Abstract
Agrobacterium mediated genetic transformation of plants have advantages over other methods, especially for making single copy transgenic plants with reduced chances of gene silencing and instability. However, monocotyledonous plant species could not utilize the full potential of this system because of possible limitations in Agrobacterium interaction with monocot plant cells. Agrobacterium attachment as a factor in genetic transformation was studied in the leaf, shoot apex, and leaf derived callus of sorghum (Sorghum bicolor (L) Moench). Pre-induction of Agrobacterium with acetosyringone was found necessary for Agrobacterium attachment to sorghum tissues. All the explants responded positively, with preferential Agrobacterium attachment and colonization around the tissues having actively dividing cells. Callus proved to be the best explant for Agrobacterium attachment as observed in scanning electron microscopy and transient GUS expression. Loss of Agrobacterium attachment was observed with an increase in the degree of tissue differentiation.
Key words: Genetic transformation, Acetosyringone, Scanning electron microscopy, Transient gene expression, GUS assays, qRT-PCR
Full Text
The Full Text of this article is available as a PDF (436.1 KB).
Abbreviations
- IAA
Indole-3-acetic acid
- IBA
Indole-3-butyric acid
- BAP
Benzyl amino purine
- ADS
Adenine sulphate
References
- Aldemita R.R., Hodges T.K. Agrobacterium tumefaciens-mediated transformation of Japonica and Indica rice varieties. Planta. 1996;199:612–617. doi: 10.1007/BF00195194. [DOI] [Google Scholar]
- Arencibia A.D., Carmona E.R., Tellez P., Chan M.T., Yu S.M., Trujillo L.E., Oramas P. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 1998;7:1–10. doi: 10.1023/A:1008845114531. [DOI] [Google Scholar]
- Arockiasamy S., Ignacimuthu S. Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep. 2007;26:1745–1753. doi: 10.1007/s00299-007-0377-9. [DOI] [PubMed] [Google Scholar]
- Bradley L.R., Kim J.S., Matthysse A.G. Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J. Bacteriol. 1997;179:5372–5379. doi: 10.1128/jb.179.17.5372-5379.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cangelosi G.A., Hung L., Puvanesarajah V., Stacey G., Ozga D.A., Leigh J.A., Nester E.W. Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their role in plant interaction. J. Bacteriol. 1987;169:2086–2091. doi: 10.1128/jb.169.5.2086-2091.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas C.J., Halperin W., Nester E.W. Agrobacterium tumefaciens mutants affected in attachment to plant cell. J. Bacteriol. 1982;152:1265–1275. doi: 10.1128/jb.152.3.1265-1275.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enriquez-Obregon G.A., Vazquez-Padron R.I., Prieto-Sansonov D.L., De la Riva G.A., Selman-Housein G. Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta. 1998;206:20–27. doi: 10.1007/s004250050369. [DOI] [Google Scholar]
- Frame B.R., Shou H., Chikwamba R.K., Zhang Z., Xiang C., Fonger T.M., Pegg S.E.K., Li B., Nettleton D.S., Pei D., Wang K. Agrobacterium tumefaciens-mediated transformation of maize embryo using a standard binary vector system. Plant Physiol. 2002;129:13–22. doi: 10.1104/pp.000653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fromm M., Taylor L., Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature. 1986;319:791–793. doi: 10.1038/319791a0. [DOI] [PubMed] [Google Scholar]
- Fullner K.J., Lara J.C., Nester E.W. Pilus assembly by Agrobacterium T-DNA transfer genes. Science. 1996;273:1107–1109. doi: 10.1126/science.273.5278.1107. [DOI] [PubMed] [Google Scholar]
- Gelvin S.B. Agrobacterium and plant genes involved in T-DNA transfer and integration. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 2000;51:223–256. doi: 10.1146/annurev.arplant.51.1.223. [DOI] [PubMed] [Google Scholar]
- Gelvin S.B. Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol. Mol. Biol. Rev. 2003;67:16–37. doi: 10.1128/MMBR.67.1.16-37.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graves A.E., Goldman S.L., Banks S.W., Graves A.C.F. Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp. and Triticum aestivum. J Bactriol. 1988;170:2395–2400. doi: 10.1128/jb.170.5.2395-2400.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishida Y., Saito H., Ohta S., Hiei Y., Komari T., Kumashiro T. High Efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 1996;14:745–750. doi: 10.1038/nbt0696-745. [DOI] [PubMed] [Google Scholar]
