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The SWI/SNF-like chromatin 
remodeler ATRX has recently gar-

nered renewed attention. ATRX muta-
tions were first identified in patients 
bearing the syndrome after which it is 
named, alpha thalassemia/mental retar-
dation, X-linked. While ATRX has long 
been implicated in transcriptional regu-
lation through multiple mechanisms, 
recent studies have identified a role 
for ATRX in the regulation of histone 
variant deposition. In addition, current 
reports describe ATRX to be mutated 
at high percentages in multiple tumor 
types, suggestive of a potential “driver” 
role in cancer. Here we discuss the 
numerous and seemingly diverse roles 
for ATRX in transcriptional regulation 
and histone deposition and suggest that 
ATRX’s effects are mediated by its regu-
lation of histones within the chromatin 
template.

ATRX and its Syndrome

A study of patients presenting mental 
retardation, developmental delay and 
distinctive facial features, associated 
with α-thalassemia, led to the map-
ping of mutations in a helicase encoded 
on the X chromosome, named ATRX.1,2 
Intriguingly, ATRX syndrome muta-
tions lie in two distinct domains: either 
the N-terminal ADD (ATRX-DNMT3-
DNMT3L) domain,3 which contains a 
GATA-like domain and a histone tail 
binding plant homeodomain (PHD),4-6 
or the C-terminal helicase region,7 char-
acteristic of ATP-dependent chromatin 
remodelers (Fig. 1).8,9 Interestingly, these 
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mutations often result in substantially 
reduced ATRX protein levels in patients.10 
However, the mechanisms by which 
loss of functional ATRX results in these 
syndrome features, including reduced 
α-globin expression and mental retarda-
tion, remain unclear.11

ATRX and Condensed Chromatin

Studies over the last ~15 years have uncov-
ered multiple roles for ATRX, some of 
which may appear to be contradictory. 
For example, the fact that ATRX muta-
tions result in the loss of α-globin gene 
expression and that ATRX physically 
binds to the α-globin gene cluster, sug-
gests a transcriptionally activating role 
for ATRX.10,12 However, its localization 
to telomeres, pericentric heterochroma-
tin and the inactive X chromosome13-15 
implicate a role in the establishment  
and/or maintenance of transcription-
ally silent chromatin. The protein inter-
action partners of ATRX, including 
HP1α, EZH2, MeCP2 and macroH2A, 
also implicate its role in heterochroma-
tin structure and function (Fig. 1).16-20  
Additionally, the N-terminal ADD 
domain of ATRX, which binds the het-
erochromatin-associated histone modi-
fication H3K9me3 (see below), bears 
homology to domains present in DNA 
methyltransferases,3,21-23 also suggesting 
transcriptional repression. Mechanistic 
insight into ATRX function is presently 
emerging and the picture is not so clear-
cut—ATRX appears to have many faces 
in regards to its role in histone deposition 
and transcription, as discussed below.
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facilitate chromatin accessibility of highly 
replicating telomeres in ESCs.29,30,33 As 
cells differentiate, ATRX is lost from telo-
meres allowing heterochromatin forma-
tion to ensue.14,24 Consistent with these 
findings, the ATRX/Daxx dependent 
deposition of H3.3 at pericentric regions, 
mentioned above, is likely to facilitate an 
open environment conducive to the active 
transcription of pericentric repeats.29 
However, Goldberg et al. reported an 
increase in the presence of telomere repeat 
containing RNA (TERRA) in the absence 
of ATRX, suggesting that ATRX is also 
involved in transcriptional repression 
at telomeres.25 Taken together, numer-
ous questions arise from these studies: 
How does recognition of H3K9me3 via 
ATRX ADD domain contribute to such 
transcriptional activities? Does ATRX 
bind H3K9me3 on histone H3.3 specifi-
cally or other H3 family members as well? 
Does ATRX bind to heterochromatin to 
facilitate silencing, to potentially remodel 
chromatin for transcriptional activation, 
or to maintain distinctive but ill-defined 
chromatin states?

