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REVIEW review

Introduction

Due to their abundance in nature and presence in living organ-
isms, calcium apatites[a] and other calcium orthophosphates 
remain the chemical compounds of a special interest in many 
fields of science, including geology, chemistry, biology and medi-
cine. Due to big problems with access to the scientific literature 
published in the 19th century and before, a historical descrip-
tion of the subject appears to be very brief. Namely, according to 
the accessible literature,1 as early as the end of the 18th century, 
French chemist Joseph-Louis Proust (1754–1826) and German 
chemist Martin Klaproth (1743–1817) proposed that calcium 
apatite was the major inorganic component of bones. In the 
middle of the 19th century, attempts to establish the chemical 
composition of calcium apatites and other calcium orthophos-
phates were performed by J. Berzelius,2 R. Warington Jr.3 and R. 
Fresenius.4 The chemical formula of perfectly transparent crys-
tals of natural fluorapatite (FA) as Ca

5
(PO

4
)

3
F was established in 
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The present overview is intended to point the readers’ attention 
to the important subject of calcium orthophosphates. 
This type of materials is of special significance for human 
beings, because they represent the inorganic part of 
major normal (bones, teeth and antlers) and pathological  
(i.e., those appearing due to various diseases) calcified tissues 
of mammals. For example, atherosclerosis results in blood 
vessel blockage caused by a solid composite of cholesterol 
with calcium orthophosphates, while dental caries and 
osteoporosis mean a partial decalcification of teeth and bones, 
respectively, that results in replacement of a less soluble and 
harder biological apatite by more soluble and softer calcium 
hydrogenphosphates. Therefore, the processes of both normal 
and pathological calcifications are just an in vivo crystallization 
of calcium orthophosphates. Similarly, dental caries and 
osteoporosis might be considered an in vivo dissolution of 
calcium orthophosphates. Thus, calcium orthophosphates 
hold a great significance for humankind, and in this paper an 
overview on the current knowledge on this subject is provided.
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1873,5 while the crystallographic faces of a natural calcium apa-
tite were described in 1883.6 Furthermore, a paper on a behavior 
of an undisclosed calcium orthophosphate in organisms of carni-
vores was published in 1883.7 Further, the quantitative analysis 
of a calcium orthophosphate was performed in 1884,8 followed 
by remarks by C. Glaser in 1885.9 In the 1880s, occurrence of 
a calcium apatite10 and another calcium orthophosphate11-13 in a 
metallurgical slag was discovered. Chemical reactions between 
calcium orthophosphates and other chemicals were investigated 
in 1891.14 Research papers on bone repairing are known since at 
least 1892,15 while the earliest well-documented systematic stud-
ies of calcium orthophosphates were performed at the beginning 
of the 20th century by F.K. Cameron with coworkers16-20 and 
H. Bassett.21-24 The majority of the aforementioned researchers 
already operated with individual chemical compounds.

By definition, all calcium orthophosphates consist of three 
major chemical elements, calcium (oxidation state +2), phos-
phorus (oxidation state +5) and oxygen (reduction state -2), as 
a part of orthophosphate anions. These three chemical elements 
are present in abundance on the surface of our planet: oxygen 
is the most widespread chemical element of the Earth’s sur-
face (~47 mass%), calcium occupies the fifth place (~3.3–3.4 
mass%) and phosphorus (~0.08–0.12 mass%) is among the first 
20 of the chemical elements most widespread on our planet.25 
In addition, the chemical composition of many calcium ortho-
phosphates includes hydrogen, as an acidic orthophosphate 
anion (for example, HPO

4
2- or H

2
PO

4
-); hydroxide [for exam-

ple, Ca
10

(PO
4
)

6
(OH)

2
] and/or incorporated water (for example, 

CaHPO
4
·2H

2
O). Diverse combinations of CaO and P

2
O

5
 (both 

in the presence of water and without it) provide a large variety 
of calcium phosphates, which are distinguished by the type of 
the phosphate anion: ortho-(PO

4
3-), meta-(PO

3
-), pyro-(P

2
O

7
4-) 

and poly-[(PO
3
)

n
n-]. In the case of multi-charged anions (ortho-

phosphates and pyrophosphates), calcium phosphates are also 
differentiated by the number of hydrogen ions attached to the 
anion. Examples include mono-[Ca(H

2
PO

4
)

2
], di-(CaHPO

4
), 

tri-[Ca
3
(PO

4
)

2
] and tetra-(Ca

2
P

2
O

7
) calcium phosphates (here, 

prefixes “mono,” “di,” “tri” and “tetra” are related to the amount 
of hydrogen ions replaced by calcium).26-28 However, only cal-
cium orthophosphates will be considered and discussed in this 
review. The names, standard abbreviations, chemical formulae 
and solubility values are listed in Table 1.29,30 Since all of them 
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produced by biomineralization (Fig. 1).42 Thus, due to a sedi-
mentary origin, both the general appearance and the chemical 
composition of natural phosphorites vary a great deal.43,44 It is 
common practice to consider francolite (or carbonate-hydroxy-
fluorapatite regarded as its synonym) as the basic phosphorite 
mineral.40,45-49 A cryptocrystalline (almost amorphous) variety 
of francolite (partly of a biological origin) is called collophane 
(synonyms: collophanit, collophanita, collophanite, grodnolite, 
kollophan).50-52 It occurs in natural phosphorites predominantly 
as fossil bones and phosphatized microbial pseudomorphs: 
phosphatic crusts of chasmolithic biofilms (or microstromato-
lites) and globular clusters with intra-particular porosities.53-56 
Natural phosphorites (therefore, francolite and collophane as 
well) occur in various forms, such as nodules, crystals or masses. 
Occasionally, other types of natural calcium orthophosphates are 
found as minerals, for example, clinohydroxylapatite,57 staffelite 
(synonyms: staffelit, staffelita) belonging to carbonate-rich flu-
orapatites (chemical formula: Ca

5
[(F,O)(PO

4
,CO

3
)

3
]) 4,58 and 

DCPD.59 Furthermore, calcium orthophosphates were found in 
meteoric stones.60 The world deposits of natural calcium ortho-
phosphates are estimated to exceed 150 billion tons, out of which 
approximately 85% belong to phosphorites and the remaining 
~15% belong to apatites.40

Natural calcium orthophosphates occur in most geo-
logical environments, usually as accessory minerals (<5%). 
Concentrations sufficient for economic use (>15%) are also 

belong to calcium orthophosphates, strictly speaking, all abbre-
viations in Table 1 are incorrect; however, they are extensively 
used in the literature, and there is no need to modify them.

The atomic arrangement of calcium orthophosphates is built 
up around a network of orthophosphate (PO

4
) groups, which 

gives stability to the entire structure. The majority of calcium 
orthophosphates are sparingly soluble in water; however, all of 
them are easily soluble in acids but insoluble in alkaline solutions. 
All chemically pure calcium orthophosphates are crystals of white 
color and moderate hardness. However, natural minerals of cal-
cium orthophosphates are always colored due to impurities, the 
most widespread of which are ions of Fe, Mn and rare earth ele-
ments.33,34 Biologically formed calcium orthophosphates are the 
major component of all mammalian calcified tissues,35 while the 
natural ones are the major raw material to produce phosphorus- 
containing fertilizers.36-39

Geological and Biological Occurrences

Geologically, natural calcium orthophosphates are found in 
different regions mostly as deposits of apatites (belong to igne-
ous rocks), mainly as natural FA or phosphorites (a sedimen-
tary rock).37-40 Some types of sedimentary rocks can be formed 
by weathering of igneous rocks into smaller particles.41 Other 
types of sedimentary rocks can be composed of minerals precipi-
tated from the dissolution products of igneous rocks or minerals 

Table 1. Existing calcium orthophosphates and their major properties30,31

Ca/P molar 
ratio

Compound Formula
Solubility at 
25°C, -log(Ks)

Solubility at 
25°C, g/L

pH stability range  
in aqueous  

solutions at 25°C

0.5
Monocalcium phosphate monohydrate 

(MCPM)
Ca(H2PO4)2·H2O 1.14 ~18 0.0–2.0

0.5
Monocalcium phosphate anhydrous (MCPA 

or MCP)
Ca(H2PO4)2 1.14 ~17 c

1.0
Dicalcium phosphate dihydrate (DCPD), 

mineral brushite
CaHPO4·2H2O 6.59 ~0.088 2.0–6.0

1.0
Dicalcium phosphate anhydrous (DCPA or 

DCP), mineral monetite
CaHPO4 6.90 ~0.048 c

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4·5H2O 96.6 ~0.0081 5.5–7.0

1.5 α-Tricalcium phosphate (α-TCP) α-Ca3(PO4)2 25.5 ~0.0025 a

1.5 β-Tricalcium phosphate (β-TCP) β-Ca3(PO4)2 28.9 ~0.0005 a

1.2–2.2 Amorphous calcium phosphates (ACP)
CaxHy(PO4)z·nH2O, n = 3 - 4.5; 

15 - 20% H2O
b b ~5–12d

1.5–1.67
Calcium-deficient hydroxyapatite (CDHA or 

Ca-def HA)e

Ca10-x(HPO4)x(PO4)6-x(OH)2-x (0 
< x < 1)

~85 ~0.0094 6.5–9.5

1.67 Hydroxyapatite (HA, HAp or OHAp) Ca10(PO4)6(OH)2 116.8 ~0.0003 9.5–12

1.67 Fluorapatite (FA or FAp) Ca10(PO4)6F2 120.0 ~0.0002 7–12

1.67 Oxyapatite (OA, OAp or OXA)f Ca10(PO4)6O ~69 ~0.087 a

2.0
Tetracalcium phosphate (TTCP or TetCP), 

mineral hilgenstockite
Ca4(PO4)2O 38–44 ~0.0007 a

aThese compounds cannot be precipitated from aqueous solutions. bCannot be measured precisely. However, the following values were found:  
25.7 ± 0.1 (pH = 7.40), 29.9 ± 0.1 (pH = 6.00), 32.7 ± 0.1 (pH = 5.28).236 The comparative extent of dissolution in acidic buffer is: ACP >> α-TCP >> β-TCP 
> CDHA >> HA > FA.107 cStable at temperatures above 100°C. dAlways metastable. eOccasionally, it is called “precipitated HA (PHA).” fExistence of OA 
remains questionable.
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orthophosphates. Structurally, they occur mainly in the form of 
poorly crystalline, non-stoichiometric, calcium-deficient, Na-, 
Mg- and carbonate-containing HA [often called “biological apa-
tite”90-94 (which might be abbreviated as BAp95,96), bioapatite97-100 
or dahllite.[b],101 The main constituents of human bones are cal-
cium orthophosphates (~60–70 wt%), collagen[c] (~20–30 wt%) 
and water (up to 10 wt%).32,88,97-99,101,102 Detailed information on 
the chemical composition of the most important human normal 
calcified tissues can be found in Table 2. One should note that 
the values mentioned in Table 2 are approximate; the main con-
stituents can vary by one percent or more.106

The Members of the Calcium Orthophosphate Family

In the ternary aqueous system Ca(OH)
2
-H

3
PO

4
-H

2
O (or CaO-

P
2
O

5
-H

2
O),107-109 there are 12 known non-ion-substituted calcium 

orthophosphates with the Ca/P molar ratio ranging between 0.5 
and 2.0 (Table 1). An anhydrous phase diagram CaO-P

2
O

5
 at 

temperatures within 200–2,200°C is shown in Figure 3.110,111 
Table 3 comprises crystallographic data of the existing calcium 
orthophosphates.27,112-114 The most important parameters of cal-
cium orthophosphates are the ionic Ca/P ratio, basicity/acidity 
and solubility. All these parameters strongly correlate with the 
solution pH. The lower the Ca/P molar ratio is, the more acidic 
and water-soluble the calcium orthophosphate is.26-28 One can see 
that the solubility ranges from high values for acidic compounds, 
such as MCPM, to very low values for basic compounds, such as 
apatites, which allows calcium orthophosphates to be dissolved, 
transported from one place to another and precipitated when 
necessary. Crystallization, dissolution and phase transformation 
processes of different calcium orthophosphates under various 
experimental conditions have been reviewed recently in reference 
115.

Due to the triprotic equilibrium that exists within orthophos-
phate-containing solutions, variations in pH alter the relative 
concentrations of the four polymorphs of orthophosphoric acid 
(Fig. 4)116 and, thus, both the chemical composition (Fig. 5)117 
and the amount of the calcium orthophosphates that are formed 

available. The largest world deposits of natural apatites are located 
in Russia (the Khibiny and Kovdor massifs, Kola peninsula61,62), 
Brazil and Zambia, while the largest world deposits of natural 
phosphorites are located in Morocco, Russia, Kazakhstan, USA 
(Florida, Tennessee), China and Australia, as well as in the 
oceans.36-40 Most of natural calcium orthophosphates occur as 
small polycrystalline structures (spherulitic clusters). Larger crys-
tals are rare.63 They usually have the crystal structure of apatites 
(hexagonal system, space group P6

3
/m). Giant crystals, including 

“a solid but irregular mass of green crystalline apatite, 15 feet 
long and 9 feet wide”64 and a single euhedral crystal from the 
Aetna mine measuring 2.1 x 1.2 min with an estimated weight 
of 6 tons,65 were found. None of them are pure compounds; they 
always contain admixtures of other elements. For example, ions 
of calcium might be partially replaced by Sr, Ba, Mg, Mn, K, 
Na, Fe; ions of orthophosphate may be partly replaced by AsO

4
3-, 

CO
3
2- and VO

4
;2-30,33-66 ions of hydroxide, chloride, bromide, car-

bonate and oxide may, to a certain extent, substitute for fluoride 
in the crystal lattice of natural apatites.48 Furthermore, various 
organic radicals have been found in natural apatites.67,68 In prin-
ciple, the crystal structure of apatites can incorporate half of the 
periodic table in its atomic arrangement. In medicine, this prop-
erty might be used as an antidote for heavy metal intoxication.69 
Ease of atomic substitution for apatite leaves this mineral open 
to a wide array of compositions. This might be related to the 
fact that the apatite structure type displays porous properties.70 
The substitutions in apatites are usually in trace concentrations, 
but large concentrations and even complete solid solutions exist 
for certain substituents (e.g., F- and OH-). To make things even 
more complicated, some ions in the crystal structure may be 
missing, leaving crystallographic defects, which leads to forma-
tion of non-stoichiometric compounds. Figure 2 shows examples 
of polycrystalline and single-crystalline samples of natural FA.

Manufacturing of elementary phosphorus (white and red),71,72 
phosphoric acids,37,73-76 various phosphorus-containing chemi-
cals and, especially, agricultural fertilizers (namely, super-
phosphate,77-79 ammonium orthophosphates80) are the major 
industrial applications of natural calcium orthophosphates. The 
annual consumption of a phosphate rock has approached ~150 
million tons, and about 95 percent of this production is utilized 
in the fertilizer industry.81,82

In biological systems, many organisms, ranging from bacte-
ria and isolated cells to invertebrates and vertebrates, synthesize 
calcium orthophosphates.42 Formation of calcium orthophos-
phates in primitive organisms is believed to enable the storage 
and regulation of essential elements, such as calcium, phospho-
rus and, possibly, magnesium. The morphology of precipitates 
in these organisms (small intracellular nodules of ACP often 
located in mitochondria) complies with the necessity for rapid 
mobilization and intracellular control of the concentration of 
these elements.83 In vertebrates, calcium orthophosphates occur 
as the principal inorganic constituent of normal (bones, teeth, 
fish enameloid, deer antlers and some species of shells) and patho-
logical (dental and urinary calculus and stones, atherosclerotic 
lesions, etc.) calcifications.26,84-89 Except for small portions of the 
inner ear, all hard tissue of the human body is formed of calcium 

Figure 1. Simplified schematic of the phosphorus cycle from apatitic 
igneous rock to phosphorite sedimentary rock through chemical or 
physical weathering. Life forms accumulate soluble phosphorus species 
and can produce apatite through biomineralization. Reprinted from 
reference 42 with permission.
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Figure 2. Polycrystalline (A) and single-crystalline (B) FA of a geological origin. The single crystal has a gray-green color due to incorporated ions of 
transition metals.

Table 2. Comparative composition and structural parameters of inorganic phases of adult human calcified tissues

Composition, wt% Enamel Dentine Cementum Bone HA

Calciuma 36.5 35.1 ~35 34.8 39.6

Phosphorus (as P)a 17.7 16.9 ~16 15.2 18.5

Ca/P (molar ratio)a 1.63 1.61 ~1.65 1.71 1.67

Sodiuma 0.5 0.6 c 0.9 -

Magnesiuma 0.44 1.23 0.5–0.9 0.72 -

Potassiuma 0.08 0.05 c 0.03 -

Carbonate (as CO3
2-)b 3.5 5.6 c 7.4 -

Fluoridea 0.01 0.06 up to 0.9 0.03 -

Chloridea 0.30 0.01 c 0.13 -

Pyrophosphate (as P2O7
4-)b 0.022 0.10 c 0.07 -

Total inorganicb 97 70 60 65 100

Total organicb 1.5 20 25 25 -

Waterb 1.5 10 15 10 -

Crystallographic properties: Lattice parameters (±0.003 Å)

a-axis, Å 9.441 9.421 c 9.41 9.430

c-axis, Å 6.880 6.887 c 6.89 6.891

Crystallinity index (HA = 100) 70–75 33–37 ~30 33–37 100

Typical crystal sizes (nm) [454, 544, 546] 100 µm x 50 x 50 35 x 25 x 4 c 50 x 25 x 4 200–600

Ignition products (800°C) β-TCP + HA β-TCP + HA β-TCP + HA HA + CaO HA

Elastic modulus (GPa) 80 23.8 ± 3.7 15.0 ± 3.6 0.34–13.8 10

Tensile strength (MPa) 10 100 c 150 100

Due to the considerable variation found in biological samples, typical values are given in these cases.27,107 aAshed samples. bUnashed samples.  
cNumerical values were not found in the literature but they should be similar to those for dentine.
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Besides, MCPM might be fabricated by a simple precipitation 
method using CaCO

3
 and H

3
PO

4
 in aqueous and acetone media 

at ambient temperature.123 At temperatures above ~100°C it 
releases a molecule of water and transforms into MCPA. Due to 
high acidity and solubility, MCPM is never found in biological 
calcifications. Moreover, pure MCPM is not biocompatible[d] with 
bones.124 However, in medicine, MCPM is used as a component 
of several self-hardening calcium orthophosphate cements.125-128 
In addition, MCPM is used as a nutrient, acidulant and mineral 
supplement for dry baking powders, food, feed and some bever-
ages.129,130 Coupled with NaHCO

3
, MCPM is used as a leavening 

agent for both dry baking powders and bakery dough. MCPM 
might be added to salt-curing preserves, pickled and marinated 
foods. According to the European classification of food addi-
tives, MCPM is marked as E341 additive. Occasionally, MCPM 
is added to toothpastes. MCPM might also be added to ceramics 
and glasses, while agriculture is the main consumer of a techni-
cal-grade MCPM, where it is used as a fertilizer.37,129

MCPA (or MCP). Monocalcium phosphate anhydrous 
[Ca(H

2
PO

4
)

2
; the IUPAC name is calcium dihydrogen ortho-

phosphate anhydrous] is the anhydrous form of MCPM. It 

by a direct precipitation. The solubility isotherms of different 
calcium orthophosphates are shown in Figure 6.27,28,108,109,118-121 
However, recently, the classic solubility data of calcium ortho-
phosphates27,28,108,109,118-121 were mentioned to be inappropriate.122 
According to the authors of the latter study, all previous solubility 
calculations were based on simplifications that are only crudely 
approximate. The problem lies in incongruent dissolution, lead-
ing to phase transformations and lack of the detailed solution 
equilibria. Using an absolute solid-titration approach, the true 
solubility isotherm of HA was found to lie substantially lower 
than previously reported. In addition, contrary to wide belief, 
DCPD appeared not to be the most stable phase below pH ~4.2, 
where CDHA is less soluble.122

A brief description of all known calcium orthophosphates 
(Table 1) is given below.

