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Abstract

In a typical experiment on decision making, one out of two possible stimuli is displayed and observers decide which one
was presented. Recently, Stanford and colleagues (2010) introduced a new variant of this classical one-stimulus presentation
paradigm to investigate the speed of decision making. They found evidence for ‘‘perceptual decision making in less than
30 ms’’. Here, we extended this one-stimulus compelled-response paradigm to a two-stimulus compelled-response
paradigm in which a vernier was followed immediately by a second vernier with opposite offset direction. The two verniers
and their offsets fuse. Only one vernier is perceived. When observers are asked to indicate the offset direction of the fused
vernier, the offset of the second vernier dominates perception. Even for long vernier durations, the second vernier
dominates decisions indicating that decision making can take substantial time. In accordance with previous studies, we
suggest that our results are best explained with a two-stage model of decision making where a leaky evidence integration
stage precedes a race-to-threshold process.
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Introduction

Humans can recognize objects and animals within a fraction of

a second suggesting that decisions can be made very quickly [1]. In

a typical decision making experiment, a stimulus is presented and

observers have to decide as fast and accurately as possible between

two response alternatives. The viewing time of the stimulus is

unlimited [2,3]. The speed of decision making is traditionally

quantified in terms of reaction times, i.e., the time from stimulus

onset to motor response onset. However, reaction times do not

only include the decision making time but also sensory and motor

delays, which makes it difficult to disentangle the three [4].

Decision making is often assumed for simplicity to be a one-stage

process where stimulus evidence is accumulated until the evidence

for one of the two response alternatives crosses a threshold [5–19]

(Fig. 1A).

Recently, Stanford and colleagues (2010) introduced a novel

compelled-response paradigm [20] (Fig. 1B). In this paradigm,

monkeys were first shown a red or green fixation dot. Next, two

yellow peripheral dots were displayed indicating the two potential

target locations (‘‘GO’’). Then, the fixation dot disappeared and

monkeys started a saccade to either target location. After a

variable duration (‘‘GAP’’), one of the yellow dots turned red, the

other green. Monkeys were required to saccade to the dot

matching the color of the fixation dot within 600 ms after the

disappearance of the fixation dot to receive reward (Fig. 1B).

Saccades longer than 600 ms were not rewarded even when

correct. Hence, viewing time of the stimulus was variable

depending on gap duration. For long gap durations, saccades

may be initiated even before the target is presented on the screen.

Hence, no or little stimulus evidence is accumulated leading to

chance performance because both alternatives are equally likely to

cross the threshold first. The shorter the gap durations are the

more stimulus evidence is available. Evidence for correct responses

increases and evidence for incorrect responses decreases (Fig. 1C).

Hence, the gap duration (GAP) determines the processing time

(PT ) available for decision making, i.e., PT~RT{GAP, RT for

reaction times (Fig. 1D). Stanford and colleagues plotted PT
versus the percentage of correct responses (tachometric function;

Fig. 1E; Stanford and colleagues (2010) plot the effective processing

time ePT~RT{Gap{TND, where TND is the non-decisional

time (sensory and motor delays) as estimated by the duration of the

flat part of the tachometric function [20]). The flat part of the

tachometric function at about 50% correct responses reflects the

constant sensory and motor delays. The rise time t from 50% to

75% correct responses is a measure for the accumulation of

evidence. Stanford et al. (2010) found t to be around 30 ms,

suggesting that decision making is a very rapid process. Here, we

extended the compelled-response paradigm to a two-stimulus

presentation paradigm. Our results show that decision making can

take substantial amounts of time.

Results

First, we adapted the compelled-response paradigm for human

observers and vernier stimuli. A fixation dot appeared which was

followed by two arrows (‘‘GO’’) indicating the two response

alternatives (left/right push button presses). After a gap of a
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variable duration, a vernier was presented. The vernier consisted

of two slightly offset vertical segments. The task of the observer

was to report the position of the lower segment with respect to that

of the upper segment as quickly as possible (Fig. 2A). As Stanford

and colleagues, we computed the processing time

PT~RT{GAP and determined percentage of correct responses

for any given PT (tachometric function). We found that the

tachometric function was flat for about 250–300 ms, followed by a

rapid transition. 75% correct responses (Fig. 2B) were reached at

t~63+17 ms (mean+SD) on average, a value well comparable

to Stanford and colleagues (2010).