Histone Deposition  
at the α-Globin Locus

Our interest in the regulation of mac-
roH2A chromatin association led to the 
identification of ATRX association with 
this transcriptionally repressive H2A 
variant.19 In ATRX knockdown cells, 
which mimic the levels of ATRX pro-
tein found in ATRX syndrome patients, 

that ATRX is also involved in H3.3 depo-
sition. Interestingly, while HIRA deposits 
H3.3 at transcription start sites (TSSs) 
and within gene bodies, ATRX depos-
its H3.3 at telomeres. This study uncov-
ered that distinct factors are required for 
site-specific deposition of H3.3, thereby 
highlighting the intricacy of histone vari-
ant deposition. We anticipate much more 
complexity in this system not only for 
H3.3, but also other histone variants.

ATRX has been reported to complex 
with the death-domain associated pro-
tein Daxx.25,27,28 Drane et al. reported an 
ATRX and Daxx-dependent deposition 
of H3.3; however, this time at pericen-
tric heterochromatin.29 Both ATRX and 
Daxx were found enriched at major satel-
lite repeats and it was suggested that H3.3 
deposition at these regions was unlikely 
to facilitate heterochromatin formation 
but rather to drive transcription of peri-
centric repeats, thus implicating ATRX in 
transcriptional activation. We highlight 
here that recent evidence points toward 
Daxx as the direct histone chaperone for 
H3.3.29,30 In fact, two structural studies 
resolved Daxx in complex with an H3.3-
containing nucleosome and demonstrated 
that glycine 90, which is unique to H3.3 
(as compared with H3.1 and H3.2), is 
crucial for this interaction.31,32

While future studies will allow a bet-
ter understanding of the role of ATRX in 
heterochromatin regulation, a potential 
model begins to emerge from these stud-
ies. In the case of telomeres, ATRX assists 
Daxx in H3.3 deposition potentially to 

ATRX and Histone H3 Interactions

ATRX has been linked to histone variant 
regulation by Choo and colleagues, who 
described the co-localization of ATRX 
and H3.3 at telomeres in mouse embry-
onic stem cells (ESCs).14,24 This work also 
reported the loss of ATRX from telomeres 
upon differentiation concomitant with an 
increase of heterochromatic histone modi-
fications, suggesting that ATRX facilitates 
a euchromatic state at telomeres.14,24 Their 
work also showed that lysine 4 (K4) of 
H3.3 is critical for the in vivo interaction 
between ATRX and H3.3.14 Subsequently, 
three reports emerged describing the direct 
binding of the ADD domain of ATRX to 
H3K9me3 via biochemical and structural 
studies.21-23 This binding was perturbed 
by the transcriptionally active H3K4me3 
modification, suggesting preferential asso-
ciation of ATRX with repressive chroma-
tin. These studies further suggested that 
ATRX localization to heterochromatin 
is contingent upon H3K9me3, and we 
too have observed the in vivo associa-
tion of ATRX with H3K9me3 (K.R. and 
E.B., unpublished data). Hence, the K4 
residue reported to mediate the ATRX 
in vivo interaction by Choo and col-
leagues is likely due to K4 being a criti-
cal residue required for the ADD-H3 tail 
interaction.14,21

Goldberg et al. demonstrated a func-
tional interaction between H3.3 and 
ATRX in mouse ESCs.25 While HIRA 
had been characterized as a histone chap-
erone for H3.3,26 Goldberg et al. observed 