MCPM. Monocalcium phosphate monohydrate 
[Ca(H

2
PO

4
)

2
·H

2
O; the IUPAC name is calcium dihydrogen 

orthophosphate monohydrate] is both the most acidic and the 
most water-soluble compound. It precipitates from highly acidic 
solutions that are normally used in the industry of phosphorus-
containing fertilizer production (“triple superphosphate”).37 

Figure 3. Phase diagram of the system CaO-P2O5 (C = CaO, p = P2O5) at elevated temperatures. Here: C7P5 means 7CaO·5P2O5; other abbreviations 
should be written out in the same manner. Reprinted from references 110 and 111 with permission.
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HA being the first precipitated phase.132,133 Alternatively, 
DCPD might be prepared in gels.134,135 DCPD trans-
forms into DCPA at temperatures above ~80°C, and 
this transformation is accompanied by ~11% decrease in 
volume136 and structural changes.137 The value for Δ

r
G0 

for DCPD → DCPA transformation is -1.032 kJ/mol.137 
Briefly, DCPD crystals consist of CaPO

4
 chains arranged 

parallel to each other, while lattice water molecules are 
interlayered between them. Using surface X-ray diffrac-
tion, Arsic et al. determined the atomic structure of the 
{010} interface of DCPD with water.138,139 Since DCPD 
contains water layers as part of its crystal structure, spe-
cial ordering properties at the interface are expected. 
This interface consists of two water bilayers with differ-
ent ordering properties. The first is highly ordered and 
can be considered as part of the DCPD crystal structure. 
Surprisingly, the second water bilayer exhibits no in-
plane order, but shows only layering in the perpendicu-
lar direction. It has been proposed that the low level of 
water ordering at the interface is correlated with the low 
solubility of DCPD in water.139 Recently, data on DCPD 

solubility have been updated by solid titration technique.140 The 
optical properties of DCPD are well described in reference 141, 
while many additional data on DCPD as well as a good picture of 
DCPD atomic structure are available in the literature.142

DCPD is of biological importance, because it is often found 
in pathological calcifications (dental calculi, crystalluria, chon-
drocalcinosis and urinary stones) and some carious lesions.26,84-86 
It has been proposed as an intermediate in both bone mineral-
ization and dissolution of enamel in acids (dental erosion).26,84,85 
In medicine, DCPD is used in calcium orthophosphate 
cements126,143-146 and as an intermediate for tooth remineraliza-
tion. DCPD is added to toothpaste both for caries protection (in 
this case, it is coupled with F-containing compounds such as NaF 
and/or Na

2
PO

3
F) and as a gentle polishing agent.147-151 Other 

crystallizes under the same conditions as MCPM but at tem-
peratures above ~100°C (e.g., from highly concentrated mother 
liquors during fertilizer production). Like MCPM, MCPA never 
appears in calcified tissues, and it is not biocompatible due to its 
acidity. There is no current application of MCPA in medicine. 
Due to its similarity with MCPM, in many cases, MCPA might 
be used instead of MCPM;37,129 however, highly hydroscopic 
properties of MCPA reduce its commercial application.

DCPD. Dicalcium phosphate dihydrate (CaHPO
4
·2H

2
O; 

the IUPAC name is calcium hydrogen orthophosphate dihy-
drate; the mineral brushite131) can be easily crystallized from 
aqueous solutions at ~2.0 < pH < ~6.5. Interestingly, precipitation 
of DCPD by mixing a Ca(OH)

2
 suspension and a H

3
PO

4
 solu-

tion in the equimolar quantities was found to occur in five stages; 

Table 3. Crystallographic data of calcium orthophosphates27,112,113

Compound Space group Unit cell parameters Za Density, g cm-3

MCPM triclinic P
a = 5.6261(5), b = 11.889(2), c = 6.4731(8) Å, 
α = 98.633(6)°, β = 118.262(6)°, γ = 83.344(6)°

2 2.23

MCPA triclinic P
a = 7.5577(5), b = 8.2531(6), c = 5.5504(3) Å, 
α = 109.87(1)°, β = 93.68(1)°, γ = 109.15(1)°

2 2.58

DCPD monoclinicIa a = 5.812(2), b = 15.180(3), c = 6.239(2) Å, β = 116.42(3)° 4 2.32

DCPA triclinic P
a = 6.910(1), b = 6.627(2), c = 6.998(2) Å, 
α = 96.34(2)°, β = 103.82(2)°, γ = 88.33(2)°

4 2.89

OCP triclinic P a = 19.692(4), b = 9.523(2), c = 6.835(2) Å, α = 90.15(2)°, β = 92.54(2)°, γ = 108.65(1)° 1 2.61

α-TCP monoclinic P21/a a = 12.887(2), b = 27.280(4), c = 15.219(2) Å, β = 126.20(1)° 24 2.86

β-TCP rhombohedral R3cH a = b = 10.4183(5), c = 37.3464(23) Å, γ = 120° 21b 3.08

HA
monoclinic P21/b 

or hexagonal P63/m
a = 9.84214(8), b = 2a, c = 6.8814(7) Å, γ = 120° (monoclinic)  

a = b = 9.4302(5), c = 6.8911(2) Å, γ = 120° (hexagonal)
4

2
3.16

FA hexagonal P63/m a = b = 9.367, c = 6.884 Å, γ = 120° 2 3.20

OA hexagonal P a = b = 9.432, c = 6.881 Å, α = 90.3°, β = 90.0°, γ = 119.9° 1 ~3.2

TTCP monoclinic P21 a = 7.023(1), b = 11.986(4), c = 9.473(2) Å, β = 90.90(1)° 4 3.05
aNumber of formula units per unit cell. bPer the hexagonal unit cell.

Figure 4. pH variation of ionic concentrations in triprotic equilibrium for phos-
phoric acid solutions. Reprinted from reference 116 with permission.

1

1

1

1

6
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arrangements of calcium and orthophosphate ions similar 
to those in DCPD).26-28,177,178 A similarity in crystal structure 
between OCP and HA179,180 is one reason that the epitaxial 
growth of these phases is observed. Morphologically, OCP crys-
tallizes as {100} blades of triclinic pinacoidal symmetry elon-
gated along the a-axis and bordered by the forms {010}, {001} 
and {011}. It is generally assumed that in solutions, the hydrated 
layer of the (100) face is the layer most likely exposed to solu-
tion. The water content of OCP crystals is about 20% that of 
DCPD, and this is partly responsible for its lower solubility. 
New data on OCP solubility have been published recently in 
reference 181.

OCP is of a great biological importance, because it is one of 
the stable components of human dental and urinary calculi.182-185 
OCP was first proposed by W.E. Brown to participate as the 
initial phase in enamel mineral formation and bone formation 
through subsequent precipitation and stepwise hydrolysis of 
OCP.179,180,186 It plays an important role in in vivo formation of 
apatitic biominerals. A “central OCP inclusion” (also known as 
“central dark line”) is seen by transmission electron microscopy 
in many biological apatites and in some synthetically precipi-
tated HA.187-191 Although OCP has not been observed in vascu-
lar calcifications, it has been strongly suggested as a precursor 
phase to biological apatite found in natural and prosthetic heart 
valves.192,193 In surgery, OCP is used for implantation into bone 
defects.194-200 For comprehensive information on OCP, the read-
ers are referred to other reviews in references 174 and 184.

β-TCP. β-tricalcium phosphate [β-Ca
3
(PO

4
)

2
; the IUPAC 

name is tricalcium diorthophosphate β; other names are calcium 
orthophosphate tribasic β or tricalcium bis(orthophosphate) β] 
cannot be precipitated from aqueous solutions. It is a high tem-
perature phase, which can be prepared at temperatures above 

applications include a flame retardant,152 a 
slow-release fertilizer, use in glass production 
as well as a calcium supplement in food, feed 
and cereals.129 The importance of DCPD as 
a constituent of infant’s food was discovered 
as early as in 1917.153 In the food industry, 
it serves as a texturizer, bakery improver and 
water retention additive. In the dairy indus-
try, DCPD is used as a mineral supplement. 
If added to food products, DCPD should be 
marked as E341 according to the European 
classification of food additives. In addition, 
plate-like crystals of DCPD might be used 
as a non-toxic, anticorrosive and passivating 
pigment for some ground coat paints.

DCPA (or DCP). Dicalcium phosphate 
anhydrous (CaHPO

4
; the IUPAC name is 

calcium hydrogen orthophosphate anhy-
drate, the mineral monetite154) is the anhy-
drous form of DCPD. It is less soluble than 
DCPD due to the absence of water inclu-
sions. Like DCPD, DCPA can be crystallized 
from aqueous solutions but at temperatures 
~100°C. Furthermore, it might be prepared 
at room temperature in gels,134 ethanol155 as well as in oil-in-water 
and water-in-oil systems.156 DCPA is physically stable and resisted 
hydration even when dispersed in water for over 7 mo in the tem-
perature range of 4–50°C.157 A calcium-deficient DCPA was pre-
pared recently. It might be sintered at ~300°C.158 Unlike DCPD, 
DCPA occurs in neither normal nor pathological calcifications. 
It is used in calcium orthophosphate cements.145,159-166 Besides, 
DCPA might be implanted.167 Other applications include use as 
a polishing agent, a source of calcium and phosphate in nutri-
tional supplements (e.g., in prepared breakfast cereals, enriched 
flour and noodle products), a tabletting aid168 and a toothpaste 
component.129 In addition, it is used as a dough conditioner in 
the food industry.

OCP. Octacalcium phosphate [Ca
8
(HPO

4
)

2
(PO

4
)

4
·5H

2
O; 

the IUPAC name is tetracalcium hydrogen orthophosphate 
diorthophosphate pentahydrate; another name is octacalcium 
bis(hydrogenphosphate) tetrakis(phosphate) pentahydrate] is 
often found as an unstable transient intermediate during the 
precipitation of the thermodynamically more stable calcium 
orthophosphates (e.g., CDHA) in aqueous solutions. Its prepa-
ration technique might be found in references 169–174. A par-
tially hydrolyzed form of OCP with Ca/P molar ratio of 1.37 
might be prepared as well.174,175 The full hydrolysis of OCP into 
CDHA occurs within ~6 h.173 Furthermore, OCP might be 
non-stoichiometric and be either Ca-deficient (Ca/p = 1.26) or 
include excessive calcium (up to Ca/p = 1.48) in the structure.174 
Ion-substituted OCP might be prepared as well.176 Crystals of 
OCP are typically small, extremely platy and almost invariably 
twinned.

The triclinic structure of OCP displays apatitic layers (with 
atomic arrangements of calcium and orthophosphate ions simi-
lar to those of HA) separated by hydrated layers (with atomic 

Figure 5. Various calcium orthophosphates obtained by neutralizing of orthophosphoric acid. 
Ca/P are reported in the figure. The solubility of calcium orthophosphates in water decreases 
drastically from left to right, HA being the most insoluble and stable phase. Reprinted from 
reference 117 with permission.
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800°C by thermal decomposition of CDHA or by solid-state 
interaction of acidic calcium orthophosphates, e.g., DCPA, with 
a base, e.g., CaO. However, β-TCP can be obtained at a relatively 
low temperature (150°C) by precipitation in organic medium, 
such as ethylene glycol.201,202 Apart from the chemical prepara-
tion routes, ion-substituted β-TCP can be prepared by calcining 
of bones;203 such a type of β-TCP is occasionally called “bone 
ash.” In β-TCP, there are three types of crystallographically non-
equivalent PO

4
3- groups located at general points of the crystal, 

each type with different intratetrahedral bond lengths and angles. 
At temperatures above ~1,125°C, β-TCP is transformed into a 
high-temperature phase α-TCP. Being the stable phase at room 
temperature, β-TCP is less soluble in water than α-TCP (Table 
1). Furthermore, the ideal β-TCP structure contains calcium ion 
vacancies that are too small to accommodate calcium ions but 
allow for the inclusion of magnesium ions, which thereby stabi-
lize the structures.204,205 Both ion-substituted206-209 and organi-
cally modified210-212 forms of β-TCP can be synthesized as well. 
The maximum substitution of Mg2+ in β-TCP was found to cor-
respond to the Ca

2.61
[Mg(1)

0.28
,Mg(2)

0.11
](PO

4
)

2
 stoichiometric 

equation.209 The modern structural data on β-TCP are available 
in references 213–215; those on Vicker’s and Knoop microhard-
ness studies might be found if reference 216, while solubility data 
can be found in reference 217. Furthermore, the ability of β-TCP 
to store an electrical charge by electrical polarization was studied, 
and this material was found to have a suitable composition and 
structure for both ion conduction and charge storage.218

Pure β-TCP never occurs in biological calcifications. Only 
the Mg-substituted form, called whitlockite[e] [β-TCMP-β-
tricalcium magnesium phosphate, β-(Ca,Mg)

3
(PO

4
)

2
], is found 

in dental calculi and urinary stones, dentineal caries, salivary 
stones, arthritic cartilage as well as in some soft tissue depos-
its.26,84-86,219-222 However, it has not been observed in enamel, 
dentine or bone. In biomedicine, β-TCP is used in calcium 
orthophosphate bone cements31,223-227 and other types of bone 
substitution bioceramics.203,228-235 Dental applications of β-TCP 
are also known.236 Pure β-TCP is added to some brands of tooth-
paste as a gentle polishing agent. Multivitamin complexes with 
calcium orthophosphate are widely available in the market, and 
β-TCP is used as the calcium phosphate there. In addition, 
β-TCP serves as a texturizer, bakery improver and anti-clumping 
agent for dry powdered food (flour, milk powder, dried cream, 
cocoa powder). Besides, β-TCP is added as a dietary or mineral 
supplement to food and feed, where it is marked as E341 accord-
ing to the European classification of food additives. A prenatal 
development of rats during gestation was found to be sensitive to 
E341 (TCP) exposure.237 There is a good review on the toxicolog-
ical properties of inorganic phosphates, where the interested read-
ers are referred.238 Occasionally, β-TCP might be used as inert 
filler in pelleted drugs. Other applications comprise porcelains, 
pottery, enamel, use as a component for mordants and ackey as 
well as a polymer stabilizer.129 β-TCP of a technical grade (as 
either calcined natural phosphorites or bone dust) is used as a 
slow-release fertilizer for acidic soils.37

α-TCP. α-tricalcium phosphate [α-Ca
3
(PO

4
)

2
; the IUPAC 

name is tricalcium diorthophosphate α; other names are calcium 

Figure 6. Top: a 3D version of the classical solubility phase diagrams 
for the ternary system Ca(OH)2-H3PO4-H2O. Reprinted from reference 
118 with permission. Middle and bottom: solubility phase diagrams in 
two-dimensional graphs, showing two logarithms of the concentra-
tions of (a) calcium and (b) orthophosphate ions as a function of the pH 
in solutions saturated with various salts. Reprinted from reference 119 
with permission.
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orthophosphates in aqueous systems. Usually, an ACP is the first 
phase precipitated from a supersaturated solution prepared by 
rapid mixing of solutions containing ions of calcium and ortho-
phosphate;27,259-264 however, other production techniques are 
known. ACPs are thought to be formed at the beginning of the 
precipitation due to a lower surface energy than that of OCP and 
apatites.260 The amorphization degree of ACPs increases with the 
concentration increasing of Ca- and PO

4
-containing solutions as 

well as at a high solution pH and a low crystallization tempera-
ture. A continuous gentle agitation of as precipitated ACPs in the 
mother solution, especially at elevated temperatures, results in a 
slow recrystallization and formation of better crystalline calcium 
orthophosphates, such as CDHA.26,27 The lifetime of ACPs in 
aqueous solution was reported to be a function of the presence 
of additive molecules and ions, pH, ionic strength and tempera-
ture. Thus, ACPs may persist for appreciable periods and retain 
the amporphous state under some specific experimental condi-
tions.265 The chemical composition of ACPs strongly depends 
on the solution pH and the concentrations of mixing solutions. 
For example, ACPs with Ca/P ratios in the range of 1.18 (pre-
cipitated at solution pH = 6.6) to 1.53 (precipitated at solution 
pH = 11.7)27,266 and even to 2.526,84,85 have been described. The 
presence of poly(ethylene glycol),267 ions of pyrophosphate, car-
bonate and/or magnesium in solution during the crystallization 
promotes formation of ACPs and slows down their further trans-
formation into more crystalline calcium orthophosphates, while 
the presence of fluoride has the opposite effect.26-28,32,268 The solu-
tion-mediated transformation of an ACP to CDHA, which can 
be described by a “first-order” rate law, is a function only of the 
solution pH and depends upon the experimental conditions that 
regulate both the dissolution of ACP and the formation of early 
HA nuclei.269

High-temperature ACPs might be prepared using high-energy 
processing at elevated temperatures. This method is based on a 
rapid quenching of melted calcium orthophosphates occurring, 
e.g., during plasma spraying of HA.270-272 A plasma jet, possess-
ing very high temperatures (5,000–20,000°C), partly decom-
poses HA. That results in formation of a complicated mixture 
of products, some of which would be ACPs. Obviously, all types 
of high-temperature ACPs are definitively anhydrous contrary to 
the precipitated ACPs. Unfortunately, no adequate chemical for-
mula is available to describe the high-temperature ACPs.