To properly determine the processing time, it is important that

observers, indeed, start the response with the ‘‘GO’’ signal and do

not wait until the target appears [21]. If observers were holding the

response, PT would be independent of gap duration and hence

mis-calculated. The percentage of correct responses decreased

with increasing gap duration indicating that observers indeed

started the response with the ‘‘GO’’ signal (psychometric curve;

slope factor b~{0:1%=ms, significantly different from 0.0;

t(5) = 13.3160, p = 0.002; Fig. 2C). In addition, reaction times

increased only moderately with gap duration as determined by

linear regression (chronometric curve; slope factor b~0:28,

significantly different from 1.0; t(5) = 46.66, p = 0.004; Fig. 2D).

Hence, for a single vernier, our version of the compelled-response

paradigm leads to very similar results as found by Stanford et al.

[20].

In the second part of our study, we presented two verniers

immediately one after the other. The first vernier was offset either

to the left or right, whereas the second vernier was always offset in

the opposite direction (Fig. 3A). Hence, if the first vernier was

offset to the left, the second vernier was offset to the right and vice

versa. In the first condition, we presented the first vernier for

80 ms and the second vernier until the end of the response period.

If perceptual evidence were directly fed into a rapid decision

process as assumed by most race-to-threshold models, the

performance should be dominated by the first vernier, because

the evidence for the first vernier would quickly cross threshold. In

contrast to this prediction, we found that the second vernier

strongly dominates the responses for all three observers (Fig. 3B).

The dominance of the second vernier is largely unaffected by the

duration of the first vernier indicating cancelation before the race

to threshold process (Fig. 4A–C). In the second condition, both

verniers were presented with the same duration. Still, the second

vernier dominated except for the 20/20 ms condition where no

dominance of either vernier was found (Fig. 4D–F). These findings

suggest that decisions are based on an accumulation of evidence

that outlasts the 63 ms that we found in the first part of the study.

Therefore, the rise time of the tachometric function does not

Figure 1. Rapid decision making and compelled responses. A.
Race-to-threshold model. Evidence for each stimulus alternative is
accumulated until a threshold a is crossed (solid red and green lines for
either of the two stimulus alternatives, respectively). The evidence for
the stimulus alternative that crosses the threshold first determines the
decision (here, red). Reaction times vary because the accumulated
evidence varies across trials due to noise (dashed lines). B. Compelled
response paradigm [20]. A red or green central fixation dot is presented.
Then, two peripheral yellow dots appear. The response period starts
when the central fixation dot disappears (‘‘GO’’). After a variable ‘‘GAP’’
of 50–250 ms duration, one of the dots turns red and the other green.
In order to receive reward, macaque monkeys had to execute a saccade
to the dot which matched the color of the fixation dot within 600 ms
after the GO signal. The difference between the reaction time (RT) and
the gap duration (GAP) is the processing time (PT), i.e., the duration for
which stimulus evidence is available for decision making. C. Accelerated
race-to-threshold model according to Stanford et al. [20]. During the
GAP period, noise drives the decision process for both stimulus
alternatives. If gap durations are long, the noise drives evidence across
the threshold leading to a ‘‘guess’’ decision (not shown). If gap

durations are short, the evidence for the correct answer quickly
increases (red line) rapidly leading to a decision, while the evidence for
the other alternative decreases (green line). D. Total reaction times (RT)
in the compelled-response paradigm consist of the gap duration, the
constant sensory and motor delays and the actual decision making time
which is identical to the time of evidence integration. In classical
decision making experiments, no gap is presented. E. In the compelled-
response paradigm, the decision making time can be derived from the
tachometric function. The tachometric function plots performance
(percent correct) as a function of processing time PT~RT{GAP, i.e.,
the duration stimulus evidence is available for decision making. The
non-decisional time (sensory and motor delay) is thought to be
reflected in the flat part of the tachometric function where performance
is around 50%. The rise time t from chance level 50% performance to
the 75% correct responses threshold (dashed line) is a measure for
evidence accumulation. Stanford et al. (2010) estimated this time to be
about 30 ms [20].
doi:10.1371/journal.pone.0046525.g001
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reflect the full decision process, but at least partly ignores a silent

period of, as we will suggest, evidence integration.