Figure 1. ATRX is a multidomain-containing chromatin remodeler. The ADD domain of ATRX (dark blue box) contains both a GATA-like domain and a 
PHD and “reads” the H3K9me3 modification.6,21-23 We reported the in vivo interaction between the N-terminal 841 amino acids of ATRX with mac-
roH2A1 (dashed red line).19 ATRX interacts with HP1α via a PxVxL motif present in the indicated region (orange box).16 Of note, while the interaction 
between EZH2 and ATRX (hatched blue box) was detected by yeast two hybrid,17 it remains to be seen if this persists in vivo and if indeed the entire 
region depicted is required for this interaction.
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Our studies suggest that ATRX nega-
tively regulates the chromatin association 
of macroH2A, and support the notion 
of ATRX as transcriptional activator. 
Of note, while ATRX regulates H3.3 
deposition via Daxx,29,30 ATRX interacts 
with macroH2A in a Daxx-independent 

between ATRX and macroH2A1, sugges-
tive of an antagonistic relationship (see 
Fig. 2). While ATRX is enriched at TSSs 
of active genes, macroH2A1 is excluded 
from the TSS and enriched upstream 
and/or in the gene bodies of inactive 
genes.12,19

we observed increased levels of mac-
roH2A1 globally and, more specifically, 
at telomeres and the α-globin gene clus-
ter (proximal to human telomere 16). 
This corresponded to decreased α-globin 
expression. Furthermore, we reported 
an exclusive global localization pattern 

Figure 2. Hypothetical models for ATRX-mediated histone exchange and transcriptional activation of the α-globin gene cluster. (A) ATRX facilitates ac-
tivation via the nucleosomal eviction of macroH2A1 and/or the Daxx mediated incorporation of H3.3 into nucleosomes potentially switching between 
“on” and “off” chromatin states. (B) ATRX loads CTCF and resolves repressive G4 DNA structures at tandem repeats (TRs) to permit gene activation at 
the α-globin cluster. Shown is a 50kb UCSC genome browser snapshot of the α-globin cluster. ChIP-sequencing data plots of macroH2A1 (K562 cells, 
green)19 and ATRX (primary erythroblasts, blue)12 are overlaid (scales are 70 and 600 respectively). Below the panel, genes are presented in black, ATRX 
associated tandem repeat tracks in blue and CTCF associated sites from genome wide ChIA-PET analysis (K562 cells)43 in orange. All three CTCF sites 
overlap ATRX peaks and two of these occur at TRs. Of note, the ChIP-sequencing data presented were obtained from cell lines with different expres-
sion levels of α-globin (primary erythroblasts express α-globin at much higher levels than K56257) and the association of macroH2A1 and ATRX with 
the locus are likely reflective of the differences in α-globin transcription between these two cell types.
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the gain- and loss-of-function pheno-
types of XNP using the fly eye, and found 
that both produced the same effect— 
de-repression of silencing.36 Taken 
together, it might appear that ATRX 
maintains a balance between the two 
chromatin states (heterochromatic and 
euchromatic) and changes in its levels, in 
either direction, result in an alteration of 
chromatin structure, possibly in a locus-
specific manner. In this case, a loss of het-
erochromatin was observed.36 While very 
intriguing, a caveat here is that Drosophila 
XNP does not possess an ADD domain,37 
which might confound these studies when 
applied directly to mammalian systems.

ATRX—a Regulator  
of Chromatin Domains?

Kernohan et al. suggested that ATRX is 
involved in the loading of the insulator 
protein, CTCF, onto the H19 gene locus 
in the mouse brain—in ATRX knock out 
cells, a decreased association of the CTCF 
protein was observed.18 The CTCF pro-
tein has long been described to act as a 
barrier between chromatin domains38-40 
and hence its absence could result in 
aberrant spreading and/or deposition of 
histones with opposing transcriptional 
activity.41 Gamble et al. analyzed mac-
roH2A1 genome-wide deposition pattern 
and determined that CTCF is enriched 
at macroH2A1 domain boundaries.42 
Furthermore, the ENCODE genome proj-
ect reveals several sites of overlap between 
ATRX and CTCF at the α-globin cluster 
(Fig. 2).12,43 We question: is the loss of 
H3.3 or the increased deposition of mac-
roH2A1 a product of a defective chro-
matin barrier created in part by aberrant 
CTCF deposition at particular genomic 
loci in an ATRX-deficient background 
(Fig. 2)? Therefore, it will be of interest 
to study alterations to histone deposition 
patterns in ATRX patients. While the 
α-thalassemia phenotype is well charac-
terized to occur via transcriptional altera-
tions at the α-globin cluster, the mental 
retardation aspects of ATRX are poorly 
understood. Studying the genomic altera-
tions of histones and factors that influence 
the chromatin template in ATRX patients 
will likely shed light on additional mecha-
nisms involved in this syndrome.