In general, as all amorphous compounds are characterized by 
a lack of LRO, it is problematic to discuss the structure of ACPs 
(they are X-ray amorphous). Concerning a short-range order 
(SRO) in ACPs, it exists, just due to the nature of chemical bonds. 
Unfortunately, in many cases, the SRO in ACPs is uncertain, 
because it depends on many variables, such as Ca/P ratio, prepa-
ration conditions, storage, admixtures, etc. It is well known that 
freshly precipitated ACPs contain 10–20% by weight of tightly 
bound water, which is removed by vacuum drying at elevated 
temperature.273 Infrared spectra of ACPs show broad feature-
less phosphate absorption bands. Electron microscopy of freshly 
precipitated ACPs usually shows featureless nearly spherical par-
ticles with diameters in the range of 20 to 200 nm. However, 
there is a questionable opinion that ACPs might have an apatitic 

orthophosphate tribasic α or tricalcium bis(orthophosphate) α] 
is usually prepared from β-TCP at heating above ~1,125°C,239 
and it might be considered a high temperature phase of β-TCP. 
However, at the turn of the millennium, the previously for-
gotten data indicating that the presence of silicates stabilized 
α-TCP at lower temperatures of 800–1,000°C240 has been redis-
covered again. Such type of α-TCP is called “silicon-stabilized 
α-TCP”.241-246

Although α-TCP and β-TCP have exactly the same chemical 
composition, they differ in their crystal structure (Table 3) and 
solubility (Table 1). In the absence of humidity, both polymorphs 
of TCP are stable at room temperatures; however, according to a 
density functional study, stability of β-TCP crystal lattice exceeds 
that of α-TCP.214 Therefore, of the two, α-TCP is more reactive 
in aqueous systems, has a higher specific energy, and in aqueous 
solutions, it can be hydrolyzed to CDHA.247-249 Milling was found 
to increase the α-TCP reactivity even more.250 Although, α-TCP 
never occurs in biological calcifications, in medicine, it is used as a 
component of calcium orthophosphate cements.126,143-146,161-163,251-254 
On the other hand, the chemically pure α-TCP has received not 
much interest in the biomedical field.233 The disadvantage for 
using α-TCP is its quick resorption rate (faster than formation of 
a new bone), which limits its application in this area. However, 
the silicon-stabilized α-TCP (more precisely, a biphasic composite 
with HA) has been commercialized as a starting material to pro-
duce bioresorbable porous ceramic scaffolds to be used as artificial 
bone grafts.228,241-245 Upon implantation, α-TCP tends to convert 
to CDHA, which drastically reduces further degradation rate. 
Theoretical insights into bone grafting properties of the silicon-
stabilized α-TCP might be found in reference 255. The structure 
of α-TCP is well-described in the literature,214,215,256 while the 
surface and adsorption properties are available in reference 257. 
Similar to β-TCP, α-TCP of a technical grade might be used in 
slow-release fertilizer for acidic soils.129

To conclude, one should briefly mention the existence of 
α'-TCP phase. However, it lacks a practical interest, because it 
only exists at temperatures above ~1,465 ± 5°C and reverts to 
α-TCP by cooling below the transition temperature.

ACP. Amorphous calcium phosphates (ACPs) represent a 
special class of calcium orthophosphate salts, having variable 
chemical but more or less identical glass-like physical properties, 
in which there are neither translational nor orientational long-
range orders (LRO) of the atomic positions. Until recently,258 
ACP has been considered as an individual chemical compound; 
however, this is just an amorphous state of other calcium ortho-
phosphates. Therefore, in principle, all compounds mentioned 
in Table 1 might be somehow fabricated in an amorphous state, 
but, currently, only a few of them (e.g., an amorphous TCP) are 
known.258 Thus, strictly speaking, ACP should be excluded from 
Table 1.

Depending on the production temperatures, ACPs are divided 
into two major groups: low-temperature ACPs (prepared in aque-
ous solutions) and high-temperature ACPs. Low-temperature 
ACPs [described by the chemical formula Ca

x
H

y
(PO

4
)

z
·nH

2
O, 

n = 3–4.5; 15–20% H
2
O] are often encountered as a tran-

sient precursor phase during precipitation of other calcium 
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and transformed into CDHA.[f] Therefore, there are many simi-
larities in the structure, properties and application between the 
precipitated in alkaline solutions (pH > 8) ACPs and CDHA. 
Recent data indicated on presence of intermediate phases during 
further hydrolysis of CDHA to a more stable HA-like phase.296 
CDHA crystals are poorly crystalline and of submicron dimen-
sions. They have a very large specific surface area, typically 
25–100 m2/g. On heating above ~700°C, dry CDHA with Ca/p 
= 1.5 will convert to β-TCP, and that with 1.5 < Ca/p < 1.67 will 
convert into a biphasic composite of HA and β-TCP (see the 
Biphasic, Triphasic and Multiphasic Calcium Orthophosphate 
Formulations section below).297-308 A reasonable solid-state mech-
anism of a high-temperature transformation of CDHA into BCP 
has been proposed.309,310

The variability in Ca/P molar ratio of CDHA has been 
explained through different models: surface adsorption, lattice 
substitution and intercrystalline mixtures of HA and OCP.311 
Due to a lack of stoichiometry, CDHA usually contains other 
ions.83 The extent depends on the counter-ions of the chemicals 
used for preparation (e.g., Na+, Cl-). Direct determinations of 
the CDHA structures are still missing, and the unit cell param-
eters remain uncertain. However, unlike that in ACPs (see sec-
tion 3.8. ACP above), a LRO exists in CDHA. The following 
lattice parameters were reported for formate (HCO

2
-) contain-

ing CDHA with Ca/p = 1.596 (ionic): a = 9.4729(20) and c = 
6.8855(9) Å. A loss of Ca2+ ions happened exclusively from Ca(2) 
sites, while the PO

4
 tetrahedron volume and P-O bonds were 

~4.4% and ~1.4% smaller, respectively, than those in HA.312

A systematic study of defect constellations in CDHA is avail-
able in literature.313 As a first approximation, CDHA may be 
considered as HA with some ions missing.314 The more calcium 
is deficient, the more disorder and imperfections are in CDHA 
structure.315 Furthermore, a direct correlation between Ca defi-
ciency and the mechanical properties of the crystals was found: 
calcium deficiency lead to an 80% reduction in the hardness and 
elastic modulus and at least a 75% reduction in toughness in 
plate-shaped HA crystals.316 According to the chemical formula 
of CDHA (Table 1), there are vacancies of Ca2+ [mainly on Ca(2) 
sites] and OH- ions in crystal structure of this compound.312,314-319 
However, due to Ca2+ vacancies in CDHA, the resulting nega-
tive charge might be compensated by protonation of both an 
OH- ion within the deficient calcium-triangle and a PO

4
3- ion 

in the nearest neighborhood of the vacant calcium site. This 
results in the presence of some water in the CDHA structure: 
Ca

10-x
(HPO

4
)

x
(PO

4
)

6-x
(OH)

2-x
(H

2
O)

x
 (0 < x < 1).313 According 

to this approach, there are no hydroxide vacancies in CDHA, 
just a portion of OH- ions are substituted by water molecules. 
Concerning possible vacancies of orthophosphate ions, nothing 
is known about their presence in CDHA. It is considered that a 
portion of PO

4
3- ions is either protonated (as HPO

4
2-) or substi-

tuted by other ions (e.g., CO
3
2-).320 Theoretical investigations of 

the defect formation mechanism relevant to non-stoichiometry 
in CDHA are available in reference 321.

Unsubstituted CDHA (i.e., that containing ions of Ca2+, 
PO

4
3-, HPO

4
2- and OH- only) does not exist in biological sys-

tems. However, the ion substituted CDHA, Na+, K+, Mg2+, Sr2+ 

structure but with a crystal size so small that they are X-ray amor-
phous. This is supported by X-ray absorption spectroscopic data 
(EXAFS) on biogenic and synthetic samples.274-277 On the other 
hand, it was proposed that the basic structural unit of the pre-
cipitated ACPs is a 9.5 Å diameter, roughly spherical cluster of 
ions with the composition of Ca

9
(PO

4
)

6
 (Fig. 7).27,266,278,279 These 

clusters were found experimentally, first as nuclei during the crys-
tallization of CDHA, and a model was developed to describe the 
crystallization of HA as a step-wise assembly of these units280 [see 
section 3.10. HA (or HAp or OHAp) below]. Biologically, ion-
substituted ACPs (always containing ions of Na, Mg, carbonate 
and pyrophosphate) are found in soft-tissue pathological calcifi-
cations (e.g., heart valve calcifications of uremic patients).26,84-86

In medicine, pure ACPs are used in calcium orthophosphate 
cements143-145 and as a filling material in dentistry.258 Bioactive 
composites of ACPs with polymers have properties suitable for 
use in dentistry281-284 and surgery.285-288 Due to a reasonable solu-
bility and physiological pH of aqueous solutions, ACP appeared 
to be consumable by some microorganisms, and for this reason, it 
might be added as a mineral supplement to culture media. Non-
biomedical applications of ACPs comprise their use as a compo-
nent for mordants and ackey. In the food industry, ACPs are used 
for syrup clearing. Occasionally, they might be used as inert filler 
in pelleted drugs. In addition, ACPs are used in glass and pottery 
production and as a raw material for production of some organic 
phosphates. To get further details on ACPs, the readers are 
referred to special reviews in references 258, 279, 289 and 290.

CDHA (or Ca-def HA). Calcium-deficient hydroxyapatite 
[Ca

10-x
(HPO

4
)

x
(PO

4
)

6-x
(OH)

2-x
 (0 < x < 1)] can be easily pre-

pared by simultaneous addition of calcium- and orthophosphate-
containing solutions into boiling water followed by boiling the 
suspension for several hours (an aging stage). That is why, in 
literature, it might be called as “precipitated HA (PHA)”.291,292 
Besides, it might be prepared by hydrolysis of α-TCP.247-249 
Other preparation techniques of CDHA are known as well.293-

295 During aging, initially precipitated ACPa are restructured 

Figure 7. A model of ACP structure. Reprinted from reference 278 with 
permission.
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about 1,000°C.347 As the first precipitates are rich in non-apatitic 
environments (see ACP and CDHA), the aging stage appears to 
be very important: the Ca/P molar ratio of 1.67 was attained in 
as little as 5 h after the completion of the reaction at 90°C.348 
The surface of freshly precipitated HA is composed of a struc-
tured hydrated layer containing easily exchangeable mobile ionic 
species.349 Usually unsintered HA is poorly crystalline and often 
non-stoichiometric, resembling the aforementioned CDHA. 
However, well crystalline HA can be prepared from an aqueous 
solution.350 Microcrystalline samples of HA can also be prepared 
by solid-state reaction of other calcium phosphates (e.g., MCPM, 
DCPA, DCPD, OCP) with CaO, Ca(OH)

2
 or CaCO

3
 at tem-

peratures above ~1,200°C in an atmosphere of equal volumes 
of water and nitrogen. HA can be prepared by hydrothermal 
synthesis.27,266,351,352 A water-free synthesis can be performed in 
ethanol from Ca(OEt)

2
 (Et = ethyl) and H

3
PO

4
.353,354 In addi-

tion, HA might be prepared by mechanochemical synthesis of 
a dry mixture of CaO and DCPD346,355 or from coral skeletal 
carbonate by hydrothermal exchange.356-358 Relatively large single 
crystals of HA might be prepared from those of chlorapatite359 
or by a recently developed controlled homogeneous precipitation 
method.360 Smaller sized particles of HA might be prepared by 
a pyrosol technique, where an aerosol containing calcium and 
orthophosphate ions in the adequate ratio is transported to a fur-
nace where the pyrolisis takes place.361 Synthesis of nano-sized 
HA has also been described in references 362 and 363, while the 
chronological development of nano-sized HA synthesis might 
be found in another paper.364 Two-dimensional nanocrystalline 
HA might be also synthesized.365 Space-grown and terrestrial 
HA crystals were found to differ in size: the former appeared 
to be at least 1–1.5 orders of magnitude bigger in length.366,367 
Transparent HA ceramics is also known.368-371 The detailed infor-
mation on HA synthesis is available in references 372–380. In 
addition, there are good reviews on HA solubility, crystal growth 
and intermediate phases of HA crystallization381 as well as on HA 
dissolution.382

Pure HA never occurs in biological systems. However, due to 
the chemical similarities to bone and teeth mineral (Table 2), HA 
is widely used as a coating on orthopedic (e.g., hip joint prosthe-
sis) and dental implants.383-390 HA particles might be implanted 
as well.391 Due to a great similarity to biological apatite, HA has 
been used in liquid chromatography of nucleic acids, proteins 
and other biological compounds392-401 and for drug delivery pur-
poses402-405 for a long time. Also, HA is added to some brands of 
toothpaste as a gentle polishing agent instead of calcium carbon-
ate.406,407 Non-biomedical applications of HA include its use as 
an environmentally friendly filler for elastomers,408 a sorbent of 
poisonous chemical elements409,410 and a carrier for various cata-
lysts.411-413 Furthermore, HA by itself might act as a catalyst for 
formaldehyde combustion at room temperature.414 To conclude 
this topic, one should mention other reviews devoted to HA and 
its biomedical applications.415-419

FA (or FAp). Fluorapatite [Ca
5
(PO

4
)

3
F, usually writ-

ten as Ca
10

(PO
4
)

6
F

2
 to denote that the crystal unit cell com-

prises two molecules; the IUPAC name is pentacalcium 
fluoride tris(orthophosphate) is the only ion-substituted calcium 

for Ca2+; CO
3

2- for PO
4

3- or HPO
4

2-; F-, Cl-, CO
3

2- for OH-, 
plus some water forms biological apatite, the main inorganic 
part of animal and human normal and pathological calcifica-
tions.26,83,84 Therefore, CDHA is a very promising compound 
for industrial manufacturing of artificial bone substitutes,322 
including drug delivery applications.323 Non-biomedical 
applications of CDHA are similar to those of ACP and HA. 
Interestingly, CDHA was found to possess a catalytic activity 
to produce biogasoline.324

HA (or HAp, or OHAp). Hydroxyapatite[g] [Ca
5
(PO

4
)

3
(OH), 

but is usually written as Ca
10

(PO
4
)

6
(OH)

2
 to denote that the 

crystal unit cell comprises two molecules; the IUPAC name is 
pentacalcium hydroxide tris(orthophosphate)] is the second 
most stable and least soluble calcium orthophosphate after FA. 
Chemically pure HA crystallizes in the monoclinic space group 
P2

1
/b.325 However, at temperatures above ~250°C, there is a 

monoclinic to hexagonal phase transition in HA (space group 
P6

3
/m).27,113,266,326,327 The detailed description of the HA struc-

ture was first reported in 1964,328 and its interpretation in terms 
of aggregation of Ca

9
(PO

4
)

6
 clusters, the so-called Posner’s clus-

ters, has been widely used since the publication of the article by 
Posner and Betts.273 The Ca

9
(PO

4
)

6
 clusters appeared to be ener-

getically favored in comparison to alternative candidates, includ-
ing Ca

3
(PO

4
)

2
 and Ca

6
(PO

4
)

4
 clusters.329 In hexagonal HA, 

the hydroxide ions are more disordered within each row when 
compared with the monoclinic form, pointing either upward or 
downward in the structure. This induces strains that are compen-
sated for by substitutions or ion vacancies. Some impurities, like 
partial substitution of hydroxide by fluoride or chloride, stabilize 
the hexagonal structure of HA at ambient temperature. For this 
reason, hexagonal HA is seldom the stoichiometric phase, and it 
is very rare that single crystals of natural HA exhibit the hexago-
nal space group. The crystal structure of HA is well-described in 
references 27 and 112–114 the detailed analysis of the electronic 
structure, bonding, charge transfer, optical and elastic properties 
are also available,330-334 while the readers interested in Posner’s 
clusters are referred to other papers.329,335-337 A shell model was 
developed to study the lattice dynamics of HA,338 while a cluster 
growth model was created to illustrate its growth.280 Polarization 
characteristics339,340 and pyroelectrical properties341 of HA bioc-
eramics have been investigated. First-principles calculations for 
the elastic properties of doped HA342 and vacancy formation 
in HA343 were performed. Computer simulations of the struc-
tures and properties of HA are well-described in recent feature 
articles.344,345

Several techniques might be utilized for HA preparation; 
they can be divided into solid-state reactions and wet meth-
ods,346 which include precipitation, hydrothermal synthesis and 
hydrolysis of other calcium orthophosphates. Even under the 
ideal stoichiometric conditions, the precipitates are generally 
non-stoichiometric, suggesting intermediate formation of pre-
cursor phases, such as ACP and CDHA. HA can be prepared 
in aqueous solutions by mixing exactly stoichiometric quanti-
ties of Ca- and PO

4
-containing solutions at pH > 9, followed 

by boiling for several days in CO
2
-free atmosphere (the aging 

or maturation stage), filtration, drying and, usually, sintering at 
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3.7% mass F). Enameloid of shark teeth32,103,436-440 and some exo-
skeletons of mollusks441 seem to be the only exclusions, because 
they contain substantial amounts of FA. Among all normal calci-
fied tissues of humans, the highest concentration of fluorides is 
found in bones and the lowest in dental enamel.[h] However, even 
in bones, the total amount of fluorides is not enough to form FA; 
it is generally considered that the inorganic part of bones consists 
of ion-substituted CDHA. Due to its low solubility, good chemi-
cal stability and the toxicity of high amounts of fluorides, chemi-
cally pure FA is rarely used as a bone substituting material.442 
However, various FA-containing composites,443-445 FHA446,447 
and porous FA bioceramics448 seem to be better candidates for 
biomedical applications. Furthermore, due to the ability to form 
FHA and/or HFA, minor amounts of fluorides might be inten-
tionally added to calcium orthophosphate biomaterials.449-455 The 
effect of fluoride contents in FHA on both osteoblast behav-
ior456,457 and leukemia cells proliferation458 has been described. 
Non-biomedical applications of FA include its application as a 
catalyst.459

OA (or OAp, or OXA). Oxyapatite [Ca
10

(PO
4
)

6
O; the 

IUPAC name is decacalcium oxide hexakis(phosphate)] is the 
least studied calcium orthophosphate. To the best of my knowl-
edge, pure OA has never been prepared; therefore, its properties 
are not well-established. Furthermore, still there are doubts that 
pure OA exists. However, a mixture of OA and HA (oxy-HA) 
might be prepared by dehydration of HA at temperatures exceed-
ing ~900°C (e.g., during plasma-spray of HA) only in the absence 
of water vapor.27,28,460,461 It also might be crystallized in glass-
ceramics.462 Computer modeling techniques have been employed 
to qualitatively and quantitatively investigate the dehydration 
of HA to OA.463 OA has the hexagonal space group symmetry  
P  (174) of cesanite type,112 while the space group symmetry for 
partially dehydrated HA was found to change from hexagonal 
P63/m to triclinic P  when more than ca. 35% of the struc-
turally bound water had been removed.461 OA has no stability 
field in aqueous conditions;464 it is very reactive and transforms 
to HA in contact with water vapor.460 Due to the aforementioned 
problems with OA preparation, no information on biomedical 
applications of pure OA is available. Plasma-sprayed coatings of 
HA, in which OA might be present as an admixture phase, seem 
to be the only application.