Discussion

In the first part of the experiment, we showed that decision

making in vernier offset discrimination takes only a few tens of

milliseconds. This finding is well in line with the findings of

Stanford and colleagues who found evidence for ‘‘perceptual

decision making in less than 30 ms’’ in monkeys [1,21,22]. The

difference in duration between the two studies is most likely based

on differences in task difficulty and faster reaction times in

monkeys in general.

Stanford and colleagues (2010) fit their data with a one-stage

race-to-threshold model where the stimulus directly drives

evidence accumulation towards a threshold [3,6–20,23]. A

decision is made when evidence accumulation crosses the

threshold. Information that arrives after threshold crossing does

not change the decision. We tested this prediction in the second

part of the experiment by presenting two verniers with opposite

offset directions (Fig. 3A). If decision making takes less than 63 ms,

as estimated in the one vernier condition (Fig. 2B), the first vernier

should dominate performance when presented for durations

longer than 63 ms. Hence, performance in the condition, where

both verniers are presented for 80 ms, should be very similar to the

one vernier condition with 80 ms. The accumulated evidence for

the first vernier should have crossed the threshold before the

second vernier even entered the decision process. However, this

was clearly not the case (Fig. 3B). The second vernier dominates in

the two vernier condition and performance curves for the two

conditions are rather mirror symmetric.

How can these results be explained? In a recent study, we

investigated decision making with the one vernier fusion

paradigm, i.e., a no compelled response paradigm. We found

that accuracy and reactions times were not easily be explained

with classical one-stage models [24]. For this reason, we proposed

a two-stage model in which evidence integration and the race-to-

threshold are not one and the same process in accordance with

previous findings [25–27]. In our model, stimulus evidence is first

integrated in a buffer after sensory transmission (Fig. 3C). Because

of the buffering, evidence is not directly fed into the race-to-

threshold process. This period is invisible in one-stimulus

paradigms because subsumed in the flat part of the tachometric

curve (which is usually attributed to the non-decisional time of

Figure 2. Compelled response paradigm for vernier stimuli [20]. A. Vernier only condition. Each trial started with the presentation of a
fixation dot presented with a random duration of 800–1200 ms. After a blank period with a random duration of 200–400 ms, two arrows were
presented (‘‘GO’’) starting the response period of 600 ms. After a variable gap of 50–230 ms, a vernier was presented until the end of the response
period. Human observers indicated the offset direction as quickly as possible. Gap durations were presented randomly interleaved. B. Performance of
three observers in the vernier only condition. We determined the time from the ‘‘GO’’ signal to the response and subtracted the gap duration in each
trial (PT). Performance is at about chance level from 0 ms to about 250 ms. Then, performance quickly rises reaching 75% correct responses within
63 ms on average. The dot sizes reflect the number of responses per 10 ms bin. C. Performance as a function of gap duration. Had observers always
waited for the targets, the curve would be a constant (b~0:00%=ms; red dashed line). However, the longer the gap, the worse is performance (blue
dots; fitted linear regression, blue line: b~{0:1%=ms). Error bars represent the standard deviation of the mean (SD) for three observers. D. Reaction
times as a function of gap duration. Reaction times increase only moderately (b~0:51) indicating that observers react immediately to the go signal
(blue dots). The red curve (b~1:0) shows hypothetical RTs if observers had held the response until the cue appeared.
doi:10.1371/journal.pone.0046525.g002
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sensory and motor delays only). The output of the buffer is, then,

fed into a race-to-threshold process. The fast race-to-threshold

process is reflected in the rapid transition from chance level

performance to 75% correct responses [20]. Evidence integration

in the sensory buffer must exceed 80 ms because the second

vernier dominates even when the first vernier is presented for

80 ms. In our model, the buffer is implemented as a leaky

integrator leading to ‘‘forgetting’’ of the evidence for the first

vernier, thus, explaining the dominance of the second vernier.

Performance curves are very similar when the first vernier is

presented for various durations (Fig. 4A–E) suggesting that the

second vernier, presented until the end of the 600 ms response

period, fully ‘‘cancels’’ the first vernier during evidence integra-

tion, i.e., before the race-to-threshold process starts. This holds

also true when the two verniers have equal duration, except for the

20/20 ms condition, where none of the two verniers dominates

and performance remains at 50% dominance.