For example, TRs were reported to be 
at or around the α-globin cluster and the 
absence of ATRX resulted in a distance-
dependent silencing of genes (including 
the α-globin genes). Those genes clos-
est to the TRs were the most severely 
affected. Higgs and colleagues’ model 
proposes that ATRX facilitates transcrip-
tion, indirectly, by binding to and resolv-
ing potentially repressive G4 structures. 
They further hypothesized that this 
involves the incorporation of the variant 
H3.3. It would indeed be interesting to 
test if the incorporation of the variant 
H3.3 and/or the removal of macroH2A 
are involved in the putative helicase-
mediated resolution of G4 structures 
(Fig. 2). While this study points toward 
a role for ATRX in transcriptional activa-
tion, recent reports described below may 
complicate this model or suggest that 
each genomic region has to be assessed 
individually for ATRX function.

Transcriptional Repressor,  
Transcriptional Activator  

or Something in Between?

The ability to visualize ATRX and Daxx 
proteins at an inducible multi-copy trans-
gene array in single cells has allowed anal-
ysis of their role in regulating chromatin 
states.34,35 In the presence of ATRX and 
Daxx, the array is refractory to transcrip-
tional activation and upon induced acti-
vation both proteins are lost, implicating 
them in the maintenance of a repressive 
chromatin state. The array displayed 
robust activation in the ATRX-negative 
U2OS osteosarcoma cell line and addi-
tion of exogenous ATRX resulted in 
reduced transcriptional activation. This 
was ascribed, at least in part, to its heli-
case activity, suggesting that while the 
more N-terminal portion of ATRX recog-
nizes histone modifications and associates 
either directly or indirectly with histone 
variants, its C-terminal helicase domain 
has broader roles in regulating chromatin 
structure. This remodeling activity may 
be dependent on ATRX locus-specific 
protein interactions or association with 
histone variants.

A study performed in Drosophila mela-
nogaster examined the ATRX homolog, 
XNP. Ahmad and colleagues analyzed 

manner.19 We also reported a loss of 
expression of other genes outside of the 
α-globin cluster, suggesting that ATRX 
positively regulates genes in this greater 
genomic region in part by inhibition of 
deposition or through eviction/replace-
ment of macroH2A (Fig. 2). It is now of 
interest to determine the mechanism by 
which ATRX regulates macroH2A depo-
sition, and the H3.3 deposition changes 
that may occur at the α-globin cluster in 
the absence of ATRX. While HIRA was 
suggested to be the primary histone chap-
erone for H3.3 at genic regions in mouse 
ESCs,25 the α-globin cluster is occupied by 
ATRX when actively transcribed, such as 
in primary erythroblasts,12 suggesting that 
ATRX might mediate H3.3 deposition 
here.

We also observed that the N-terminal 
region of ATRX (1–841), containing the 
ADD domain, was sufficient for inter-
action with macroH2A (Fig. 1).19 This 
raises the enticing model that ATRX 
recognizes nucleosomes containing 
H3K9me3 (on H3.1 and H3.2) via its 
ADD domain (Fig. 1) and assists in the 
exchange of macroH2A for H3.3 (via 
Daxx) into nucleosomes at the α-globin 
locus, and other genomic regions such as 
telomeres (Fig. 2). This would promote a 
switch toward open chromatin, and may 
help to reconcile ATRX heterochromatin 
localization with its conflicting role in 
gene activation.