TTCP (or TetCP). Tetracalcium phosphate or tetracalcium 
orthophosphate monoxide [Ca

4
(PO

4
)

2
O; the IUPAC name is 

tetracalcium oxide bis(orthophosphate); the mineral hilgen-
stockite465] is the most basic calcium orthophosphate. However, 
its solubility in water is higher than that of HA (Table 1). TTCP 
cannot be precipitated from aqueous solutions. It can be prepared 
only by a solid-state reaction at temperatures above 1300°C, e.g., 
by heating homogenized equimolar quantities of DCPA and 
CaCO

3
 in dry air or in a flow of dry nitrogen.27,266,466,467 These 

reactions should be performed in a dry atmosphere in a vacuum 
or with rapid cooling (to prevent uptake of water and formation 
of HA). DCPA might easily be replaced by ammonium ortho-
phosphates,468,469 while calcium carbonate might be replaced 
by calcium acetate.469 Furthermore, TTCP often appears as an 
unwanted byproduct in plasma-sprayed HA coatings, where it is 

orthophosphate considered in this review. It the hardest (5 
according to the Mohs’ scale of mineral hardness), most stable 
and least soluble compound among all calcium orthophosphates  
(Table 1). Perhaps, such “extreme” properties of FA are related 
to the specific position of F- ions in the center of Ca(2) trian-
gles of the crystal structure.113 Due to its properties, FA is the 
only calcium orthophosphate that naturally forms large deposits 
suitable for the commercial use36-39 (see also Fig. 2). Preparation 
techniques of the chemically pure FA are similar to the afore-
mentioned ones for HA, but the synthesis must be performed 
in presence of the necessary amount of F- ions (usually, NaF or 
NH

4
F is added). Unlike that for HA (see CDHA), no data are 

available on existence of calcium-deficient FA. Under some spe-
cial crystallization conditions (e.g., in presence of gelatin or citric 
acid), FA might form an unusual dumbbell-like fractal morphol-
ogy that, finally, close into spheres (Fig. 8).420-426 A hierarchical 
structure for FA was proposed.427 The crystal structure of FA was 
studied for the first time in 1930428,429 and is well-described in 
references 27, 112–114 and 430. The detailed analysis of the elec-
tronic structure, bonding, charge transfer and optical properties 
is available as well.332 In addition, there are reviews on FA solubil-
ity381 and the dissolution mechanism.382

FA easily forms solid solutions with HA with any desired F/
OH molar ratio. Such compounds are called fluorhydroxyapa-
tites (FHA) or hydroxyfluorapatites (HFA) and described with a 
chemical formula Ca

10
(PO

4
)

6
(OH)

2-x
F

x
, where 0 < x < 2. If the F/

OH ratio is either uncertain or not important, the chemical for-
mula of FHA and HFA is often written as Ca

10
(PO

4
)

6
(F,OH)

2
. 

The lattice parameters, crystal structure, solubility and other 
properties of FHA and HFA lay in between those for the chemi-
cally pure FA and HA.431-435

Similar to pure HA, pure FA never occurs in biological sys-
tems. Obviously, a lack of the necessary amount of toxic fluorides 
(the acute toxic dose of fluoride is ~5 mg/kg of body weight) in 
living organisms is the main reason of this fact (pure FA contains 

Figure 8. A biomimetically grown aggregate of FA that was crystallized 
in a gelatin matrix. Its shape can be explained and simulated by a fractal 
growth mechanism. Scale bar: 10 μm. Reprinted from reference 420 
with permission.
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β-TCP. Currently, only biphasic and triphasic calcium ortho-
phosphate formulations are known; perhaps more complicated 
formulations will be manufactured in the future. Furthermore, 
nowadays, only multiphasic and/or polyphasic compositions con-
sisting of high-temperature phases of calcium orthophosphates, 
such as α-TCP, β-TCP, HA and, perhaps, high-temperature 
ACP, OA and TTCP, are known. No precise information on 
multiphasic compositions containing MCPM, MCPA, DCPD, 
DCPA, low-temperature ACP, OCP and CDHA has been found 
in the literature.475 Perhaps, such formulations will be produced 
in future.

All BCP formulations might be subdivided into two major 
groups: those consisting of calcium orthophosphates having 
either the same (e.g., α-TCP and β-TCP) or different (e.g., 
β-TCP and HA) molar Ca/P ratios. Among all known BCP for-
mulations, BCP consisting of HA and β-TCP is both the most 
known and the best investigated.297-308 In 1986, LeGeros in the 
USA and Daculsi in France initiated the basic studies on prepara-
tion of this type of BCP and its in vitro properties. This material 
is soluble and gradually dissolves in the body, seeding new bone 
formation as it releases calcium and orthophosphate ions into the 
biological medium. Presently, commercial BCP products of dif-
ferent or similar HA/β-TCP ratios are manufactured in many 
parts of the world as bone-graft or bone substitute materials for 
orthopedic and dental applications under various trade marks 
and several manufacturers.307 A similar combination of α-TCP 
with HA forms BCP as well.241,242,244,478-481

Recently the concept of BCP has been extended by prepara-
tion and characterization of biphasic TCP (BTCP), consisting 
of α-TCP and β-TCP phases.482-486 The biphasic TCP is usually 
prepared by heating ACP precursors484-486 in which the α-TCP/β-
TCP ratio can be controlled by aging time and pH value during 
synthesis of the amorphous precursor.485 Furthermore, triphasic 
formulations, consisting of HA, α-TCP and β-TCP487 or HA, 
α-TCP and TTCP476,477 have been prepared.

It is important to recognize that the major biomedical proper-
ties (such as bioactivity, bioresorbability, osteoconductivity and 
osteoinductivity) of the multiphasic and/or polyphasic composi-
tions might be adjusted by changing the ratio among the cal-
cium orthophosphate phases. When compared with both α- and 
β-TCP, HA is a more stable phase under the physiological con-
ditions, as it has a lower solubility (Table 1) and, thus, slower 
resorption kinetics. Therefore, due to a higher biodegradability 
of the α- or β-TCP component, the reactivity of BCP increases 
with the TCP/HA ratio increasing. Thus, in vivo bioresorbability 
of BCP can be adjusted through the phase composition. Similar 
conclusions are also valid for both the biphasic TCP (in which 
α-TCP is a more soluble phase) and the triphasic (HA, α-TCP 
and β-TCP) formulation.

A phase transition from α-TCP into β-TCP in three types 
of BCPs (HA + TCP) was investigated, and the experimental 
results indicated that a sintering temperature for the complete 
phase transition from α-TCP into β-TCP increased with increas-
ing HA content in BCP.488 Further details on biphasic, triphasic 
and multiphasic calcium orthophosphate formulations might be 
found in a very recent review in reference 475.

formed as a result of the thermal decomposition of HA to a mix-
ture of high-temperature phases of α-TCP, TTCP and CaO.470 
TTCP is metastable: in both wet environment and aqueous solu-
tions, it slowly hydrolyzes to HA and calcium hydroxide.27,266,471 
Consequently, TTCP is never found in biological calcifications. 
In medicine, TTCP is widely used for preparation of various self-
setting calcium orthophosphate cements;120,127,143,159,165,166,252,470,472 
however, to the best of my knowledge, there is no commer-
cial bone-substituting product consisting solely of TTCP. 
For the comprehensive information on TTCP, the readers are 
referred to a recent review in reference 470, while the struc-
ture,473 spectra474 and solubility217 of TTCP are well-described  
elsewhere.

There is an opinion,113,184 that all calcium orthophosphates 
listed in Table 1 might be classified into three major structural 
types: (1) the apatite type, Ca

10
(PO

4
)

6
X

2
, which includes HA, 

FA, OA, CDHA, OCP and TTCP; (2) the glaserite type, named 
after the mineral glaserite, K

3
Na(SO

4
)

2
, which includes all poly-

morphs of TCP and, perhaps, ACP and (3) the Ca-PO
4
 sheet-

containing compounds, which include DCPD, DCPA, MCPM 
and MCPA. According to the authors, a closer examination of 
the structures revealed that all available calcium orthophosphates 
could be included into distorted glaserite type structures, but 
with varying degrees of distortion.113,184

Biphasic, triphasic and multiphasic calcium orthophosphate 
formulations. Calcium orthophosphates might form biphasic, 
triphasic and multiphasic (polyphasic) compositions, in which 
the individual components cannot be separated from each 
other.475 Presumably, the individual phases of such compositions 
are homogeneously “mixed” at well below submicron level (<0.1 
μm) and strongly integrated with each other. Nevertheless, the 
presence of all individual phases is easily seen by X-ray diffraction 
technique.

The main idea of the multiphasic concept is determined 
by a balance of more stable calcium orthophosphate phases  
(e.g., HA) and more soluble calcium orthophosphate phases  
(e.g., any type of TCP). The usual way to prepare biphasic, tripha-
sic and multiphasic calcium orthophosphates consists of sintering 
non-stoichiometric calcium orthophosphates, such as ACP and 
CDHA, at temperatures above ~700°C. Furthermore, a thermal 
decomposition of the stoichiometric calcium orthophosphates at 
temperatures above ~1300°C might be used as well;476,477 how-
ever, this approach often results in the formation of complicated 
mixtures of various products including admixtures of CaO, cal-
cium pyrophosphates, etc. Namely, transformation of HA into 
polyphasic calcium orthophosphates by annealing in a vacuum 
occurs as this: the outer part of HA is transformed into α-TCP 
and TTCP, while the α-TCP phase of the surface further trans-
forms into CaO. Besides, in the boundary phase, HA is trans-
formed into TTCP.476

Historically, Nery, Lynch and coworkers first used the term 
biphasic calcium phosphate (BCP) in 1986 to describe a bioc-
eramic that consisted of a mixture of HA and β-TCP.226 Based on 
the results of X-ray diffraction analysis, these authors found that 
the “tricalcium phosphate” preparation material used in their 
early publication227 was in fact a mixture of ~20% HA and ~80% 
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special importance, because it leads to large lattice strain and sig-
nificantly increases the solubility.509,511,512 Higher concentrations 
of magnesium and carbonates in bone or dentine compared with 
those in enamel (Table 2) may explain a higher solubility and a 
lower crystallinity (smaller crystal size) of bone or dentine com-
pared with enamel.

In addition, the crystals of biological apatite are always very 
small, which also increases its solubility when compared with 
that for the chemically pure HA and even CDHA.83 However, 
biologic apatites of enamel have considerably larger crystal size 
(about 2,000 nm) compared with that of either bone or dentine 
apatite, as indicated by the well-defined diffraction peaks in the 
X-ray diffraction profile of enamel apatite and much broader dif-
fraction peaks of either bone or dentine apatites (Fig. 9, center). 
Small dimensions and a low crystallinity are two distinct fea-
tures of biological apatites, which, combined with their non-stoi-
chiometric composition, inner crystalline disorder and presence 
of other ions in the crystal lattice, allow explaining their special 
behavior. For example, the small crystal size means that a large 
percentage of the atoms are on the surface of the crystals, provid-
ing a large specific surface area for sorption of ions, proteins and 
drugs.508,512 The major physical properties of biological apatite are 
summarized in Figure 9. It is interesting to note, that the solu-
bility and equilibrium phenomena of calcium orthophosphates 
related to the calcification process have been studied at least since 
1925.513,514

Attempts to mimic the calcium orthophosphate nature of 
bones were first performed in 1913.515 This discovery was clarified 
afterwards, suggesting that the bone mineral could be carbon-
ated apatite.516,517 Further optical and X-ray analysis of bones and 
other mineralized tissues matched analyses of two apatites: FA 
and dahllite.518 Additional historical data on this point are avail-
able in literature.42 Nowadays, according to Weiner and Wagner, 
“the term bone refers to a family of materials, all of which are 
built up of mineralized collagen fibrils.”104,519 For mammals, this 
family of materials includes dentine, the material that constitutes 
the inner layers of teeth, cementum, the thin layer that binds 
the roots of teeth to the jaw, deer antlers and some other materi-
als.104,105 It is worth noting, that bones and teeth contain almost 
99% of the total body calcium and about 85% of the total body 
phosphorus, which amounts to a combined mass of approxi-
mately 2 kg in an average person.520,521 In addition, it is important 
to recognize that calcium orthophosphates of bones are by no 
means inert; they play an important role in the metabolic func-
tions of the body. The recent data on the physico-chemical and 
crystallographic study of biological apatite have been reviewed 
in reference 511. Besides, there is a comprehensive review on the 
application of surface science methods to study the properties of 
dental materials and related biomaterials.522

Bone. Bone, also called osseous tissue (Latin: os), is a type 
of hard endoskeletal connective tissue found in many vertebrate 
animals. All the bones of a single animal are, collectively, known 
as the skeleton. True bones are present in bony fish (osteich-
thyes) and all tetrapods. Bones support body structures, pro-
tect internal organs and, in conjunction with muscles, facilitate 
movement.523 In addition, bones are also involved in blood cell 

Ion-substituted calcium orthophosphates. Finally, one should 
very briefly mention the existence of carbonated apatite,489-495 
chlorapatite496-498 as well as a great number of various ion-sub-
stituted calcium orthophosphates.83,499,500 Usually, they are of a 
non-stoichiometric nature, and there are too many of them to 
be mentioned in one review. Currently, this is a hot investiga-
tion topic; therefore, the readers are referred to other books and 
reviews in references 26–28, 32, 36, 38, 48, 266 and 416. In 
addition, there is a very good review, in which the structures of 
more than 75 chemically different apatites have been discussed 
in reference 112.

To conclude this topic, it is interesting to note that chemical 
elements not found in natural bones can be intentionally incor-
porated into calcium orthophosphate biomaterials to get special 
properties. For example, addition of Ag+,501-503 Zn2+,503,972 and 
Cu2+,503,972,973 has been used for imparting antimicrobial effect, 
while radioactive isotopes of 90Y,504 153Sm181,505-507Re505 have been 
incorporated into HA bioceramics and injected into knee joints 
to treat rheumatoid joint synovitis.504,505,507 More to the point, 
apatites were found to incorporate individual molecules, such as 
water, oxygen and carbon dioxide.83

Biological Hard Tissues  
of Calcium Orthophosphates

Biological mineralization (or biomineralization) is the process 
of in vivo formation of inorganic minerals (so-called, biomin-
erals). One should stress, that the term “biomineral” refers not 
only to a mineral produced by organisms, but also to the fact 
that almost all of these mineralized products are composite mate-
rials comprised of both inorganic and bioorganic components. 
Furthermore, having formed in vivo under well-controlled condi-
tions, the biomineral phases often have properties, such as shape, 
size, crystallinity, isotopic and trace element compositions, quite 
unlike their inorganically formed counterparts (please, compare 
Figs. 2, 8, 10 and 14). Thus, the term “biomineral” reflects all 
this complexity.103,438

As shown in Table 2 and discussed above, in the body of 
mammals, the vast majority of both normal and pathological cal-
cifications consist of non-stoichiometric and ion-substituted cal-
cium orthophosphates, mainly of apatitic structure.88,509 At the 
atomic scale, nano-sized crystals bone apatite exhibit a variety 
of substitutions and vacancies that make the Ca/P molar ratio 
distinct from the stoichiometric HA ratio of 1.67. Their chemical 
composition is complicated and varies in relatively wide ranges. 
This depends on what the animal has ingested.510 Occasionally, 
attempts are performed to compose chemical formulas of bio-
logical apatites. For example, the following formula Ca

8.856
Mg

0.088
Na

0.292
K

0.010
(PO

4
)

5.312
(HPO

4
)

0.280
(CO

3
)

0.407
(OH)

0.702
Cl

0.078

(CO
3
)

0.050
 was proposed to describe the chemical composition of 

the inorganic part of dental enamel.511

The impurities in biological apatite of bones and teeth intro-
duce significant stresses into the crystal structure, which make 
it less stable and more reactive. Among all substituting ions, the 
presence of 4–8% of carbonates instead of orthophosphate anions 
(so called, B-type substitution26-28,493) and 0.5–1.5% of Mg is of 



©2011 Landes Bioscience.
Do not distribute.

www.landesbioscience.com	 Biomatter	 135

in apatite, on the one hand, and benefit from its biological 
functionality, on the other. Bone in modern animals is a rela-
tively hard and lightweight porous composite material, formed 
mostly of biological apatite (i.e., poorly crystalline CDHA with 
ionic substitutions). It has relatively high compressive strength 
but poor tensile strength.541 While bone is essentially brittle, it 
has a degree of significant plasticity contributed by its organic  
components.