Our two stage model is well in accordance with previous work

showing that sensory processing, e.g., motion processing or

contrast detection, precede decision making [25–27]. This sensory

processing stage is very comparable to our evidence integration

stage for our high contrast vernier stimuli. A two-stage model

might also explain the difference between the present study and

the one by Stanford and colleagues (2010) which aimed to estimate

the timing of the motor decision process. If ‘‘sensory’’ evidence

integration precedes a motor decision process, then, our data

indicate that indeed the motor decision process may well be very

rapid. However, in addition to this fast motor decision process, a

slow evidence integration stage adds to the entire decision making

process.

These considerations rely on the assumption that decision

making in two- and one-stimulus presentation paradigms proceed

along the same lines. It might be that, because of the conflict

between the two verniers presented in one trial, more complex

mechanisms are in operation in two-stimulus presentation

paradigms than if only one stimulus is presented. For example, it

may be that there is strong inhibition between the vernier

detectors in the two-vernier presentation paradigm but none if

only one vernier is presented. However, whatever the mechanisms,

our vernier fusion paradigm shows evidence for a silent integration

process in decision making which is not visible in one-stimulus

presentation paradigms. We like to mention that feature fusion is

not restricted to verniers but occurs with all sorts of stimuli [28,29].

When long stimulus durations exceed the timing of evidence

integration, the difference between evidence integration and

thresholding disappears [3,4]. Therefore it is not surprising that

evidence integration and thresholding are not distinguishable for

longer stimulus durations [16,17,30,31].

In summary, we have shown that reaction times can be

substantially long in a vernier fusion paradigm. The compelled

response paradigm, using single stimulus presentations and

combined with a race to threshold model to estimate the non-

sensory time, underestimates the total decision time in the vernier

fusion paradigm. In accordance with previous work, we suggest

that decision making is a two-stage process where evidence

integration precedes a race-to-threshold process. In one-stimulus

presentation paradigms, this evidence integration cannot be disentan-

gled from sensory and motor delays because they are subsumed in

the flat part of the tachistosopic function and therefore their timing

cannot be determined. The timing of evidence integration can

only be determined with two-stimulus presentation paradigms, where

the two stimulus alternatives are presented in each single trial. We

found that the entire decision making process clearly exceeds 80 ms.

Materials and Methods

Ethics Statement
All participants signed informed written consent. The study was

approved by the Commission cantonale (VD) d’éthique de la

recherche sur l’être humain (Lausanne, Switzerland) and con-

ducted according to the principles expressed in the Declaration of

Helsinki.

Observers
Three human observers (1 female, aged 25–30 years) partici-

pated in the study. Participants had normal or corrected-to-normal

Figure 3. Compelled two-vernier stimulus response paradigm.
A. The first vernier was presented for 80 ms followed by a second
vernier with the opposite offset direction than the first vernier. The
second vernier was presented until the end of the response period. B.
For three observers, data are shown as percent dominance, i.e., the
percentage of responses in accordance with the first vernier. Hence,
when the first vernier dominates performance, dominance is above
50%; if the second vernier dominates dominance is below 50%. Dashed
curves denote performance in the vernier only condition for the three
observers (same as in Fig. 2B). The solid lines show performance in the
two-vernier condition. The second vernier dominates strongly. C. A two
stage model in which evidence is integrated first in a slow visual buffer
and then fed into a fast race-to-threshold process. In one stimulus
paradigms, the evidence integration is ‘‘invisible’’ because it is
subsumed in the flat part of the tachometric function and, thus,
confused with sensory and motor delays.
doi:10.1371/journal.pone.0046525.g003
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visual acuity as measured by the Freiburg visual acuity test [32].

All observers were nave to the purpose of the study. Observers

were paid students from the EFPL.

Setup
Stimuli were presented on a Tektronix 608 X-Y display or a HP

1332A X-Y display. Both X-Y displays were equipped with a P11

phosphor and controlled by a PC via a fast 16-bit DA converter.

Stimuli were presented at 80 cd/m2, a 1 MHz dot rate, a 200 Hz

refresh rate, and a dot pitch of 200 mm. Viewing distance was 2 m.

The room was dimly illuminated by a background light (0.5 lx) to

prevent adaptation to scotopic vision. Stimulus contrast was close

to 1.0.

