Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2010 Aug 13;16(1):39–51. doi: 10.1007/s12298-010-0006-x

Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens

Mamta R Shah 1, Prasun K Mukherjee 1, Susan Eapen 1,
PMCID: PMC3550631  PMID: 23572953

Abstract

Development of transgenic Nicotiana tabacum and Lycopersicon esculentum expressing an endochitinase (ech42) gene from biocontrol fungus Trichoderma virens using Agrobacterium-mediated genetic transformation is reported in this paper. Integration of transgene in the genome of transgenic plants was demonstrated using polymerase chain reaction and Southern-blot hybridization, while expression was ascertained by reverse transcription polymerase chain reaction. Histochemical analysis confirmed the expression of GUS enzyme in transformed shoots. Levels of endochitinase enzyme in transgenic plants were found to be up to 10 fold higher compared to control plants. Endochitinase enzyme of 42 kDa was also visualized on SDS-PAGE gel using fluorimetric zymogram in transgenic plants. Endochitinase activity was found to be higher in leaf and stem than the root tissue in transgenic tomato plants. Transgenic lines of both plants showed enhanced resistance to fungal pathogens and a strong negative correlation was found between expression level of endochitinase enzyme and size of disease lesions. Inheritance of transgene, expression and resistance to fungal pathogens of T1 transgenic tobacco lines was also analysed. The results of the present studies show that ech42 is a promising candidate gene for developing fungal disease resistance in tomato plants.

Keywords: Chitinase, Tobacco, Tomato, Transgenic plants, Trichoderma virens

Full Text

The Full Text of this article is available as a PDF (521.0 KB).