The distribution of the inorganic and bioorganic phases 
depends on a highly complex process that takes place during 
bone formation. Each of these components may be assembled in 
different proportions, creating two different architectural struc-
tures depending on the bone type and function. They are char-
acterized by different structural features that strongly correlate 
with the mechanical performance of the tissue. These two types 
of bones are (1) the cortical bone (or compact bone), which is a 
dense structure and (2) the cancellous bone (also known as tra-
becular or spongious bone), which is less dense and less stiff than 
compact bone. Usually, bone is composed of a relatively dense 
outer layer of cortical bone covering an internal mesh-like struc-
ture (average porosity of 75–95%) of cancellous bone, the density 
of which is about 0.2 g/cm3, but it may vary at different points 
(Fig. 10). Cortical bone makes up a large portion of the skel-
etal mass; it has a high density (~1.80 g/cm3) and a low surface 
area. Cancellous bone has an open meshwork or honeycomb-like 
structure. It has a relatively high surface area but forms a smaller 
portion of the skeleton. Bone is a porous material, with the pore 
sizes range from 1 to 100 μm in normal cortical bones and 200 

formation, calcium metabolism and act for mineral storage. 
From the material point of view, bone is a dynamic, highly vas-
cularized tissue that is formed from a complicated biocompos-
ite containing both inorganic (Table 2) and bioorganic (chiefly, 
collagen) compounds.509,524-530 Furthermore, there is a cellular 
phase that consists of three different types of cells: osteoblasts, 
osteoclasts and osteocytes. The inorganic to bioorganic ratio is 
approximately 75% to 25% by dry weight and about 65% to 35% 
by volume. This ratio not only differs among animals, among 
bones in the same animal and over time in the same animal, but 
also it exerts a major control on the material properties of bone, 
such as its toughness, ultimate strength and stiffness. In general, 
load-bearing ability of bones depends on not only architectural 
properties, such as cortical thickness and bone diameter, but also 
intrinsic, size-independent material properties, such as poros-
ity, level of mineralization, crystal size and properties derived 
from the organic phase of bone.531 A higher mineral to collagen 
ratio typically yields stronger but more brittle, bones.532-534 For 
example, bone from the leg of a cow has a relatively high con-
centration of calcium orthophosphates (for support), whereas 
bone from the antler of a deer has a relatively high concentration 
of collagen (for flexibility).122 It is interesting to note, that bone 
exhibits several physical properties such as piezoelectricity535 and 
pyroelectricity.536

Stability of the mineral composition of bones has a very 
long history: calcium orthophosphates were found in dinosaur 
fossils.53,100,537-540 Therefore, organisms have had a great deal of 
time to exploit the feedback between composition and structure 

Figure 9. Left: crystal structure of a biological apatite. Powder X-ray diffraction patterns (center) and infrared spectra (right) of human enamel, dentine 
and bone. Reprinted from reference 508 with permission.
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flat skull bones protect the brain, ribs protect the lungs, pelvis 
protects other internal organs, short tubular bones in the dig-
its of hands and feet provide specific grasping functions, hollow 
and thick-walled tubular bones, such as femur or radius, sup-
port weight and long bones enable locomotion.549,550 Long bones 
are tubular in structure (e.g., the tibia). The central shaft of a 
long bone is called the diaphysis and has a medullar cavity filled 
with bone marrow (Fig. 10). Surrounding the medullar cavity is 
a thin layer of cancellous bone that also contains marrow. The 
extremities of the bone are called the epiphyses and are mostly 
cancellous bone covered by a relatively thin layer of compact 
bone. Short bones (e.g., finger bones) have a similar structure 
to long bones, except that they have no medullar cavity. Flat 
bones (e.g., the skull and ribs) consist of two layers of compact 
bone with a zone of cancellous bone sandwiched between them. 
Irregular bones (e.g., vertebrae) do not conform to any of the 
previous forms. Thus, bones are shaped in such a manner that 
strength is provided only where it is needed. All bones contain 
living cells embedded in a mineralized organic matrix that makes 
up the main bone material.549-551 The structure of bones is most 
easily understood by differentiating between seven levels of orga-
nization, because bones exhibit a strongly hierarchical structure 
(Fig. 11).103,104,416,509,524-529,535-540,542-545,553-558

The mechanical properties of bones reconcile high stiffness 
and high elasticity in a manner that is not yet possible with syn-
thetic materials.554 Cortical bone specimens have been found to 
have tensile strength in the range of 79–151 MPa in longitudinal 
direction and 51–56 MPa in transversal direction. Bone’s elas-
ticity is also important for its function, giving the ability to the 
skeleton to withstand impact. Estimates of modulus of elasticity 
of bone samples are of the order of 17–20 GPa in the longitudi-
nal direction and 6–13 GPa in the transversal direction.559 The 
elastic properties of bone were successfully modeled at the level of 
mineralized collagen fibrils via step-by-step homogenization from 
the staggered arrangement of collagen molecules up to an array of 
parallel mineralized fibrils.560 Recent investigations revealed that 
bone deformation was not homogeneous, but distributed between 
a tensile deformation of the fibrils and a shearing in the interfi-
brillar matrix between them.561,562 Readers who are interested in 
further details are addressed to a good review on the effects of the 
microscopic and nano-scale structure on bone fragility.563

The smallest level of the bone hierarchy consists of the molec-
ular components: water, biological apatite, collagen and other 
proteins.509 The second smallest hierarchical level is formed by 
mineralization of collagen fibrils, which are of 80 to 100 nm 
thickness and a length of a few to tens of microns (Fig. 11). Thus, 
biocomposites of biological apatite and molecules of type I col-
lagen are formed.88,104,524,530,564 Some evidence for direct physical 
bonding between the collagen fibers and apatite crystals in bone 
has been found.565 Eppell et al. used atomic force microscopy to 
measure the crystallites of mature cow bone.566 They are always 
platelet-like (elongated along the crystallographic c-axis) and very 
thin,87,567-569 with remarkably uniform thicknesses (determined in 
transmission electron microscopy) of 2–4 nm[i] (just a few unit 
cells thick, see Table 2). The nano-sized crystals of biological 
apatite exist in bones, not as discrete aggregates, but rather as a 

to 400 μm in trabecular bones. 55 to 70% of the pores in trabec-
ular bones are interconnected. The porosity reduces the strength 
of bones but also reduces their weight.26,32,84,85,101-104,525-529,542-546

Bones can be either woven or lamellar. The fibers of woven 
bones are randomly aligned and, as a result, have a low strength. 
In contrast, lamellar bones have parallel fibers and are much 
stronger. Woven bones are put down rapidly during growth 
or repair,547 but as growth continues, they are often replaced 
by lamellar bones. The replacement process is called “second-
ary bone formation” and described in details in reference 548. 
In addition, bones might be long, short, flat and irregular. The 
sizes and shapes of bones reflect their function. Namely, broad 
and flat bones, such as scapulae, anchor large muscle masses, 

Figure 10. General structure of a mammalian bone. Other very good 
graphical sketches of the mammalian bone structure are available in 
references 88 and 508.
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The processes of bone formation (ossification) and growth are 
very complicated ones, and it is difficult to describe them with-
out making a deep invasion into biology. It has been studied for 
decades,547 but still there are missing points. Very briefly, ossifica-
tion occurs through a direct or indirect process. In intramembra-
nous (direct) ossification, direct transformation of mesenchymal 
cells from membranous tissue in osteoblasts occurs.199,548,578 In 
endochondral (or indirect) ossification, bones appear and grow as 

continuous phase, which is indirectly evi-
denced by a very good strength of bones. 
This results in a very large surface area 
facing extracellular fluids, which is criti-
cally important for the rapid exchange 
of ions with these fluids. The nano-sized 
crystals of biological apatite are inserted 
in a nearly parallel way into the colla-
gen fibrils, while the latter are formed 
by self-assembly[j] of collagen triple heli-
ces104,524,552,570-572 using the self-organiza-
tion mechanism.573,574 Recent data from 
electron diffraction studies revealed that  
the mineral plates of biological apatite 
are not quite as ordered as previously 
assumed.548 This imperfect arrangement 
of nearly parallel crystals has been sup-
ported by recent SAXS and transmission 
electron microscopy studies.575

The lowest level of hierarchical orga-
nization of bone has successfully been 
simulated by CDHA precipitation on 
peptide-amphiphile nanodimensional 
fibers.574 However, apatite platelets nucle-
ating on the surface of peptide tubules 
are not similar to the nanostructure of 
bone, and they are only an example of 
surface-induced nucleation (and not 
accurately characterized either), while 
the nanostructure of bone consists of 
intra-fibrillar platelets intercalated within 
the collagen fibrils. Olszta and Gower 
were the first to truly duplicate the bone 
nanostructure.548 Unfortunately, the 
interface between collagen and crys-
tals of biological apatite is still poorly 
understood; for the available details, the 
readers are referred to a review devoted 
to the structure and mechanical qual-
ity of the collagen/mineral nanodimen-
sional biocomposite of bones.564 There 
is still no clear idea why the crystals of 
biological apatite are platelet-shaped even 
though dahllite has hexagonal crystal 
symmetry.103,104,525-529,535-540,542-546 One 
possible reason is that they grow via an 
OCP transition phase in which crystals 
are plate-shaped.104 Another explana-
tion involves the presence of citrates, which strongly bound to 
the (10Ī0) surface of biological apatite because of space match-
ing.576,577 Therefore, the crystal growth in the (10Ī0) direction 
becomes inhibited, while the citrate effect on other crystal sur-
faces of biological apatite appears to be very small, owing to poor 
space matching. Thus, after crystal growth, the (10Ī0) crystal 
face becomes predominant, resulting in the plate-like morphol-
ogy of biological apatite.577

Figure 11. The seven hierarchical levels of organization of the zebrafish skeleton bone. Level 1: 
Isolated crystals and part of a collagen fibril with the triple helix structure. Level 2: Mineralized 
collagen fibrils. Level 3: The array of mineralized collagen fibrils with a cross-striation periodicity of 
nearly 60–70 nm. Level 4: Two fibril array patterns of organization as found in the zebrafish skeleton 
bone. Level 5: The lamellar structure in one vertebra. Level 6: A vertebra. Level 7: Skeleton bone. 
Reprinted from reference 552 with permission. Other good graphical sketches of the hierarchical 
structure of bones are available in references 104, 553 and 554.
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this proximal-distal sequence, the portion of the humerus distal 
to the amputation site was found to fail to ossify in synchrony 
with the regenerating radius and ulna. This finding suggests that 
the replacement of cartilage with mineralized bone close to the 
amputation site is delayed with respect to other regenerating skel-
etal elements.593

Unlike other mineralized tissues, bone continuously under-
goes a remodeling process, as it is resorbed by specialized cells 
called osteoclasts and formed by another type of cells called 
osteoblasts (so called “bone lining cells”) in a delicate equilib-
rium.509,548,551,594,595 The purpose of remodeling is the release of 
calcium and the repair of micro-damaged bones from everyday 
stress. Osteoblasts are mononuclear cells primarily responsible 
for bone formation. They contain alkaline phosphatase, which 
enzymatically produce orthophosphate anions needed for the 
mineralization. In addition, there is one more type of cells, 
called osteocytes, that originate from osteoblasts, which have 
migrated into, become trapped and surrounded by bone matrix 
that they themselves produce.509,525-528,548-551

If osteoblasts are bone-forming cells, osteoclasts are multi-
nuclear, macrophage-like cells that can be described as bone-
destroying cells, because they mature and migrate to discrete 
bone surfaces.551,594,595 Upon arrival, active enzymes, such as 
acid phosphatase, are secreted against the mineral substrate that 
causes dissolution. This process, called bone resorption, allows 
stored calcium to be released into systemic circulation and is 
an important process in regulating calcium balance.594,595 The 
iteration of remodeling events at the cellular level is influential 
on shaping and sculpting the skeleton both during growth and 
afterwards. That is why mature bones always consist of a very 
complex mesh of bone patches, each of which has both a slightly 
different structure and a different age.103-105,509-511,520-522,525-527,548 
The interested readers are recommended a review on the interac-
tion between biomaterials and osteoclasts.596

There is still no general agreement on the chemical mecha-
nism of bone formation. It is clear that the inorganic part of 
bone consists of biological apatite, i.e., CDHA with ionic sub-
stitutions but without the detectable amounts of hydroxide.597-601 
However, the recent results of solid-state nuclear magnetic 
resonance on fresh-frozen and ground whole bones of several 
mammalian species revealed that the bone crystal OH- was 
readily detectable; a rough estimate yielded an OH- content of 
human cortical bone of about 20% of the amount expected in 
stoichiometric HA.602 Various in vitro experiments on precipita-
tion of CDHA and HA revealed that none of these compounds 
is directly precipitated from supersaturated aqueous solutions 
containing calcium and orthophosphate ions; some intermedi-
ate phases (precursors) are involved.26,84,85,187-193,259-263 Depending 
on both the solution pH and crystallization conditions, three 
calcium orthophosphates (DCPD, ACP and OCP) have been 
discussed as possible precursors of CDHA precipitation in vitro. 
Due to this reason, the same calcium orthophosphates are sug-
gested as possible precursors of biological apatite formation  
in vivo.

The transient nature of the precursor phase of bone, if it 
exists at all, makes it very difficult to detect, especially in vivo.94 

the result of calcification (or biomineralization) of connective tis-
sues, mainly cartilage.509,548 The ossified tissue is invaginated by 
blood vessels, which bring ions of calcium and orthophosphate to 
be deposited in the ossifying tissue. The biomineralization pro-
cess is controlled to some extent by cells, and the organic matrices 
made by those cells facilitate the deposition of crystals.551 There 
is an opinion, that, initially, the mineral crystals are formed in 
an environment rich in the so-called SIBLING (Small Integrin-
Binding LIgand N-linked Glycoprotein) proteins. As bone 
crystals grow, there is greater association with proteins, such as 
osteocalcin, that regulate remodeling.579 Thus, in vivo formation 
of hard tissues always occurs by mineral reinforcement of the pre-
viously formed network of soft tissues.509,548-550,552

Cartilage is composed of cells (chondrocytes and their precur-
sor forms known as chondroblasts), fibers (collagen and elastic 
fibers) and extracellular matrix proteins (proteoglycans, which 
are a special class of heavily glycosylated glycoproteins).580-582 
The initial stage involves the synthesis and extracellular assem-
bly of the collagen matrix framework of fibrils. At the second 
stage, the chondrocytes calcify the matrix before undergoing the 
programmed cell death (apoptosis). At this point, blood vessels 
penetrate this calcified matrix, bringing in osteoblasts (they are 
mononuclear cells primarily responsible for bone formation), 
which use the calcified cartilage matrix as a template to build 
bone, thus completing ossification.580-582

During ossification, the crystals of biological apatite grow 
with a specific crystalline orientation; the c-axes of the crystals 
are roughly parallel to the long axes of the collagen fibrils within 
which they are deposited.104,105,509,510,520-522,525-527,530,548 Earlier, it was 
believed that this process occurred via epitaxial growth mecha-
nism.583 The same was suggested for dentine and enamel584,585 (see 
Teeth section below) as well as for more primitive living organ-
isms. For example, in the shell of the fossil marine animal Lingula 
brachiopod unguis, which consists of a biological apatite, the 
crystal c-axes are oriented parallel to the β-chitin fibrils.441,586-589 
Therefore, the orientation of biological apatite crystals parallel 
to the long axes of the organic framework could be a general 
feature of calcium orthophosphate biomineralization. However, 
the degree of biological apatite orientation appears to be a use-
ful parameter to evaluate in vivo stress distribution, nano-scale 
microstructure and the related mechanical function, the regen-
erative process of the regenerated bone and to diagnose bone 
diseases such as osteoarthritis.590,591 It is interesting to note that, 
contrary to what might be expected in accordance with possible 
processes of dissolution, formation and remineralization of hard 
tissues, no changes in phase composition of mineral part, crys-
tal sizes (length, width and thickness) and arrangement of crys-
tals on collagen fibers were detected in abnormal (osteoporotic) 
human bones compared with the normal ones.592

Some animals, such as newts, are able to regenerate amputated 
limbs. This is, of course, of high interest in regenerative medi-
cine. Bone regeneration in the forelimbs of mature newts was 
studied by noninvasive X-ray microtomography to image regen-
erating limbs from 37 to 85 d. The missing limb skeletal elements 
were restored in a proximal-to-distal direction, which reiterated 
the developmental patterning program. However, in contrast to 
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a less dense matrix. A low-dose selected-area electron diffraction 
technique demonstrated that the mineral phase consisted of both 
ACP and oriented apatite, the latter identical to bone apatite.627 
This process is shown schematically in Figure 12.628 The mod-
ern points of view on the bone formation mechanisms have been 
summarized in a recent excellent review in reference 548, where 
the interested readers are referred.

The maturation mechanism of bone minerals is not well-
established, mainly because of the difficulty involved in the 
nanostructural analyses of bone minerals.548,629 Only indirect 
evidence for the in vivo bone mineral maturation is available. 
For example, X-ray diffraction patterns of bones from animals 
of different ages show that the reflections become sharper with 
increasing age.99,630 This effect is more pronounced in the crys-
tallographic a-axis [(310) reflections] as compared with the 
c-axis [(002) reflections].631,632 The most comprehensive report 
describing how normal human bone mineral changes in com-
position and crystal size as a function of age was based on X-ray 
diffraction analyses by Hanschin and Stern,633 who examined 
117 homogenized iliac crest biopsies from patients aged 0–95 y.  
They found that the bone mineral crystal size and perfection 
increased during the first 25–30 y and then decreased thereaf-
ter, slightly increasing in the oldest individuals. The same 117 
homogenized biopsy samples were analyzed by wavelength-dis-
persive X-ray fluorescence to quantify the carbonate substitution 
in biological apatite as a function of age. Although the changes 
observed in carbonate substitution were relatively slight (at most 
10%), there was a general increase from 0 to 90 y that is dis-
tinct from the absence of a change in crystallinity after age 30 
in these samples.553 In addition, other changes, like an increase 
of Ca2+ content and a decrease of HPO

4
2-, occur in bone min-

eral with age.634-637 Both the crystal sizes and carbonate content 
were found to increase during aging in rats and cows.635,636 The 
increase in carbonate content with age has also been reported 
in still other studies.638-640 From a chemical point of view, these 
changes indicate to a slow transformation of poorly crystallized 
non-apatitic calcium orthophosphates into a better-crystallized 
ion-substituted carbonate-containing CDHA. While there are 
still many gaps in our knowledge, the researchers seem to be 
comfortable in stating that in all but the youngest bone and den-
tine, the only phase present is a highly disordered, highly substi-
tuted biological apatite.