Figure 4. Results of compelled two-vernier stimulus response paradigm. The first vernier was presented either for 80 ms (A, D), 40 ms (B,E)
or 20 ms (C, F). The second vernier was presented either until the end (‘‘end’’) of the response period (A, B, C) or for the same duration as the first
vernier (D, E, F). Dashed curves are re-plotted from Fig. 2B and denote performance in the vernier only condition and are identical in all six plots. Solid
lines indicate performance in the two-vernier conditions. When the second vernier was presented until the end of the response period, the second
vernier clearly dominated performance (A–C; A is the same as Fig. 3B). Performance is very similar in all three conditions. When the second vernier
was presented for the same duration as the first one, dominance of the second vernier decreased when durations of both verniers decreased (D–F).
When the first and second vernier are presented for 20 ms each, dominance remains at about the 50% level for all subjects (F), i.e., both verniers
cancel each other out. The tachometric function is flat (all three lines are on top of each other and only the blue line is visible). Except for one
observer (green line), there is no evidence that evidence for the first vernier escapes integration with the second vernier. For this observer, it seems
that in the 80/80 ms and 40/40 ms, the first vernier dominates for short gap durations.
doi:10.1371/journal.pone.0046525.g004
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Stimuli and Task
We tested two different stimulus conditions. The first condition

serves as a control and follows the compelled-response paradigm

that was recently introduced by Stanford et al. [20]. Each trial

started with a fixation dot (Fig. 2A). The disappearance of the

fixation dot indicated the beginning of a trial. Then, two arrows

appeared as a response prompt (‘‘GO’’). After a gap of a variable

duration of 50–250 ms duration, in which observers had to

prepare the response, a vernier was presented at the location of the

fixation dot for the remainder of the response period. The vernier

was composed of two slightly offset vertical segments (segments

were 109 (arc min) long, 0.59 wide, separated by a vertical gap of

19). The offset direction (left or right) was chosen randomly in each

trial. Observers were asked to report the position of the lower

segment with respect to that of the upper segment as quickly as

possible and within the response period of 600 ms by pressing one

out of two push buttons. Observers were instructed not to wait for

the stimulus, but to initiate a response as soon as the GO signal

was given. Observers received visual feedback if they did not

respond within the response period. The gap duration was varied

in 7 steps of 30 ms between 50 and 230 ms. All gap durations were

presented randomly interleaved. A total of 400 trials were

presented for each gap duration.

The second condition was identical to the control condition,

except that a sequence of two vernier stimuli with opposite offset

directions was presented in rapid succession, i.e. the interstimulus

interval is 0 ms, instead of the single vernier (Fig. 3A). The offset

direction of the first vernier was chosen randomly in each trial.

The second vernier had an offset direction opposite to that of the

first vernier. Observers perceived only one fused vernier with a

small offset and were not informed that a sequence of two vernier

stimuli was presented [33,34]. The first vernier was presented for

either 20, 40 or 80 ms and the second vernier for either the same

duration or until the end of the response period.

In the first and second condition, the horizontal offset of the

vernier(s) was 400, which was more than twice the size of the offset

discrimination threshold for each observer, as determined using

the adaptive PEST procedure [35]. Thresholds were determined

for a single vernier stimulus of 20 ms duration prior to the

experiment.

Reaction Time Analysis
Reaction times (RT) were measured from the ‘‘Go’’ Signal to

the response. Reaction times exceeding the response period of

600 ms were not included in the analysis (less than 3% of the

trials). In these trials observers are likely to have waited for the

stimulus before initiating the response.

Performance Measure
After subtraction of the gap durations from the reaction times,

responses were analyzed in time bins of 10 ms. For each bin, we

computed the dominance which is defined as the proportion of

responses that matched the offset direction of the first vernier.

Thus, values above 50% indicate dominance of the first vernier;

values below 50% indicate dominance of the second vernier. 50%

vernier dominance is the points of subjective equality, i.e., on

average the first and second vernier stimuli equally contribute to

performance. In the control condition, this measure is equivalent

to the percentage of correct responses. We plot processing time

(PT~RT{Gap) versus dominance.

