Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2008 Sep 27;14(3):179–182. doi: 10.1007/s12298-008-0017-z

Spirulina nitrate-assimilating enzymes (NR, NiR, GS) have higher specific activities and are more stable than those of rice

Ahmad Ali 1, Pamela Jha 1, Kuljeet Singh Sandhu 1, Nandula Raghuram 1,2,
PMCID: PMC3550616  PMID: 23572885

Abstract

Spirulina platensis, a cyanobacterium whose N-metabolic pathway is similar to that of higher plants like rice (Oryza sativa), produces tenfold more protein, indicating a higher capacity for nitrate utilization/removal. Our in vitro analyses in crude extracts revealed that this can be attributed, at least in part, to the higher specific activities (3–6 fold) and half lives (1.2–4.4 fold) of the N-assimilating enzymes, nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) in Spirulina.

Key words: Nitrate reductase, Nitrite reductase, Glutamine synthetase, Spirulina platensis, Oryza sativa

Full Text

The Full Text of this article is available as a PDF (400.7 KB).

Footnotes

An erratum to this article is available at http://dx.doi.org/10.1007/s12298-009-0022-x.

References

  1. Ali A., Sivakami S., Raghuram N. Effect of nitrate, nitrite, ammonium, glutamate, glutamine and 2-oxoglutarate on the RNA levels and enzyme activities of nitrate reductase and nitrite reductase in rice. Physiol. Mol. Biol. Plants. 2007;13(1):17–25. [Google Scholar]
  2. Ali A., Sivakami S., Raghuram N. Regulation of activity and transcript levels of NR in rice (Oryza sativa): Roles of protein kinase and G-protein. Plant Sci. 2007;172:406–413. [Google Scholar]
  3. Andrews M., Lea P.J., Raven J.A., Lindsey K. Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater Nuse efficiency? An assessment. Ann. Appl. Biol. 2004;45(1):25–40. [Google Scholar]
  4. Campbell W.H. Nitrate reductase structure, function and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:277–303. doi: 10.1146/annurev.arplant.50.1.277. [DOI] [PubMed] [Google Scholar]
  5. Choi H.K., Kleinhofs A., An G. Nucleotide sequence of rice nitrate reductase genes. Plant Mol. Biol. 1989;13:731–733. doi: 10.1007/BF00016030. [DOI] [PubMed] [Google Scholar]
  6. Chuntapa B., Powtongsook S., Menasveta P. Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture. 2003;220:355–366. [Google Scholar]
  7. Glazier S.A., Campbell E.R., Campbell W.H. Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water. Anal. Chem. 1998;70(8):1511–1515. doi: 10.1021/ac971146s. [DOI] [PubMed] [Google Scholar]
  8. Goto S., Akagawa T., Kojima S., Hayakawa T., Yamaya T. Organization and structure of NADH-dependent glutamate synthase gene from rice plants. Biochim. Biophys. Acta. 1998;1387:298–308. doi: 10.1016/s0167-4838(98)00142-3. [DOI] [PubMed] [Google Scholar]
  9. Jha P., Ali A., Raghuram N. Nitrate induction of nitrate reductase and its inhibition by nitrite and ammonium ions in Spirulina plantensis. Physiol. Mol. Biol. Plants. 2007;13(2):163–167. [Google Scholar]
  10. Kim M.H., Chung W.T., Lee M.K., Lee J.Y., Ohh S.J., Lee J.H., Park D.H., Kim D.J., Lee H.Y. Kinetics of removing nitrogenous and phosphorous compounds from swine waste by growth of microalga, Spirulina platensis. J. Microbiol. Biotechnol. 2000;10(4):455–461. [Google Scholar]
  11. Kronzucker H.J., Glass A.D.M., Siddiqi M.Y., Kirk G.J.D. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol. 2000;145:471–476. doi: 10.1046/j.1469-8137.2000.00606.x. [DOI] [PubMed] [Google Scholar]
  12. Lam H.M., Coshigano K., Oliveira I., Melo-Oliveira R., Coruzzi G. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:569–593. doi: 10.1146/annurev.arplant.47.1.569. [DOI] [PubMed] [Google Scholar]
  13. Lochab S., Pathak R.R., Raghuram N. Molecular approaches for enhancement of nitrogen use efficiency in plants. In: Abrol Y.P., Raghuram N., Sachdev M.S., editors. Agricultural Nitrogen use & its Environmental Implications. Delhi: IK International; 2007. pp. 327–350. [Google Scholar]
  14. Lodi A., Binaghi L., Solisio C., Converti A., Del Borghi M. Nitrate and phosphate removal by Spirulina platensis. J. Ind. Microbiol. Biotechnol. 2003;30:656–660. doi: 10.1007/s10295-003-0094-5. [DOI] [PubMed] [Google Scholar]
  15. Miflin B.J., Habash D.J. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in nitrogen utilization of crops. J. Exp. Bot. 2002;53:979–987. doi: 10.1093/jexbot/53.370.979. [DOI] [PubMed] [Google Scholar]
  16. Raghuram N., Pathak R.R., Sharma P. Signalling and the molecular aspects of N-Use-Efficiency in higher plants. In: Singh R. P., Jaiwal P.K., editors. Biotechnological approaches to improve nitrogen use efficiency in plants. Houston, Texas, USA: Studium Press LLC; 2006. pp. 19–40. [Google Scholar]
  17. Sakamoto A., Ogawa M., Masumura T., Shibata D., Takeba G., Tanaka K., Fujii S. Three cDNA sequences coding for glutamine synthetase polypeptide in Oryza sativa L. Plant Mol. Biol. 1989;13(5):611–614. doi: 10.1007/BF00027323. [DOI] [PubMed] [Google Scholar]
  18. Shapiro B.M., Stadtman E.R. Methods in Enzymology. New York: Academic Press; 1970. Glutamine Synthetase (Escherichia coli) pp. 910–922. [Google Scholar]
  19. Singh D.P., Singh N. Calcium and phosphate regulation of nitrogen metabolism in the cyanobacterium Spirulina platensis under high light stress. Curr. Microbiol. 2000;41:368–363. doi: 10.1007/s002840010151. [DOI] [PubMed] [Google Scholar]
  20. Stitt M., Muller C., Matt P., Gibon Y., Carillo P., Morcuende R., Scheible W.R., Krapp A. Steps towards an integrated view of N metabolism. J. Exp. Bot. 2002;53:959–970. doi: 10.1093/jexbot/53.370.959. [DOI] [PubMed] [Google Scholar]
  21. Vonshak A. Spirulina platensis (Arthrospira): Physiology, Cell-biology, and Biotechnology. London: Taylor and Francis; 1997. [Google Scholar]
  22. Yabuki Y., Mori E., Tamura G. Nitrite reductase in the cyanobacterium Spirulina platensis. Agric. Biol. Chem. 1985;49:3061–3062. [Google Scholar]

Articles from Physiology and Molecular Biology of Plants are provided here courtesy of Springer

RESOURCES