In general, the biomineralization process (therefore, bone 
formation) can happen in two basic ways: either the mineral 
phase develops from the ambient environment, as it would from 
a supersaturated solution of the requisite ions, but requires the 
living system to nucleate and localize mineral deposition, or the 
mineral phase is developed under the direct regulatory control of 
the organism, so that the mineral deposits are not only localized 
but may be directed to form unique crystal habits not normally 
developed by a saturated solution of the requisite ions. In a very 
famous paper641 and two extended elaborations,103,642 the first 
type of biomineralization was called “biologically induced” min-
eralization and the second “(organic) matrix-mediated” biomin-
eralization. In some papers, the former process is called “passive” 
and the latter one “active” biomineralization.35 Briefly, an “active 

However, in 1966 W.E. Brown proposed that OCP was the ini-
tial precipitate that then acted as a template upon which bio-
logical apatite nucleates.186 This idea was extended in his further 
investigations.603-606 The principal support for this concept 
derived from the following: (1) the close structural similarity of 
OCP and HA;178,179 (2) formation of interlayered single crystals 
of OCP and HA (pseudomorphs of OCP); (3) the easier pre-
cipitation of OCP compared with HA; (4) the apparent plate- or 
lath-like habit of biological apatites that does not conform to 
hexagonal symmetry, but looks like a pseudomorph of triclinic 
OCP; (5) the presence of HPO

4
2- in bone mineral, particularly in 

newly formed bones.511 Some evidences supporting this idea were 
found using high-resolution transmission electron microscopy: 
computer-simulated lattice images of the “central dark line” 
in mineralized tissues revealed that it consisted of OCP.187-191 
Recently, Raman spectroscopic indication for an OCP precursor 
phase was found during intra-membranous bone formation.578 
Other evidences of OCP to HA transformation, including a 
mechanistic model for the central dark line formation, might be 
found in literature.607

Simultaneously with Brown, the research group led by A.S. 
Posner proposed that ACP was the initially precipitated phase 
of bone and dentine mineral formation in vivo, thus explain-
ing the non-stoichiometric Ca/P ratio in bones and teeth.608-610 
This conclusion was drawn from the following facts: (1) when 
calcium orthophosphates are prepared by rapid precipitation 
from aqueous solutions containing ions of calcium and ortho-
phosphate at pH > 8.5, the initial solid phase is amorphous; (2) 
mature bone mineral is composed of a mixture of ion-substituted 
ACP and poorly crystallized ion-substituted CDHA and (3) early 
bone mineral has a lower crystallinity than mature bone, and 
the observed improvement in crystallinity with the age of the 
bone mineral is a result of a progressive reduction in the ACP 
content.511,608-616 However, there are thermodynamic data prov-
ing that the transition of freshly precipitated ACP into CDHA 
involves intermediate formation of OCP.617,618 Recently, the dis-
covery of a stable amorphous calcium carbonate in sea urchin 
spines619 reawakened the suggestion that a transient amorphous 
phase might also exist in bones.548,620-624 Even more recently, evi-
dence of an abundant ACP phase in the continuously forming fin 
bones of zebrafish was found.625,626 The new bone mineral was 
found to be delivered and deposited as packages of nanodimen-
sional spheres of ACP, which further transformed into platelets of 
crystalline apatite within the collagen matrix.626

Furthermore, to investigate how apatite crystals form inside 
collagen fibrils, researchers performed a time-resolved study 
starting from the earliest stages of mineral formation.627 After  
24 h of mineralization, calcium orthophosphate particles were 
found outside the fibril, associated with the overlap region, in 
close proximity to the gap zone. Cryogenic energy-dispersive 
X-ray spectroscopy confirmed that these precipitates were com-
posed of calcium orthophosphate, while a low-dose selected-area 
electron diffraction technique showed a diffuse band characteris-
tic of ACP. After 48 h, apatite crystals started to develop within a 
bed of ACP, and after 72 h, elongated electron-dense crystals were 
abundant within the fibril, in many cases, still embedded within 
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To conclude the bone subject, let me 
briefly mention the practical application of 
bones. In the Stone Age, bones were used to 
manufacture art, weapons, needles, catch-
ers, amulets, pendants, headdresses, etc. 
Nowadays, cut and polished bones from a 
variety of animals are sometimes used as 
a starting material for jewelry and other 
crafts. Ground cattle bone is occasionally 
used as a fertilizer. Furthermore, in medi-
cine, bones are used for bone graft substi-
tutes, e.g., allografts from cadavers.

Teeth. Teeth (singular, tooth) are dense 
structures found in the jaws of many verte-
brates. They have various structures to allow 
them to fulfill their different purposes. The 
primary function of teeth is to tear and 
chew food. For carnivores, teeth are also a 
weapon. Therefore, teeth have to withstand 
a range of physical and chemical processes, 
including compressive forces (up to ~700 
N), abrasion and chemical attack due to 
acidic foods or products of bacterial metab-
olism.522 The roots of teeth are covered by 
gums. On the surface, teeth are covered by 
enamel up to ~2 mm thick at the cutting 
edges of the teeth, which helps to prevent 
cavities on the teeth. The biggest teeth of 
some gigantic animals (elephants, hippo-
potamuses, walruses, mammoths, narwhals, 
etc.) are known as tusks or ivory.

Similar to the various types of bones, 
there are various types of teeth. The shape 
of the teeth is related to the animal’s food as 
well as its evolutionary descent. For exam-
ple, plants are hard to digest, so herbivores 
have many molars for chewing. Carnivores 
need canines to kill and tear, and since meat 
is easy to digest, they can swallow without 

the need for molars to chew the food well. Thus, the following 
types of teeth are known: molars (used for grinding up food), car-
nassials (used for slicing food), premolars (small molars), canines 
(used for tearing apart food) and incisors (used for cutting food). 
While humans only have two sets of teeth, some animals have 
many more; for example, sharks grow a new set of teeth every 
two weeks. Some other animals grow just one set during the life, 
while teeth of rodents grow and wear away continually through 
the animal gnawing, maintaining constant length.648,649

Similar to bones, the inorganic part of teeth also consists of 
biological apatite.650 The stability of the mineral composition of 
teeth also has a very long history; namely, calcium orthophos-
phates were found in fossil fish teeth.651 Recent investigations of 
biological apatite from fossil human and animal teeth revealed its 
similarity to the modem biological apatite.652

The structure of teeth appears to be even more complicated 
than that of bones (see Fig. 13). Unlike bones, teeth consist of at 

process” means the assembly of nano-sized crystals of calcium 
orthophosphate into bones due to an activity of the suitable 
cells (e.g., osteoblasts), i.e., within a matrix vesicle. Such struc-
tures have been discovered by transmission electron microscopy 
for bone and teeth formation.643,644 A “passive” process does not 
require involvement of cells and means mineralization from super-
saturated solutions with respect to the precipitation of biological 
apatite. In the latter case, thermodynamically, biomineralization 
might occur at any suitable nucleus. The collagen fibrils have a 
specific structure with a 67 nm periodicity and 35–40 nm gaps 
or holes between the ends of the collagen molecules, where bone 
mineral is incorporated in the mineralized fibril.103,104,519,530,549,550 
Such a nucleation within these holes would lead to discrete 
crystals with a size related to the nucleating cavity in the col-
lagen fibril (Fig. 11). It was proposed that a temporary absence 
of the specific inhibitors might regulate the process of bone  
formation.645-647

Figure 12. A schematic illustration of in vivo mineralization of a collagen fibril: top layer-calcium 
orthophosphate clusters (green) form complexes with biopolymers (orange line), forming stable 
mineral droplets; second top layer-mineral droplets bind to a distinct region on the collagen 
fibers and enter the fibril; second bottom layer-once inside the collagen, the mineral in a liquid 
state diffuses through the interior of the fibril and solidifies into a disordered phase of ACP 
(black); bottom layer-finally, directed by the collagen, ACP is transformed into oriented crystals 
of biological apatite (yellow). Reprinted from reference 628 with permission.
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(formerly called an enamel prism) is the basic unit of enamel. It 
is a tightly packed mass of biological apatite in an organized pat-
tern. Each rod traverses uninterrupted through the thickness of 
enamel. They number 5 to 12 million rods per crown. The rods 
increase in diameter (4 up to 8 microns) as they flare outward 
from the dentine-enamel junction (DEJ). Needle-like enamel 
rods might be tens of microns long (up to 100 μm) but some-
times only 50 nm wide and 30 nm thick (Fig. 14).648,649,660-667  
They are quite different from the much smaller crystals of den-
tine and bone (Table 2), but all of them consist of biological 
apatite.422,668,669 In cross-section, an enamel rod is best compared 
with a keyhole, with the top or head, oriented toward the crown 
of the tooth and the bottom or tail, oriented toward the root of 
the tooth.

The arrangement of the crystals of biological apatite within 
each enamel rod is highly complex. Enamel crystals in the head 
of the enamel rod are oriented parallel to the long axis of the rod. 
When found in the tail of the enamel rod, the crystals’ orienta-
tion diverges slightly from the long axis.648,649 The arrangement 
of the enamel rods is understood more clearly than their inter-
nal structure. Enamel rods are found in rows along the tooth 
(Fig. 14) and, within each row, the long axis of the enamel rod 
is generally perpendicular to the underlying dentine.648,649,660-664 
A recent AFM study indicated that CDHA crystals in enamel 
exhibited regular subdomains or subunits with distinct chemi-
cal properties related to topographical features and gave rise to 
patterned behavior in terms of the crystal surface itself and the 
manner in which it responded to low pH.670

The second structural component of the enamel matrix is 
the interrod (or interprismatic) enamel, which surrounds and 
packs between the rods. The difference between the rod and the 
interrod is the orientation of apatite crystals; the rod contains 
aligned crystallites, whereas the mineral in the interrod is less 
ordered. These structures coalesce to form the tough tissue of 

least two different materials: enamel, which is a hard outer layer 
consisting of calcium orthophosphates and dentine, which is a 
bone-like magnesium-rich tissue that forms the bulk of vertebrate 
teeth. In addition, there is a thin layer around the tooth roots 
called cementum. It is a thin layer of a bone-like calcified tis-
sue that covers dentine at the roots of teeth and anchors them to 
the jaw.653-656 Finally, there is the core, called pulp (commonly 
called “the nerve”); it is a remnant of the embryologic organ for 
tooth development and contains nerves and blood vessels nec-
essary for tooth function (Fig. 13).549,550,648,649 Both dentine and 
cementum are mineralized connective tissues with an organic 
matrix of collagenous proteins, while the inorganic component of 
them consists of biological apatite. As shown in Table 2, dentine, 
cementum and bone are quite similar, and for general purposes of 
material scientists, they can be regarded as being essentially the 
same material.103-105,511,520-522,525-529,535-540,542-544,564,568-570,634,635 Thus, 
most statements made in the previous section for bones are also 
valid for dentine and cementum; however, unlike bones, both 
dentine and cementum lack vascularization.[k]

Dental enamel is the outermost layer of teeth. It is white and 
translucent, and its true color might be observed at the cutting 
edges of the teeth only. Enamel is highly mineralized and acellu-
lar, so it is not a living tissue. Nevertheless, it is sufficiently porous 
for diffusion and chemical reactions occur within its structure, 
particularly acidic dissolution (dental caries) and remineralization 
from saliva (possible healing of caries lesions). Enamel is the hard-
est substance in the body541 and forms a solid, tough and wear-
resistant surface for malaxation. In the mature state, it contains up 
to 98% inorganic phase (Table 2). The crystals of biological apa-
tite of enamel are much larger, as evidenced by the higher crystal-
linity (reflecting greater crystal size and perfection) demonstrated 
in their X-ray diffraction patterns, than those of bone and dentine. 
Besides, enamel apatite has fewer ionic substitutions than bone or 
dentine mineral and more closely approximates the stoichiometric 
HA.549 The organic phase of enamel does not contain collagen. 
Instead, enamel has two unique classes of proteins, called amelo-
genins and enamelins. While the role of these proteins is not yet 
fully understood, it is believed that both classes of proteins aid in 
enamel development by serving as a framework support.648,649,657 
The large amount of minerals in enamel accounts not only for its 
strength, but also for its brittleness. Dentine, which is less miner-
alized and less brittle, compensates for enamel and is necessary as 
a support.648,649 Shark enameloid is an intermediate form bridg-
ing enamel and dentine. It has enamel-like crystals of fluoridated 
biological apatite associated with collagen fibrils.83,103,436-440 Due 
to the presence of fluorides, biological apatite of shark enameloid 
shows both higher crystal sizes and a more regular hexagonal sym-
metry compared with non-fluoridated biological apatite of bones 
and teeth.32 Similar correlation between the presence of fluorides 
and crystal dimensions was found for enamel.658

Like that for bones, seven levels of structural hierarchy have 
been also discovered in human enamel; moreover, the analysis 
of the enamel and bone hierarchical structure suggests similari-
ties of the scale distribution at each level.509,559,659 On the meso-
scale level, there are three main structural components: a rod, an 
interrod and aprismatic enamel. Among them, the enamel rod 

Figure 13. A schematic drawing of a tooth. Other very good graphical 
sketches of the mammalian tooth structure, including the hierarchical 
levels, are available in references 509 and 554.
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The first detectable crystals in enamel formation are flat 
thin ribbons662-664 that were reported to be OCP,542,672-674 
β-(Ca,Mg)

3
(PO

4
)

2
,673 DCPD,597,600 or ACP.675 The formation 

process of enamel is different from that for bone or dentine: ame-
logenin being hydrophobic self-assembles into nano-sized spheres 
that guide the growth of the ribbon-like dental enamel crystals. 
During maturation of enamel, the mineral content increases 
from ~45 wt% initially up to ~98–99 wt%.597,648,649 The enamel 
crystal rods widen and thicken by additional growth597,600,676 with 
a simultaneous increase of the Ca/P molar ratio676 and a decrease 
in carbonate content,677-679 finally resulting in the most highly 
mineralized and hardest substance produced by vertebrates. It is 
interesting to note that in the radular teeth of chitons, ACP was 
found to be the first-formed calcium orthophosphate mineral, 
which, over a period of weeks, was transformed to dahllite.680

The crystal faces expressed in enamel are always (100) face 
and at the ends presumably (001),681,682 which are the ones usu-
ally found in HA. The centers of enamel crystals contain a lin-
ear structure known as the “central dark line” (this line was also 
observed in bone and dentine), which consists of OCP.187-191,607 
As described above for bones, X-ray diffraction shows that the 
crystals of younger dentine are less crystalline than those of 
more mature dentine.634 Therefore, maturation of dentine also 
means a slow transformation (re-crystallization?) of biological 
calcium orthophosphates from ion-substituted ACP to a better- 
crystallized ion-substituted CDHA.

The development of individual enamel and dentine crystals 
was studied by high-resolution transmission electron micros-
copy.683-685 Both processes appear to be roughly comparable and 
were described in a four-step process. The first two steps include 
the initial nucleation and formation of nano-sized particles of bio-
logical apatite. They are followed by ribbon-like crystal formation, 
which, until recently, was considered the first step of biological 
crystal formation.683-685 These complicated processes, starting with 
the heterogeneous nucleation of inorganic calcium orthophos-
phates on an organic extracellular matrix, are controlled in both 
tissues by the organic matrix and are under cellular control.686 To 
complicate the process even further, regular and discrete domains 
of various charges or charge densities on the surface of apatite 
crystals derived from the maturation stage of enamel development 
were recently discovered by a combination of atomic and chemi-
cal force microscopy.687 Binding of organic molecules (e.g., ame-
logenin687) at physiological solution pH appears to occur on the 
charged surface domains of apatite. The modern visions on dental 
tissue research have been reviewed recently in reference 688.

As teeth consist of several materials, there are mutual junctions 
among them. For example, a dentine-enamel junction (DEJ) is 
the interface between dentine and enamel. It is a remnant of the 
onset of enamel formation, because enamel grows outwards from 
this junction.649,689,690 DEJ plays an important role in preventing 
crack propagation from enamel into dentine.691 The major steps 
of enamel crystal growth at the junction have been described 
above, but the mechanism of the junction formation is still debat-
able. Some authors claim that enamel crystals grow epitaxially 
on the preexisting dentine crystals because of a high continuity 
between enamel and dentine crystals.692-694 Others have shown 

enamel, which can withstand high forces and resist damage by 
crack deflection. The third structure, aprismatic enamel, refers 
to the structures containing apatite crystals that show no meso-
scale or macroscale alignment.509 Enamel is a selectively per-
meable membrane, allowing water and certain ions to pass via  
osmosis.648,649

The in vivo formation and development of teeth appears to be 
even more complicated when compared with the process described 
above for bone formation. The biological process by which teeth 
are formed from embryonic cells, grow and erupt into the mouth 
is very complex.551 For human teeth enamel, dentine and cemen-
tum must all be developed during the appropriate stages of fetal 
development. Primary (baby) teeth start to form between the sixth 
and eighth weeks in utero, while the permanent teeth begin to 
form in the twentieth week in utero.648,649 Recent data confirmed 
the necessity of calcium orthophosphates in the diet of pregnant 
and nursing mother to prevent early childhood dental caries.671

As teeth consist of at least two materials with different proper-
ties (enamel and dentine), the tooth bud (sometimes called “the 
tooth germ,” which is an aggregation of cells that eventually forms 
a tooth) is organized into three parts: the enamel organ, the den-
tal papilla and the dental follicle. The enamel organ is composed 
of at least four other groups of cells (for the biological details 
see refs. 648 and 649). Altogether, these groups of cells give rise 
to ameloblasts, which secrete enamel matrix proteins. The pro-
tein gel adjacent to ameloblasts is supersaturated with calcium 
orthophosphates, which leads to the precipitation of biological 
apatite. Similarly, the dental papilla contains cells that develop 
into odontoblasts, which are dentine-forming cells. The den-
tal follicle gives rise to three important entities: cementoblasts, 
osteoblasts and fibroblasts. Cementoblasts form the cementum 
of a tooth.654 Osteoblasts give rise to the alveolar bone around 
the roots of teeth (see bone formation above). Fibroblasts develop 
the periodontal ligaments that connect teeth to the alveolar bone 
through cementum.549-551,648,649

Figure 14. Scanning electron micrograph of the forming enamel of 
a continuously growing rat incisor showing ordered rods of calcium 
orthophosphates. Scale bar: 10 μm. Reprinted from reference 103 with 
permission.
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nano-scaled apatite enamel crystallites might promote remineral-
ization at the tooth surface. However, this idea should be verified 
experimentally. Thus, according to the current knowledge, the 
enamel self-repairing ability by a passive remineralization appears 
to be doubtful, while an active remineralization is impossible. 
Nevertheless, investigations in this field keep going.210-212,711-722 
For example, ACP-containing orthodontic biocomposite resins 
might reduce the enamel decalcification found in patients with 
poor oral hygiene.722

A content of fluoride added to either toothpaste or mouthwash 
lowers the solubility of calcium orthophosphates (by formation of 
FHA on the surface) and therefore improves the acid-resistance 
of dental enamel.422,723-729 Furthermore, fluorides also reduce pro-
duction of acids by bacteria in the mouth by reducing their abil-
ity to metabolize sugars. However, dental treatment by fluorides 
must be used with care, because an improper treatment results in 
formation of CaF

2
 globules deposited on the enamel surface.730

To conclude the subject of teeth, let me briefly mention the 
practical application of teeth. Due to relatively small dimensions 
of normal teeth, only tusks and ivory of giant animals are used. 
For example, both the Greek and Roman civilizations used large 
quantities of ivory to make high value works of art, precious 
religious objects and decorative boxes for costly objects. Ivory 
was often used to form the whites of the eyes of statues. Prior 
to introduction of plastics, it was used for billiard balls, piano 
keys, buttons and ornamental items. The examples of modern 
carved ivory objects are small statuary, netsukes, jewelry, flatware 
handles and furniture inlays.