- Jefferson R.A., Kavanagh T.A., Bevan M.W. GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunik T., Tzfira T., Kapulnik Y., Gafni Y., Dingwall C., Citovsky V. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA. 2001;98:1871–1876. doi: 10.1073/pnas.041327598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M.H., Bostock R.M. Agrobacterium T-DNAmediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr. Genet. 2006;49:309–322. doi: 10.1007/s00294-006-0059-0. [DOI] [PubMed] [Google Scholar]
- Lima I.G., Duarte R.T., Furlaneto L., Baroni C.H., Fungaro M.H., Furlaneto M.C. Transformation of the entomopathogenic fungus Paecilomyces fumosoroseus with Agrobacterium tumefaciens. Lett. Appl. Microbiol. 2006;42:631–636. doi: 10.1111/j.1472-765X.2006.01861.x. [DOI] [PubMed] [Google Scholar]
- Lippincott J.A., Lippincott B.B. Cell walls of crowngall tumors and embryogenic plant tissues lack Agrobacterium adherence sites. Science. 1978;199:1075–1078. doi: 10.1126/science.199.4333.1075. [DOI] [PubMed] [Google Scholar]
- Lorz H., Baker B., Schell J. Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 1985;199:473–497. doi: 10.1007/BF00330256. [DOI] [Google Scholar]
- Matthysse A.G., Homes K.V., Gurlitz R.H.G. Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J. Bacteriol. 1981;145:583–595. doi: 10.1128/jb.145.1.583-595.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthysse A.G., Yarnall H., Boles S.B., McMahan S.A. Region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. Biochim Biophys Acta. 2000;1490:208–212. doi: 10.1016/s0167-4781(99)00250-x. [DOI] [PubMed] [Google Scholar]
- Matzke M.A., Aufsatz W., Kanno T., Mette M.F., Matzke A.J. Homology-dependent gene silencing and host defense in plants. Adv Genet. 2002;46:235–275. doi: 10.1016/S0065-2660(02)46009-9. [DOI] [PubMed] [Google Scholar]
- Mohanty A., Sarma N.P., Tyagi A.K. Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati1 and transmission of the transgene to R2 progeny. Plant Sci. 1999;147:127–137. doi: 10.1016/S0168-9452(99)00103-X. [DOI] [Google Scholar]
- Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962;15:473–797. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
- Negrotto D., Jolley M., Beer S., Wenck A.R., Hansen G. The use of phosphomannose-isomerase as an selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 2000;19:798–803. doi: 10.1007/s002999900187. [DOI] [PubMed] [Google Scholar]
- Piers K.L., Heath J.D., Liang X., Stephens K.M., Nester E.W. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA. 1996;93:1613–1618. doi: 10.1073/pnas.93.4.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potrykus I. Gene transfer to plants: Assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 1991;42:205–225. doi: 10.1146/annurev.pp.42.060191.001225. [DOI] [Google Scholar]
- Sanford J. The biolistic process. Trends Biotechnol. 1988;6:299–302. doi: 10.1016/0167-7799(88)90023-6. [DOI] [Google Scholar]
- Shillito R., Saul M., Paszkowski J., Muller M., Potrykus I. High-efficiency direct transfer to plants. Biotechnol. 1985;3:1099–1103. doi: 10.1038/nbt1285-1099. [DOI] [Google Scholar]
- Smith R.H., Hood E.E. Agrobacterium tumefaciens: transformation of monocotyledons. Crop Sci. 1995;35:301–309. [Google Scholar]
- Stenlid J. Development of a rapid and simple Agrobacterium tumefaciens-mediated transformation system for the fungal pathogen Heterobasidion annosum. FEMS Microbiol. Lett. 2006;255:82–88. doi: 10.1111/j.1574-6968.2005.00069.x. [DOI] [PubMed] [Google Scholar]
- Tzvi T., Vitaly C. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 2002;12:121–129. doi: 10.1016/S0962-8924(01)02229-2. [DOI] [PubMed] [Google Scholar]
- Zhao Z.Y., Cai T., Tagliani L., Miller M., Wang N., Pang H., Rudert M., Schroeder S., Hondred D., Seltzer J., Pierce D. Agrobacterium-mediated sorghum transformation. Plant. Mol. Biol. 2000;44:789–798. doi: 10.1023/A:1026507517182. [DOI] [PubMed] [Google Scholar]
- Zhu Y., Nam J., Carpita N.C., Matthysse A.G., Gelvin S.B. Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol. 2003;133:1000–1010. doi: 10.1104/pp.103.030726. [DOI] [PMC free article] [PubMed] [Google Scholar]