α-Thalassemia Syndrome  
Variability—G Quadruplex  

Structures

While the regulation of histone variant 
deposition by ATRX supports a direct 
role in transcriptional activation, recent 
work from Higgs and colleagues sug-
gested a novel mechanism by which 
ATRX supports activation.12 In a study 
aimed at understanding the variability 
of phenotypes among patients bearing 
the same ATRX gene mutations, ChIP-
sequencing studies revealed that ATRX 
primarily occupies G-rich tandem repeats 
(TRs) which can form G quadruplex 
(G4) DNA structures in vivo. It was 
suggested that the differences in size of 
these TRs among patients contributes to 
the ranges in severity of the syndrome. 
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ATRX was present at the nuclear matrix 
in interphase, but observed along chromo-
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HP1α. The authors suggested dual roles 
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in transcription will lead to the identifi-
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ATRX that have specific binding partners, 
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While an intriguing extrapolation that 
requires testing, the possibility that ATRX 
regulates a more global genome association 
of CTCF (than just the HG19 locus18) is 
particularly enticing. ATRX might then 
be involved in a greater organization of the 
genome than has been previously thought 
potentially via regulation of chromatin 
domains and higher order chromatin 
structure.56

Finally, we imagine that genome-wide 
localization studies of ATRX, as well as 
biochemical analyses in different cell types 
(e.g., erythroid, neuronal, tumor cells) 
will add to our growing knowledge about 
this peculiar helicase and how its function 
goes awry in disease. Does ATRX localize 
to the same genomic regions in erythroid 
cells as it does in neuronal cell types? Does 
ATRX interact with Daxx (and thereby 
H3.3) and macroH2A in all cell types or 
does it exhibit tissue specificity? In ATRX 
mutated tumors that retain nuclear ATRX 
expression or express truncated forms of 
the protein, what does the epigenomic 
landscape look like? How are histone vari-
ants and histone PTMs altered, if at all, 
in the absence of functional ATRX? These 
questions are indeed of critical and timely 
importance.
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Concluding Remarks

The numerous observations pertaining to 
ATRX suggest that we have only begun to 
uncover its roles in transcriptional regu-
lation, and we look forward to studies 
that resolve the questions we raise herein. 
Moreover, we anticipate exciting new stud-
ies that examine ATRX in the context of 
tumor biology. Curiously, ATRX muta-
tions and deletions have been reported in 
varied tumor types including pancreatic 
neuroendocrine tumors (panNETs), pedi-
atric neuroblastoma and glioblastoma, as 
well as the rare α-thalassemia myelodys-
plasia syndrome (ATMDS).44-51 While the 
mechanism is yet unknown, it is likely that 
ATRX mutations in the context of tumor 
biology are distinct to those in ATRX syn-
drome, as patients with ATRX syndrome 
have not been reported to be pre-disposed 
to the afore mentioned tumors.44-52

Given the discussion here, we hypoth-
esize that ATRX mutations are directly 
involved in tumorigenesis via alterations 
at the chromatin level and genome-wide 
analyses of histone variant deposition and 
histone post-translational modifications 
(PTMs) in the context of these tumors 
will elucidate whether this is indeed the 
case. ATRX has also been implicated 
in sister chromatid cohesion and muta-
tions to ATRX potentially contribute to 
tumorigenesis via aberrant chromosome 
dynamics.53 As there are apparent roles for 
ATRX in telomere homeostasis,14,19,25,54 it 
is now of interest to determine the pertur-
bations to histones, particularly H3.3 and 
macroH2A, in the absence of functional 
ATRX and if/how this might contribute 
to tumorigenesis via telomere dysfunction. 
Additionally, ATRX has been shown to 
localize to promyelocytic leukemia (PML) 
nuclear bodies, together with Daxx,27 and 
while it is unclear if there is a connection 
between PML bodies and histone regula-
tion, a full understanding of the varied cel-
lular roles of ATRX will certainly involve 
delineating its connection to PML bodies.

ATRX has been directly linked to 
repression in some cases, while in oth-
ers it appears to be intimately associated 
with gene activation. Work from Berube 
and colleagues reported phosphorylation-
dependent changes to ATRX localiza-
tion during the cell cycle.55 In particular, 
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