Antlers. Deer antlers (Fig. 15) are unique biological struc-
tures, since their growth rate is without parallel in vertebrates, 
and because they are the only bony appendages in mammals 
capable of complete regeneration. This allows for basic research 
in bone biology without the interference of surgical procedures 
and their adverse effects in animals where samples are obtained. 
In addition, antlers also allow for the gathering of a large amount 
of samples from different populations to assess nutritional and 
ecological effects on bone composition and structure.732-735 They 
are costly sexual secondary characters of male deer and constitute 
1 to 5% of their body weight.736 Recent studies suggest that antler 
regeneration is a stem cell-based process, and that these stem cells 
are located in the pedicle periosteum.731,737

Antlers are not true horns; they are a simple extension of 
bone, so they have a matrix of biological apatite similar to that 
of mammalian bones.738 Antlers are large and complex horn-
like appendages of deer consisting of bony outgrowths from the 
head with no covering of keratin as found in true horns. Usually, 
they begin growing in March and reach maturity in August. 
In winter, antlers fall off; this is known as shedding. Similar to 
bones, antlers contain pores and can withstand applied stresses 
of over 300 MPa,739-743 which is even higher than that of bones 
(Table 2). Therefore, antlers are occasionally considered an 
almost unbreakable bone.534 Each antler grows from an attach-
ment point on the skull called a pedicle. While an antler is grow-
ing, it is covered with highly vascular skin called velvet, which 
supplies oxygen and nutrients to the growing bone. Once the 
antler has achieved its proper size, the velvet starts to dry out, 

that enamel crystals are formed at a given distance from the den-
tine surface672-674,695 and could either reach dentine crystals by a 
subsequent growth696 or remain distant.695,697 In addition, there 
are a cementum-enamel junction (CEJ),698 which is quite similar 
to DEJ, and a cementum-dentine junction (CDJ).653-655,699

Enamel formation or amelogenesis, is a highly regulated 
process involving precise genetic control as well as protein- 
protein interactions, protein-mineral interactions and interac-
tions involving the cell membrane. Much is still unknown about 
the interactions among proteins present in enamel matrix and the 
final crystalline phase of biological apatite.509,700 At some point 
before a tooth erupts into the mouth, the ameloblasts are broken 
down. Consequently, enamel, unlike bones, has no way to regen-
erate itself using the process of “active mineralization” (see bone 
formation), because there is no biological process that repairs 
degraded or damaged enamel.648,649 In addition, certain bacte-
ria in the mouth feed on the remains of foods, especially sugars. 
They produce lactic acid, which dissolves the biological apatite of 
enamel in a process known as enamel demineralization that takes 
place below the critical pH of about 5.5. A similar process, called 
enamel erosion, occurs when a person consumes acid-containing 
(citric, lactic, phosphoric, etc.) soft drinks.660,701-704 Evidence exist 
that there is a preferential loss of carbonates and Mg during acidic 
dissolution of mineral in dental caries. Luckily, saliva gradually 
neutralizes the acids that cause pH on teeth surface to rise above 
the critical pH. This might cause partial enamel remineraliza-
tion, i.e., a return of the dissolved calcium orthophosphates to 
the enamel surface. Until recently, it was generally agreed, that if 
there was sufficient time between the intake of foods (generally, 
two to three hours) and if damage was very limited, teeth could 
repair themselves by the “passive mineralization” process.705 Data 
on increased remineralization of tooth enamel by milk contain-
ing added casein phosphopeptide-ACP nanodimensional com-
plexes706 are in support of this hypothesis.

However, studies performed by using atomic force microscopy 
nano-indentation technique revealed that previously demineral-
ized samples of dental enamel further exposed to remineralizing 
solutions did show a crystalline layer of calcium orthophosphates 
formed on their surface. Unfortunately, the re-precipitated 
deposits of calcium orthophosphates always consisted of loosely 
packed crystals and did not protect the underlying enamel from a 
subsequent acid attack. Furthermore, these surface deposits were 
completely removed by either a toothbrush or a short exposure 
to an erosive acidic solution.660,707-709 In this context, it should 
be emphasized that the term “remineralization,” which is often 
misused in the literature, should imply the process of mineral 
growth that goes hand in hand with a strengthening effect of the 
weakened enamel surface. Since no strengthening of an expo-
sure to remineralizing solutions was observed, it might be consid-
ered that no “passive mineralization” was found (in spite of the 
real evidence of the re-precipitated surface deposits of calcium 
orthophosphates).660,708,709

An interesting hypothesis that nano-sized apatite crystallites 
occur in the oral cavity during extensive physiological wear of 
the hierarchical structured enamel surface due to dental abrasion 
and attrition has been published recently in reference 710. These 
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Pathological Calcification  
of Calcium Orthophosphates

In the body of mammals, osteoblasts and odontoblasts fix ions of 
calcium and orthophosphate and then precipitate biological apa-
tite onto an organic matrix. This is the process of physiological 
biomineralization, which is restricted to specific sites in skeletal 
tissues, including growth plate cartilage, bones, teeth and ant-
lers.32,103 Normally, mammals are supposed to die with calcium 
orthophosphates located in bones and teeth (and antlers for male 
deer) only and nowhere else, because under normal conditions, 
soft tissues are not mineralized. Unfortunately, owing to aging, 
various diseases and certain pathological conditions, blood ves-
sels, muscles, extracellular matrix of articular cartilaginous tis-
sues of the joints and some internal organs are calcified as well. 
This process is called pathological calcification or ectopic (bio)
mineralization and leads to morbidity and mortality.32,103,760 In 
general, any type of abnormal accumulation of calcium ortho-
phosphates in the wrong place are accounted for by a disruption 
of systemic defense mechanism against calcification.761

To the best of my knowledge, the first paper on a negative 
influence of unwanted depositions of calcium orthophosphates 
in the body was published as early as in 1911.762 This finding was 
confirmed in later studies.763,764 Unwanted depositions always 
lead to various diseases, for instance, soft tissue calcification (in 
damaged joints, blood vessels, dysfunctional areas in the brain, 
diseased organs, scleroderma, prostate stones),220-222,765-770 kid-
ney and urinary stones,26,771-774 dental pulp stones and dental 
calculus,182,183,185,219,775-778 salivary stones,779 gall stones, pineal 
gland calcification, atherosclerotic arteries and veins,86,780-783 
coronary calcification,784 cardiac skeleton, damaged cardiac 
valves,785 calcification on artificial heart valves,786-790 carpal tun-
nel,791 cataracts,792 malacoplakia, calcified menisci,793,794 derma-
tomyositis795,796 and still other diseases.32 In addition, there is 
a metastatic calcification of nonosseous viable tissue occurring 
throughout the body,797,798 but it primarily affects the intersti-
tial tissue of the blood vessels, kidney, lungs and gastric mucosa. 
A metastatic calcification is defined as a deposition of calcium 
orthophosphates in previously normal tissue due to an abnormal 
biochemistry with disturbances in the calcium or phosphorus 
metabolism.799 Common causes of the metastatic calcification 
include hyperparathyroidism, chronic renal disease, massive 
bone destruction in widespread bone metastases and increased 
intestinal calcium absorption. One author has mentioned “apa-
tite diseases,” which are characterized by the appearance of 
needle-like crystals comparable to those of bone apatite in the 
fibrous connective tissue.800 All these cases are examples of calci-
nosis,801-803 which might be described as a formation of calcium 
orthophosphate deposits in any soft tissue. In dentistry, a calcu-
lus or a tartar refers to a hardened plaque on the teeth formed by 
the presence of saliva, debris and minerals.804 Its rough surface 
provides an ideal medium for bacterial growth, threatening the 
health of the gums and absorbing unaesthetic stains far more 
easily than natural teeth.26

Calcifying nanodimensional particles are the first calcium 
orthophosphate mineral containing particles isolated from 

cracks and breaks off, while the antler’s bone dies. Fully devel-
oped antlers consist of dead bone only.744-753 It was found that 
food processing cannot supply the mineral needs required for 
antler growth and, thus, male deer must temporary resorb cal-
cium orthophosphate minerals from their own skeleton for ant-
ler growth.754-756 Detailed studies revealed that daily food intake 
provided between 25 and 40% of calcium needed for antler 
mineralization, which resulted in a temporary skeleton demin-
eralization.755,756 Interestingly, though, antlers may act as large 
hearing aids; moose with antlers have far more sensitive hearing 
than moose without.757

Antlers are a good model to study bone biology, because they 
are accessible, shed after mating season and cast every year.758 
However, people seldom come across the antlers in the woods. 
Rabbits and rodents, such as mice and chipmunks, eat antlers 
(and bones of wild animals after they die) for calcium. Rodents 
and rabbits also gnaw bones and antlers to sharpen their inci-
sors. Due to an extremely high growth rate, which can achieve 
2–4 cm per day744 combined with a very fast biomineralization, 
these unique appendages might be a well-suited animal model for 
studying the disturbances of bone formation induced by additives 
(e.g., by excess of fluoride).746 Antler size and external characteris-
tics were found to be influenced by nutrition, climatic variability 
and other factors. Thus, since antlers are periodically replaced, 
the analysis of naturally cast antlers offers the opportunity for 
a continuous and a noninvasive monitoring of the environmen-
tal pollution by these additives.746 Recently, the first attempt to 
evaluate a potential use of deer antlers as a bone regeneration bio-
material was performed.759

To conclude this part, let me briefly mention the practical 
application of antlers. Associated with aristocracy, antlers have 
adorned European castles and hunting lodges for centuries. 
Today, furnishings and accessories made from antlers are fea-
tured in fine homes throughout the world and are a reflection of 
grace and elegance.

Figure 15. Red deer stag at velvet shedding. The bare bone of the hard 
antlers is exposed. Reprinted from reference 731 with permission. A 
good cross-sectional image of a deer antler is available in reference 554.
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In general, formation of crystals in pathological mineraliza-
tions follows the same principles as normal calcifications.818-820 
Namely, local conditions for nucleation require a certain degree 
of local supersaturation induced by biochemical processes, which 
can be promoted by deficiency of inhibitors (like diphosphate, 
Mg2+ or even citrate ions) and/or the presence of matrix of a bio-
organic material (such as cholesterol) or other crystals of different 
solids; those might act as heterogeneous nuclei. In addition, other 
regulators (activators and inhibitors) of physiological biominer-
alization have been identified and characterized.818-825 What’s 
more, the biological fluids (e.g., serum, saliva, synovial fluids) 
are normally supersaturated with respect to biological apatite pre-
cipitation;26,85,103 therefore, in principle, calcification is thermo-
dynamically feasible in any part of the body. However, normally 
this is not the case. Therefore, in the healthy body, the appropri-
ate inhibitory mechanisms must be at work to prevent a super-
fluous calcification of soft tissues. These inhibition mechanisms 
are a hot research topic in molecular medicine, but this subject 
is beyond the scope of current review. The interested readers are 
referred, for example, to a very interesting review on molecular 
recognition at the protein/HA interface.826 More to the point, 
molecular, endocrine and genetic mechanisms of arterial calcifi-
cation have been reviewed in another paper.827

Very recently, an arachidic acid Langmuir monolayer system 
has been reported as a model for pathological mineralization of 
ion-substituted carbonated apatites from simulated body fluid.828 
The authors have demonstrated that the surface-induced forma-
tion of carbonated apatites starts with aggregation of pre-nucle-
ation clusters of yet-unknown calcium orthophosphates, leading 
to nucleation of ACP before further development of oriented 
apatite crystals. This process is schematically shown in Figure 
16.628,828

To conclude this part, it is worth remembering that calcium 
orthophosphates of biological origin are sparingly soluble in 
aqueous solutions. Removing them from the places of unwanted 
deposition would be the equivalent of bone demineraliza-
tion; that is a challenge. Therefore, the majority of therapeutic 
approaches are directed at preventing the progression of patho-
logical calcifications. Among them, a chelation therapy might be 
of some interest to chemists and materials researchers because 

human blood, and they were detected in numerous pathologic 
calcification related diseases.805 Interestingly, but contrary to 
the mineral phases of normal calcifications (bone, dentine, 
enamel, cementum, antlers), which consist of only one type of 
calcium orthophosphate (namely, biological apatite), the min-
eral phases of abnormal and/or pathological calcifications are 
found to occur as single or mixed phases of other types of cal-
cium orthophosphates [ACP, DCPD, OCP, β-(Ca,Mg)

3
(PO

4
)

2
] 

and/or other phosphate and non-phosphate compounds (e.g., 
magnesium orthophosphates, calcium pyrophosphates, calcium 
oxalates, etc.) in addition to or in place of biological apatite  
(Table 4).26,28,32,85,142,219-222,298,775,806-810 However, precipitation of 
biological apatite in wrong places is also possible; this is so-called 
“HA deposition disease”.811-814

Occurrence of non-apatite phases in the pathological calcifica-
tions may indicate that they were crystallized under the condi-
tions different from homeostasis or crystallization of the apatite 
structures was inhibited and less stable phases crystallized instead, 
without further change to the more stable one. Furthermore, at 
the sites of pathological calcifications, the solution pH is often 
relatively low. Given that nucleation and crystal growth is not 
a highly regulated process in any pathological deposit, there is 
not likely just one fundamental formation mechanism for all 
possible calcification types. Furthermore, various bioorganic 
impurities in the local environment undoubtedly influence the 
crystallization process, resulting in a great variety of pathological 
deposits. Thus, it is a highly complex problem. In some cases, 
the chemical composition of an unwanted inorganic phase might 
depend on the age of the pathological calcification and its loca-
tion. For example, DCPD is more frequently found in young  
(3 mo or younger) calculus; biological apatite is present in all ages 
of calculus, while β-(Ca,Mg)

3
(PO

4
)

2
 occurs more frequently in 

sub-gingival calculus. In mature calculus, the relative abundance 
of OCP, β-(Ca,Mg)

3
(PO

4
)

2
 and biological apatite also differ 

between the inner and outer layers.85 It is interesting to note that 
the mineral phases of animal calculus (e.g., from dog) was found 
to consist of calcium carbonate and biological apatite, while 
human calculi do not contain calcium carbonate.85,815

The nucleation process is the main step in both normal and 
pathological calcifications. In vitro experiments conducted by 
Grases and Llobera816 to simulate the formation of sedimentary 
urinary stones demonstrated that in the absence of organic mat-
ter, no calcium orthophosphates crystallized in cavities with 
scarce liquid renovation, but regular CDHA layers appeared on 
the wall around the cavity. Visible deposits of calcified organic 
materials (mixtures of organic matter and spherulites of CDHA) 
were formed when a glycoprotein (mucin) was present. In this 
case, the walls of the cavity as well as the glycoproteins had the 
capacity to act as heterogeneous nucleators of calcium orthophos-
phates. CDHA microcrystal nucleation on the surface of epithe-
lial cells can be a critical step in the formation of kidney stones,817 
and identical mechanisms can be thought for unwanted calcifica-
tions in other soft tissues of the body, such as cardiac valves or 
vascular ducts. Monolayers of CDHA crystals can bind to epithe-
lial cells. A large amount of kidney stones contains CDHA as the 
crystallization nuclei.

Table 4. Occurrence of calcium phosphates in biological systems  
(human)85

Calcium phosphate  Occurrence

biological apatite
enamel, dentine, bone, dental calculi, stones, 

urinary stones, soft-tissue deposits

OCP dental calculi and urinary stones

DCPD
dental calculi, crystalluria, chrondrocalcinosis, 

in some carious lesions

β-(Ca,Mg)3(PO4)2

dental calculi, salivary stones, arthritic  
cartilage, soft-tissue deposits

Ca2P2O7·2H2O pseudo-gout deposits in synovium fluids

ACP
heart calcifications in uremic patients, kidney 

stones
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that failed are fossils; those that survived are the success.836 In the 
context of this review, biomimetics is considered the mimicking 
of natural manufacturing methods to generate artificial calcified 
tissues (grafts, implants, prostheses) that might be used as tem-
porary or permanent replacements of the missing, lost, injured or 
damaged bones and teeth. It is important to notice that precipi-
tation of calcium orthophosphates and calcium carbonates have 
been considered to correlate with bone formation at least since 
1923.837

A key step in the biomimetic bone graft production is attrib-
uted to the crystal growth of apatite phase onto a collagen matrix. 
Therefore, the matter of choosing the correct experimental con-
ditions and good mimicking solutions is of primary importance. 
The easiest way to perform the crystallization would be mixing of 
aqueous solutions containing the ions of calcium and orthophos-
phate.26-28 Unfortunately, such a type of crystallization provides 
precipitates with properties (chemical composition, Ca/P ratio, 
crystallinity level, particle size distribution, etc.) far different 
from those of biological apatite. This can be explained by the 
following paramount differences between the in vivo biological 
and in vitro chemical crystallization conditions:838 (1) In vitro 
crystallization normally occurs at permanently depleting concen-
trations of calcium and orthophosphate ions, while the concen-
trations of all ions and molecules are kept strictly constant during 
biological mineralization (the same is valid for the solution pH); 
(2) Chemical crystallization is a fast process (time scale of min-
utes to days), while the biological process is a slow one (time 
scale of weeks to years) and (3) Many inorganic, bioorganic, 
biological and polymeric compounds are present in biological 
liquids (blood plasma, serum, saliva). Each of these compounds 
might act as an inhibitor, promoter, nucleator or even as a tem-
plate for the growth of biological apatite.508 In addition, each of 
them somehow influences the crystallization kinetics and might 
be either incorporated into the solid structure or co-precipitated 

it deals with chemical processes.829,830 The general principles of 
demineralization and decalcification [i.e., removing the mineral 
Ca-containing compounds (phosphates and carbonates) from the 
bioorganic matrix] have been extensively reviewed in references 
831 and 832, where the interested readers are referred.