Fitting
The tachometric function was fit with one out of three

parametric functions. The simplest function is given by the

constant chance level f0(x)~0:5. We fit the deviation of

performance from chance level with either a single or a linear

combination of two hyperbolic tangents:

f1(x)~
1

2
z

a

4
(1z tanh (b(x{c))) ð1Þ

f2(x)~
1

2
z

a1

4
(1z tanh (b1(x{c1)))

z
a2

4
(1z tanh (b2(x{c2)))

ð2Þ

Which of the three functions is used for the fit was determined

in a 10-fold cross-validation scheme: The parameters a,b and c

were fit to minimize the mean square error (MSE) on a training set

consisting of 90% of the data. We then evaluated a test set

consisting of the remaining 10%. This is repeated 10 times until all

data have served as test data once. The test MSE is given by the

sum of the MSEs on the 10 test sets. If a fit with two hyperbolic

tangents improved the test MSE by more than 5%, we accepted

the increase from 3 to 6 parameters. If the fit by a single hyperbolic

tangent was not significantly better than the straight line, we

plotted f0(x). Once the function class is chosen, its parameters are

fit using the full data set. The rise time t from chance level to 75%

correct responses is defined by 25% divided by ab=4, the slope of

hyperbolic tangent at its inflection point.

Acknowledgments

We would like to thank Marc Repnow for excellent technical support.

Author Contributions

Conceived and designed the experiments: JR HS. Performed the

experiments: JR. Analyzed the data: JR. Contributed reagents/materi-

als/analysis tools: JR HS. Wrote the paper: JR HS WG MHH.

References

1. Thorpe SJ, Fize D, Marlot C (1996) Speed of processing in the human visual

system. Nature 381: 520–522.

2. Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the

parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86: 1916–1936.

3. Shadlen MN, Newsome WT (1996) Motion perception: seeing and deciding.

Proc Natl Acad Sci U S A 93: 628–633.

4. Donders FC (1869) On the speed of mental processes. Acta Psychol (Amst) 30:

412–431.

5. Wald A (1947) Sequential Analysis. New York: John Wiley and Sons.

6. Vickers D (1970) Evidence for an accumulator model of psychophysical

discrimination. Ergonomics 13: 37–58.

7. Reddi BAJ, Asrress KN, Carpenter RHS (2003) Accuracy, information, and

response time in a saccadic decision task. J Neurophysiol 90: 3538–3546.

8. Ratcliff R, Smith PL (2004) A comparison of sequential sampling models for

two-choice reaction time. Psychol Rev 111: 333–367.

9. Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions.

Trends Neurosci 27: 161–168.

10. Holmes P, Brown E, Moehlis J, Bogacz R, Gao J, et al. (2005) Optimal decisions:

From neural spikes, through stochastic differential equations, to behavior. IEICE

Trans Fundamentals 88: 2496–2503.

11. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of

optimal decision making: a formal analysis of models of performance in two-

alternative forced-choice tasks. Psychol Rev 113: 700–765.

12. Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S (2010) The neural

basis of the speedaccuracy tradeoff. Trends Neurosci 33: 10–16.

Evidence Integration in Fast Decision Making

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e46525



13. Brown SD, Heathcote A (2008) The simplest complete model of choice response

time: linear ballistic accumulation. Cogn Psychol 57: 153–178.
14. Kepecs A, Uchida N, Zariwala HA, Mainen ZF (2008) Neural correlates,

computation and behavioural impact of decision confidence. Nature 455: 227–

231.
15. Roxin A, Ledberg A (2008) Neurobiological models of two-choice decision

making can be reduced to a one-dimensional nonlinear diffusion equation.
PLOS Comput Biol 4: e1000046.

16. Salinas E (2008) So many choices: what computational models reveal about

decision-making mechanisms. Neuron 60: 946–949.
17. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical

circuits. Neuron 36: 955–968.
18. Deco G, Rolls ET, Romo R (2009) Stochastic dynamics as a principle of brain

function. Prog Neurobiol 88: 1–16.
19. Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal cortex

underlies decisions even when viewing duration is dictated by the environment.

J Neurosci 28: 3017–3029.
20. Stanford TR, Shankar S, Massoglia DP, Costello MG, Salinas E (2010)

Perceptual decision making in less than 30 milliseconds. Nat Neurosci 13: 379–
385.

21. Salinas E, Shankar S, Costello MG, Zhu D, Stanford TR (2010) Waiting is the

hardest part: Comparison of two computational strategies for performing a
compelled-response task. Front Comput Neurosci 4: 153.

22. Shankar S, Massoglia DP, Zhu D, Costello MG, Stanford TR, et al. (2011)
Tracking the temporal evolution of a perceptual judgment using a compelled-

response task. J Neurosci 31: 8406–8421.

23. Heekeren HR, Marrett S, Ungerleider LG (2008) The neural systems that

mediate human perceptual decision making. Nat Rev Neurosci 9: 467–479.
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