References

  1. Baek J.M., Howell C.R., Kenerley C.M. The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet. 1999;35:41–50. doi: 10.1007/s002940050431. [DOI] [PubMed] [Google Scholar]
  2. Benefy P.N., Chua N.H. The cauli flower mosaic virus 35S promoter: Combinational regulation of transcription in plants. Science. 1990;250:959–966. doi: 10.1126/science.250.4983.959. [DOI] [PubMed] [Google Scholar]
  3. Benefy P.N., Ren L., Chua N.H. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue specific expression patterns. EMBO J. 1989;8:2195–2205. doi: 10.1002/j.1460-2075.1989.tb08342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolar J.P., Norelli J.L., Wong K.W., Hayes C.K., Harman G.E., Aldwinckle H.S. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology. 2000;90(1):72–77. doi: 10.1094/PHYTO.2000.90.1.72. [DOI] [PubMed] [Google Scholar]
  5. Bregitzer P., Tonks D. Inheritance and expression of transgene in Barley. Crop Sci. 2003;43:4–12. doi: 10.2135/cropsci2003.0004. [DOI] [Google Scholar]
  6. Caligari P.D.S., Yapabandara Y.M.H.B., Paul E.M., Perret J., Roger P., Dunwell J.M. Field performance of derived generations of transgenic tobacco. Theor. Appl. Genet. 1993;86:875–879. doi: 10.1007/BF00212615. [DOI] [PubMed] [Google Scholar]
  7. Chakrabarti A., Ganapathi T., Mukherjee P., Bapat V. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta. 2003;216(4):587–596. doi: 10.1007/s00425-002-0918-y. [DOI] [PubMed] [Google Scholar]
  8. Cheng M., Jarret R.L., Li Z., Demski J.W. Expression of foreign genes in transgenic peanut plants generated by Agrobacterium-mediated transformation. Plant cell Reports. 1997;16:541–544. doi: 10.1007/BF01142320. [DOI] [PubMed] [Google Scholar]
  9. Choquer M., Fournier E., Kunz C., Levis C., Pradier J.M., Simon A., Viaud M. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett. 2007;277(1):1–10. doi: 10.1111/j.1574-6968.2007.00930.x. [DOI] [PubMed] [Google Scholar]
  10. Collinge D.B., Kragh K.M., Mikkelsen J.D., Nielsen K.K., Rasmussen U., Vad K. Plant chitinases. Plant J. 1993;3:31–40. doi: 10.1046/j.1365-313X.1993.t01-1-00999.x. [DOI] [PubMed] [Google Scholar]
  11. Cortina C., Culianez-Macia F.A. Tomato transformation and transgenic plant production. Plant cell, Tissue and Organ Culture. 2004;76:269–275. doi: 10.1023/B:TICU.0000009249.14051.77. [DOI] [Google Scholar]
  12. Emani C., Garcia J.M., Lopata-Finch E., Pozo M.J., Uribe P., Kim D.J., Sunilkumar G., Cook D.R., Kenerley C.M., Rathore K.S. Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnology Journal. 2003;1:321–336. doi: 10.1046/j.1467-7652.2003.00029.x. [DOI] [PubMed] [Google Scholar]
  13. Esposito S., Colucci M.G., Frusciante L., Fillippone E., Lorito M., Bressan R.A. Antifungal transgenes expression in Petunia hybrida. Acta Hort. 2000;508:157–161. [Google Scholar]
  14. Gahakwa D., Maqbool S.B., Fu X., Sudhakar D., Christou P., Kohli A. Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgene show similar behaviour in diverse genetic background. TAG theoretical and applied genetics. 2000;101(3):388–399. doi: 10.1007/s001220051495. [DOI] [Google Scholar]
  15. Hoeberichts F.A., Have A.T., Woltering E.J. A tomato metacapsase gene is upregulated during programmed cell death in Botrytis cinerea infected leaves. Planta. 2003;217:517–522. doi: 10.1007/s00425-003-1049-9. [DOI] [PubMed] [Google Scholar]
  16. Horsch R.B., Fraley R.T., Rogers S.G., Sanders P.R., Lloyd A., Hoffmann Inheritance of functional foreign gene in plants. Science. 1983;223:496–498. doi: 10.1126/science.223.4635.496. [DOI] [PubMed] [Google Scholar]
  17. Horsch R.B., Fry J.E., Hoffmann N.L., Rogers S.G., Fraley R.T. A simple method for transferring genes into plants. Science. 1988;227:1229–1231. [Google Scholar]
  18. Howell C.R. Mechanisms employed by T. virens in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 2003;87:4–10. doi: 10.1094/PDIS.2003.87.1.4. [DOI] [PubMed] [Google Scholar]
  19. James V.A., Avart C., Worland B., Snape J.W., Vain P. The relationship between homozygous and hemizygous transgene expression levels over generations in populations of transgenic rice plants. Theor. Appl. Genet. 2002;104:553–561. doi: 10.1007/s001220100745. [DOI] [PubMed] [Google Scholar]
  20. Jang Y.S., Sohn S.I., Wang M.H. The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta. 2006;223(3):449–456. doi: 10.1007/s00425-005-0100-4. [DOI] [PubMed] [Google Scholar]
  21. Jefferson R.A. In: GUS protocol: using GUS gene as a reporter of gene expression. Gallagher R., editor. California: Academic; 1987. pp. 103–113. [Google Scholar]
  22. Jongedijk E., Tigelaar H., Van Roekel J.S.C., Bres-Vloemans S.A., Dekker I., van den Elzen P.J.M., Cornelissen B.J.C., Melchers L.S. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica. 1995;85:173–180. doi: 10.1007/BF00023946. [DOI] [Google Scholar]
  23. Kikkert J.R., Ali G.S., Wallace P.G., Reisch B., Reustle G.M. Expression of a fungal chitinase in Vitis vinifera L. ‘Merlot’ and ‘Chardonnay’ plants produced by biolistic transformation. Acta Hort. 2000;528:297–303. [Google Scholar]
  24. Kim D.J., Baek J.M., Uribe P., Kenerly C.M., Cook D.R. Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet. 2002;40(6):374–384. doi: 10.1007/s00294-001-0267-6. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–668. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lorbiecke R., Sauter M. Induction of cell growth and cell division in the intercalary meristem of submerged deep water rice (Oryza sativa L.) Planta. 1998;204:140–145. doi: 10.1007/s004250050240. [DOI] [Google Scholar]
  27. Lorito M., Woo S.L., Fernandez I.G., Colucci G., Harman G.E., Pintor-Toro J.A., Fillippone E., Muccifora S., Lawrence C.B., Zoina A., Tuzun S., Scala F. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogen. Proc Natl Acad Sci USA. 1998;95:7860–7865. doi: 10.1073/pnas.95.14.7860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lowry O.H., Rosebrough N.J., Farr A., Randall R.J. Protein measurement with the Folin-Phenol reagents. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  29. Mora A.A., Earle E.D. Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Molecular Breeding. 2001;8:1–9. doi: 10.1023/A:1011913100783. [DOI] [Google Scholar]
  30. Mukhopadhyay A.N., Mukherjee P.K. Fungi as fungicides. Int J Tropical Plant Disease. 1996;14:1–17. [Google Scholar]
  31. Murashige T., Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  32. Powell N.T., Melendez P.L., Batten C.K. Disease complexes in tobacco involving Meloidogyne incognita and certain soil-borne fungi. Phytopathology. 1971;61:1332–1337. doi: 10.1094/Phyto-61-1332. [DOI] [Google Scholar]
  33. Ren Y., Wee K.E., Chang F.N. Deficiency of current methods in assaying endochitinase ctivity. Biochem. Biophy. Res. Commun. 2000;268:302–305. doi: 10.1006/bbrc.2000.2118. [DOI] [PubMed] [Google Scholar]
  34. Sunilkumar G., Mohr L., Lopata F.E., Emani C., Rathore S.K. Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol. Biol. 2002;50:463–474. doi: 10.1023/A:1019832123444. [DOI] [PubMed] [Google Scholar]
  35. Tabaeizadeh Z., Agharbaoui Z., Harrak H. Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahlia race 2. Plant Cell Rep. 1999;19:197–202. doi: 10.1007/s002990050733. [DOI] [PubMed] [Google Scholar]
  36. Tang W, Newton RJ and Weidner DA (2006). Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot. 1–10. [DOI] [PubMed]
  37. Terakawa T., Takaya N., Horiuchi H., Koike M., Takagi M. A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco. Plant Cell Rep. 1997;16:439–443. doi: 10.1007/BF01092762. [DOI] [PubMed] [Google Scholar]
  38. Vain P., James V.A., Worland B., Snape J.W. Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theor. Appl. Genet. 2002;105:878–889. doi: 10.1007/s00122-002-1039-5. [DOI] [PubMed] [Google Scholar]
  39. Van den Elzen P.J.M., Jongedijk E., Melchers L.S., Cornelissen B.J.C. Virus and fungal resistance: from laboratory to field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1993;342:271–278. doi: 10.1098/rstb.1993.0157. [DOI] [Google Scholar]
  40. Viterbo A., Ramot O., Chernin L., Chet I. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Von Leeuwenhoek. 2002;81:549–556. doi: 10.1023/A:1020553421740. [DOI] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES