA | 0.5552 | 0.5179 | 0.5761 | 0.0604 | 0.2202 | |
ABCPred0.8 | NA | 0.4470 | 0.6733 | 0.4040 | 0.0546 | 0.2183 | |
BCPred | NA | 0.5392 | 0.5884 | 0.5487 | 0.0893 | 0.2334 | |
FBCPred | NA | 0.5145 | 0.6031 | 0.5121 | 0.0673 | 0.2233 | |
HIV | BEEPro | 0.9907 | 0.9454 | 0.9490 | 0.9433 | 0.8853 | 0.9098 |
LEPS | NA | 0.6345 | 0.4833 | 0.7484 | 0.2276 | 0.7144 | |
BepiPred | 0.6000 | 0.5672 | 0.5016 | 0.6085 | 0.0972 | 0.6122 | |
ABCPred0.7 | NA | 0.5659 | 0.8797 | 0.1465 | 0.0564 | 0.5633 | |
BCPred | NA | 0.6657 | 0.8018 | 0.5457 | 0.2980 | 0.6555 | |
FBCPred | NA | 0.6713 | 0.7320 | 0.5820 | 0.2781 | 0.6556 | |
Pellequer | BEEPro | 0.9874 | 0.9373 | 0.9256 | 0.9435 | 0.8621 | 0.8935 |
BepiPred | 0.6710 | NA | NA | NA | NA | NA | |
PC | BEEPro | 0.9950 | 0.9550 | 0.9708 | 0.9468 | 0.9036 | 0.9058 |
LEPS | NA | 0.6166 | 0.1278 | 0.8833 | 0.0365 | 0.4512 | |
BepiPred | NA | 0.5533 | 0.4823 | 0.5972 | 0.0749 | 0.3819 | |
ABCPred0.8 | NA | 0.4889 | 0.6546 | 0.4026 | 0.0513 | 0.3621 | |
BCPred | NA | 0.5283 | 0.5092 | 0.5935 | 0.0443 | 0.3607 | |
FBCPred | NA | 0.5220 | 0.5103 | 0.5255 | 0.0317 | 0.3526 | |
Benchmark | BEEPro | 0.9100 | 0.9200 | 0.7100 | 0.9400 | 0.5700 | 0.5200 |
CBTOPE | 0.8900 | 0.8400 | 0.8000 | 0.8500 | NA | 0.3100 | |
DiscoTope | 0.6000 | 0.7500 | 0.4200 | 0.7900 | NA | 0.1600 | |
CEP | 0.5400 | 0.7400 | 0.3100 | 0.7800 | NA | 0.1100 | |
ClusPro(DOT) best model | 0.6900 | 0.8900 | 0.4500 | 0.9300 | NA | 0.3900 | |
Patch Dock best model | 0.6600 | 0.8500 | 0.4300 | 0.8900 | NA | 0.2600 | |
PSI-PRED best patch | 0.6000 | 0.8200 | 0.3300 | 0.8600 | NA | 0.1900 | |
ProMate | 0.5100 | 0.8400 | 0.0900 | 0.9200 | NA | 0.1000 |