Biomimetic Crystallization  
of Calcium Orthophosphates

The term “biomimetics” (“the mimicry of life”) was coined by 
an American inventor, engineer and biophysicist Otto Herbert 
Schmitt (1913–1998) in the 1950s. Biomimetics (also known as 
bionics, biognosis and/or biomimicry) might be defined as appli-
cation of the methods and systems found in nature to the study, 
design and construction of new engineering systems, materials, 
chemical compounds and modern technology. Another definition 
describes biomimetics as a micro-structural process that mimics 
or inspires the biological mechanism, in part or as a whole.833 
This biological process generates highly ordered materials with 
a hybrid composition, a complex texture and ultrafine crystal-
lites through a hierarchical self-assembly and begins by designing 
and synthesizing molecules that have an ability to self-assemble 
or self-organize spontaneously to higher order structures.

Historically, the biomimetic concept is very old (e.g., the 
Chinese wanted to make artificial silk ~3,000 y ago; Daedalus’ 
wings were one early design failure), but the implementation is 
gathering momentum only recently. The first papers with the 
term “biomimetics” in the title were published in 1972.834,835 
In spite of the tremendous achievements of modern science and 
technology, nature’s ability to assemble inorganic compounds 
into hard tissues (shells, spicules, teeth, bones, antlers, skeletons, 
etc.) is still not achievable by the synthetic procedures. This is 
not surprising; designs found in nature are the result of millions 
of years of evolution and competition for survival. The models 

Figure 16. A schematic representation of the different stages of a surface-directed mineralization of calcium orthophosphates. In stage 1,  
aggregates of pre-nucleation clusters are in equilibrium with ions in solution. The clusters approach a surface with chemical functionality. In stage 2, 
pre-nucleation clusters aggregate near the surface, with loose aggregates still in solution. In stage 3, further aggregation causes densification near the 
surface. In stage 4, nucleation of spherical particles of ACP occurs at the surface only. In stage 5, crystallization occurs in the region of the ACP particles 
directed by the surface. Reprinted from references 628 and 828 with permission.
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KH
2
PO

4
, NaCl, KH

2
PO

4
) compounds. Additional media used 

for mineralization studies are listed in Table 3 of reference 551. 
All these simulating solutions are commercially available.

However, the most popular biomimetic solution is a protein-
free acellular simulated body fluid (SBF). It was introduced by 
Kokubo et al.878 and is occasionally called Kokubo’s SBF. It is a 
metastable aqueous solution with pH ~7.40, supersaturated with 
respect to the precipitation of OCP, β-TCP, CDHA and HA,879 
containing only inorganic ions in concentrations nearly equal 
to those in human blood plasma. However, the standard SBF 
formulation, first, contains the tris/HCl buffer, and second, the 
concentration of hydrogencarbonate (4.2 mM) is only a fraction 
of that in blood plasma (27 mM).878 The problem of a low con-
centration of hydrogencarbonate ions has been overcome by first 
introducing a “synthetic body fluid”880-882 and later a revised SBF 
(rSBF).883,884 Due to the chemical similarity with human blood 
plasma, rSBF currently seems to be the best simulating solution. 
However, it contains Hepes buffer, loses CO

2
 in open vessels and 

does not contain any organic and/or biological molecules.883,884 
Other types of SBF are also available,885-888 and the interested 
readers are referred to a leading opinion co-authored by the SBF 
inventor,889 where the entire history and the preparation tech-
niques of various SBF formulations are well-described. Recently, 
another leading opinion on the suitability of SBF for the in vitro 
bioactivity tests was published.890 The authors demonstrated that 
(1) there is presently no enough scientific data to support the 
SBF suitability and (2) even though bioactivity tests with SBFs 
are valid, the way the tests are generally conducted leaves room 
for further improvements. Furthermore, the preparation proto-
col of SBF solutions was reconsidered, and a new procedure was 
suggested to improve the reproducibility of bioactivity tests.890 
The application of SBF for the surface mineralization of vari-
ous materials in vitro has been reviewed in reference 891, while 
the theoretical analysis of calcium orthophosphate precipitation 
(the driving force and the nucleation rate based on the classical 
crystallization theory) in SBF is also available.879 It is important 
to note that nanometer-sized prenucleation clusters in SBF solu-
tions have been discovered;828 those clusters are believed to be the 
initial building blocks of crystallized calcium orthophosphates 
(e.g., CDHA280), while the crystallization process itself occurs via 
intermediate formation of ACP (Fig. 16).

Further attempts to improve the biomimetic properties of 
SBF and rSBF have been performed.889,890 Efforts were made to 
replace artificial buffers (tris/HCl, Hepes) while simultaneous;y 
increasing the concentration of hydrogencarbonates for  
SBF892-894 or avoiding losses of CO

2
 from open vessels for 

rSBF838,847-851 by means of permanent bubbling of gaseous CO
2
 

through the solutions. Addition of the most important organic 
and biological compounds, like glucose,849 albumin,847,894 lac-
tates895 and collagen896 is another direction for improving biomi-
metic properties of various types of SBF. Once a cow milk-based 
rSBF was prepared.897 Further improvements of all biomimetic 
solutions are to be made in future. Occasionally, condensed solu-
tions of SBF (e.g., 1.5-fold, 2-fold,896,898,899 5-fold900,901 and even 
10-fold902) are used to accelerate precipitation and increase the 
amount of precipitates. However, whenever possible this should 

with calcium orthophosphates. (4) Chemical crystallization is, by 
all means, a “passive” process, while the biological mineralization 
is strongly influenced by cells and occurs by the self-organization 
mechanisms.551,573,574 Still there are no good ways to overcome this 
difference.

The first and the second differences might be overcome by 
using the appropriate crystallization techniques. The details 
are available in reference 838, but, briefly, the first problem 
might be overcome by either a continuous flow of a supersatu-
rated solution839,840 or using a constant-composition (CC) tech-
nique.193,841,842 The second difference might be surpassed by a 
restrained diffusion of calcium and orthophosphate ions from 
the opposite directions in, for example, a double-diffusion (DD) 
crystallization device or in viscous gels.420-422,424,425,843-846 The CC 
and DD techniques have been combined into a single constant-
composition double-diffusion (CCDD) device, which currently 
seems to be the most advanced experimental tool to perform 
biomimetic crystallization.838,847-851 However, in no case should 
the CCDD device be considered the final construction; it still 
has much room for further improvement, e.g., by upgrading the 
design of the crystallization chamber.852 Other constructions, 
e.g., to study calcification of biological heart valve prostheses,853 
are also possible. In addition, one should keep in mind that the 
potential of the standard CC technique has not reached its limit 
yet; for example, recently a good mimicking of the self-organized 
microstructure of tooth enamel has been achieved.854

The third major difference between the in vivo and in vitro 
crystallization conditions might be overcome by using the appro-
priate crystallization solutions.838 The presence of calcium and 
orthophosphate ions in some biological fluids has been known, 
at least, since 1921.855,856 Therefore, the best way would be to 
perform experiments using natural liquids (blood serum, saliva, 
lymph, etc.), but this is not easy due to great variability of the 
chemical and biochemical compositions of natural liquids and 
problems with their collection and storage. As stated before, 
using supersaturated aqueous solutions containing only the ions 
of calcium and orthophosphate appears to be unable to mimic 
the crystallization of biological apatite; therefore, more advanced 
solutions have been elaborated. To the best of my knowledge, 
Hanks’ balanced salt solution (HBSS) 857 was the first successful 
simulating medium containing the ions of calcium and ortho-
phosphate together with other inorganic ions and glucose. HBSS 
is commercially available and still used in biomimetic experi-
ments;858-860 its chemical composition might be taken, e.g., from 
references 861 and 862. Other popular physiological solutions 
include α-modified Eagle’s[l] medium (α-MEM) and its varia-
tion, Dulbecco’s[m] modified Eagle’s medium (DMEM), which 
contain numerous bioorganic (alanine, aspartic acid, glycine, 
biotin, vitamin C, folic acid, riboflavin) and inorganic (CaCl

2
, 

KCl, NaCl, NaH
2
PO

4
) components,863-867 phosphate buffered 

saline (PBS) that contains only inorganic (CaCl
2
, MgCl

2
, KCl, 

KH
2
PO

4
, NaCl, NaH

2
PO

4
) components.868,869 Furthermore, 

artificial saliva,870-872 synthetic urine816,873 and simulated milk 
ultrafiltrate (SMUF) 874-877 solutions are available. They contain 
both bioorganic (e.g., xantan gum or sodium carboxymethylcel-
lulose, sorbitol, etc.) and inorganic (e.g., CaCl

2
, MgCl

2
, KCl, 
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However, what can be said about calcium orthophosphates 
themselves? The major questions on chemistry, crystallization, 
ion-substitution, crystallography, thermodynamics and phase 
relationships for the chemically pure calcium orthophosphates 
were answered in the 20th century. Some important topics 
for DCPD and CDHA have been additionally investigated in 
the field of self-setting calcium orthophosphate formulations. 
Conversely, calcium orthophosphates of biological origin, 
including the control of their morphology and interaction of 
calcium orthophosphate bioceramics with various bioorganic 
compounds, are not well-investigated yet. The same is valid for 
the nanocrystalline and amorphous samples of calcium ortho-
phosphates. Small amounts of bone-like apatite might be easily 
prepared by crystallization from SBF and rSBF, but what can be 
said about larger quantities? A standard method of increasing 
the concentration causes chemical changes in the precipitates.903 
After a necessary technology is developed, one will have to think 
of scaffold preparation from this material, keeping in mind that 
any thermal treatment would destroy this material. A spark 
plasma sintering approach based on the use of pulsed current 
and enabling very fast heating and cooling rates seemed to be 
the first hint of achieving this goal.940 However, a rapid develop-
ment of the self-setting calcium orthophosphate formulations, 
which can be easily doped by the necessary chemical elements, 
seems to be a better solution to this problem. Furthermore, 
the existence of OA remains to be questionable, and the bio-
activity mechanism of calcium orthophosphates requires better 
understanding.

To date, although calcium orthophosphate biomaterials and 
bioceramics have been extensively studied for over 50 y, their 
ability to trigger bone formation is still incomparable with 
other biomaterials. Naturally, the biomaterials field is shifting 
toward biologically active systems in order to improve their 
performance and to expand their use.941 Because of this, tissue 
engineering is the strongest direction of current research, which, 
in the case of calcium orthophosphates, means fabrication of 
proper substrates and/or scaffolds to carry cells, hormones and 
biochemical factors to be further used in surgery and medicine. 
Presumably, a synthesis of various types of calcium orthophos-
phate-based biocomposites and hybrid biomaterials occupies 
the second important place. For example, even composites 
with carbon nanotubes already exist!942-944 The third important 
place is occupied by investigations devoted to the synthesis and 
characterization of various nano-sized particles and nanodi-
mensional crystals of calcium orthophosphates as well as by 
synthesis of calcium orthophosphates with controlled particle 
geometry.508 In general, the geometry of crystal phases can be 
varied by controlling the precipitation conditions, such as tem-
perature, solution pH, concentration of the reagents, hydrody-
namics, presence of various admixtures, inhibitors or promoters, 
ultrasonication, etc. All these approaches might be useful in 
preparation of calcium orthophosphate fibers, whiskers, hol-
low microspheres, etc. In addition, a great attention is paid 
to manufacturing of the self-setting calcium orthophosphate 
formulations and multiphase[n] mixtures mimicking as closely 
as possible the mineral component of biological apatite. Work 

be avoided, because the application of condensed solutions of 
SBF leads to changes in the chemical composition of the precipi-
tates; namely, the concentration of carbonates increases, while 
the concentration of orthophosphates decreases.903

To conclude this part, one should note on difficulties in mim-
icking the calcification process that occurs in bones and teeth. 
A reasonable mechanism of the induction of CDHA nucleation 
and crystallization by carboxylate groups on the bioorganic 
matrices looks as this. At first, calcium and orthophosphate ions 
are combined with carboxylate groups. By using these as seeds, 
CDHA crystals then grow to generate interfaces that contain the 
most stable structure of the {100} faces. Such a crystallization 
mechanism explains why the c-axes of biological apatite are par-
allel to the organic matrices. Collagen fibers can be regarded as 
axis-like organic matrices: when CDHA is formed on the sur-
face of collagen fibers parallel to the c-axes, the c-axes are ori-
ented parallel to the fiber orientation.904 A step further would be 
to perform the precipitation from the simulating solutions on 
templates of biomineralization proteins for the control of crys-
tal organization and properties. For example, there are success-
ful attempts to crystallize calcium orthophosphates on collagen 
in order to obtain bone-like composites.545,905-914 Such collagen/
calcium orthophosphate biocomposites are currently under inves-
tigation for clinical use. Other popular biomimetic matrixes to 
perform calcium orthophosphate crystallization comprise gela-
tin,420-425,915-917 chitosan,915,918,919 organic polyelectrolytes,920-923 
metals and alloys,924-930 polymers,931 cellulose,932 self-assembled 
monolayers933 and many other materials. Such biomimetically 
prepared calcium orthophosphate precipitates are occasionally 
called “organoapatites.”509,934

Conclusions and Outlook

By the end of the 20th century, it became clear that calcium 
orthophosphate biomaterials and bioceramics by themselves 
could not give a complete response to the clinical needs for arti-
ficial implants. Biomaterials with more demanding properties 
were required. Namely, in 1998, Prof. Larry L. Hench published 
a forecast for the future of biomaterials development,935 where he 
noted that available that time bioactive materials (calcium ortho-
phosphates, bioactive glasses and glass ceramics) had already 
improved prostheses lifetime, but, unfortunately, any type of 
prosthesis had mechanical limitations. As a solution, he pro-
posed that biomaterial researchers would need to focus on tissue 
regeneration instead of tissue replacement. A working hypoth-
esis was announced: “Long-term survivability of prosthesis will 
be increased by the use of biomaterials that enhance the regen-
eration of natural tissues.”935 One path to follow is the regenera-
tion of bone using calcium orthophosphate scaffolds that mimic 
the structure of biological apatite, bond to bone, and in some 
cases, activate the genes within bone cells to stimulate new bone 
growth.936-938 Thus, more than 10 y ago Prof. Hench predicted 
a rapid development of tissue engineering field, where calcium 
orthophosphates play an auxiliary role. The history has shown 
that tissue engineering, indeed, is a very rapidly developed field 
of science and research.939
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Museum of Natural History, New York City, New York, USA, 
the term whitlockite was coined as a synonym for β-TCP identi-
fied by its X-ray diffraction pattern in phosphate rocks.775,959,960 
Therefore, strictly speaking, β-TCMP should be called as a “mag-
nesium whitlokite”. Its solubility is less than that of β-TCP.961 An 
iron-containing whitlockite with chemical formula Ca

9
(Mg,Fe2+)

(PO
4
)

6
(PO

3
,OH) exists in nature: is a relatively rare natural min-

eral but is found in granitic pegmatite and has also been found 
in meteorites. It can form small, but distinct and well-formed 
crystals.962,963

[f] In some research papers, CDHA is defined as “precipitated 
HA.”964-966

[g] It is worth noting that hydroxylapatite would be a more 
accurate description (perhaps, hydroxideapatite would be even 
better because it relates to calcium hydroxide) while by both 
the medical and material communities it is usually called as 
hydroxyapatite.

[h] The amount of fluorides on the very surface of dental 
enamel might be increased by using fluoride-containing tooth-
pastes and mouthwashes.723-726 Fluoride-containing toothpastes 
and mouthwashes are widely used in practice due to the well-
known anti-cariogenic effect of fluorides that is related to the 
solubility decreasing.727,728

[i] Due to the nanoscopic dimensions, biological apatite is 
occasionally called “nano-apatite.”104

[j] Self-assembling is the autonomous organization of com-
ponents into patterns or structures without human interven-
tion. It is considered that self-assembling processes are common 
throughout nature and technology.967

[k] Strictly speaking, there are some differences among these 
biological materials. For example, the hardness of live dentine 
is less than that of enamel but is greater than that of bone or 
cementum.653 When pulp of the tooth dies or is removed by a 
dentist, the properties of dentine change: it becomes brittle, liable 
to fracture and looses a reparative capability.

[l] Named after Harry Eagle (1905–1992), an American phy-
sician and pathologist.

[m] Named after Renato Dulbecco (born February 22, 1914), 
an Italian-born US virologist, who shared the 1975 Nobel Prize 
in Physiology or Medicine for his work on reverse transcriptase.

[n] For multiphase compositions of various calcium ortho-
phosphates, the problem of accurate phase quantification often 
arises. The problem is usually solved by the Rietveld refinement 
and the readers are referred to a recent paper on this subject.968

looking into ecological methods of synthesis of calcium ortho-
phosphates might be of great importance as well.945 A deeper 
study of the fascinating growth rate of deer antlers and the abil-
ity of some animals, such as newts, to regenerate amputated 
limbs might provide new and unexpected approaches to the 
bone-healing concept, and this too will be important for further 
development of both biomimetics and biomineralization fields. 
Unfortunately, no currently available grafting biomaterials can 
substitute the bones’ mechanical function, illustrating the yet-
unmet medical need that would entirely substitute and regener-
ate a damaged tissue or organ. In a close future, the foreseeable 
application of calcium orthophosphates will be as a component 
of the third generation biomaterials,935,938 where they will sup-
port cells and/or other biologically active substances (peptides, 
growth factors, hormones, drugs, etc.) to guide regeneration of 
hard tissues.946-956

To finalize this review, one should note that, in spite of a long 
history of calcium orthophosphate research and many important 
discoveries, many gaps still remain in our knowledge to be inves-
tigated in future.

Notes

[a] As a mineral species, apatite was first recognized by the father 
of German geology Abraham Gottlob Werner (1750–1817) 
in 1786 and named by him from the ancient Greek απατάω 
(apatao)—“to mislead” or “to deceive,” because it had previously 
been mistaken for other minerals, such as beryl, tourmaline, 
chrysolite, amethyst, fluorite, etc. Currently, apatite is the name 
for a group of minerals with the same crystallographic structure 
and does not indicate one chemical composition. That is why, the 
term “calcium apatite” is used in this review.

[b] There are reports that dahllite belongs to the francolite 
group. Natural dahllite might be a rock-forming mineral.969 

For example, it was found in some phosphorite concretions of 
Podolia.970,971 In addition, it was found in both massive and accre-
tionary crustal phosphorites.49

[c] Collagens are fibrous, insoluble proteins found in the con-
nective tissues, including skin, bone, ligaments and cartilage.

[d] Biocompatibility is the ability of a material to perform 
with an appropriate host response in a specific application.957 For 
further details on this topic, the interested readers are referred to 
reference 958.

[e] In 1941, to honor Mr. Herbert Percy Whitlock (1868–
1948), an American mineralogist, the curator of the American 
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