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Abstract We developed and evaluated an automatic stent

strut detection method in intravascular optical coherence

tomography (IVOCT) pullback runs. Providing very high

resolution images, IVOCT has been rapidly accepted as a

coronary imaging modality for the optimization of the

stenting procedure and its follow-up evaluation based on

stent strut analysis. However, given the large number of

struts visible in a pullback run, quantitative three-dimen-

sional analysis is only feasible when the strut detection is

performed automatically. The presented method first

detects the candidate pixels using both a global intensity

histogram and the intensity profile of each A-line. Gaussian

smoothing is applied followed by specified Prewitt com-

pass filters to detect the trailing shadow of each strut. Next,

the candidate pixels are clustered using the shadow infor-

mation. In the final step, several filters are applied to

remove the false positives such as the guide wire. Our new

method requires neither a priori knowledge of the strut

status nor the lumen/vessel contours. In total, 10 IVOCT

pullback runs from a 1-year follow-up study were used for

validation purposes. 18,311 struts were divided into three

strut status categories (malapposition, apposition or cov-

ered) and classified based on the image quality (high,

medium or low). The inter-observer agreement is 95 %.

The sensitivity was defined as the ratio of the number of

true positives and the total number of struts in the expert

defined result. The proposed approach demonstrated an

average sensitivity of 94 %. For malapposed, apposed and

covered stent struts, the sensitivity of the method is

respectively 91, 93 and 94 %, which shows the robustness

towards different situations. The presented method can

detect struts automatically regardless of the strut status or

the image quality, and thus can be used for quantitative

measurement, 3D reconstruction and visualization of the

stents in IVOCT pullback runs.

Keywords IVOCT � Stent analysis � Strut detection �
Strut segmentation � Guide wire removal

Introduction

Heart disease is a leading cause of death in the developed

countries and coronary artery disease (CAD) is the most

common form [1]. In the treatment of CAD, stents are

placed in the coronary arteries by means of the percuta-

neous coronary intervention (PCI) procedure. A stent is a

tiny tube-like structure that is usually made of a wire mesh

which is designed to be inserted into a vessel and functions

as a scaffold device to keep the vessel open. The first

generation of stents were bare metal stents, which have

proven to be associated with an increased risk of coronary

restenosis during the vessel wall healing process based on

long term follow up studies [2, 3]. The second genera-

tion—drug eluting stents (DES) significantly decreased the

occurrence of restenosis, but they are associated with late

acquired stent malapposition which may lead to in-stent

thrombosis [4]. Although newly implanted stents usually

are located at the lumen boundary without tissue coverage

(apposition) and later on nicely covered with a thin layer of

tissue, still acute malapposition may occur or they may
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obstruct the blood flow to side-branches [5]. Therefore,

detecting the stent strut position is highly important for

stent placement evaluation and its follow-up analysis.

Intravascular ultrasound (IVUS) has been used for auto-

matic stent strut detection, but its limited spatial resolution

and low signal-to-noise ratio makes the detection difficult.

To the best of our knowledge, no paper has been published

for precise strut segmentation in IVUS pullback runs. As a

relatively new optical signal acquisition technique, IVOCT

imaging has a very high resolution (10–20 lm) which is

about ten times higher than IVUS. IVOCT has been used as

the exclusive technology for the precise in vivo evaluation

of strut coverage and vessel wall healing [6–8]. The acqui-

sition is performed similar to IVUS; the imaging catheter

acquires cross-sectional images of the coronary artery by

emitting near infrared (NIR) light instead of ultrasound

towards the vessel wall in a radial manner while the trans-

ducer is rotating and the catheter is pulled back with a high

and constant pullback speed. The superior sensitivity of the

newly developed frequency-domain OCT systems (OFDI) is

not only a key factor in achieving high image resolution, but

also an important prerequisite for high speed imaging. It

allows an acquisition speed of 100–160 frames per second

and a very fast pull back speed (15–25 mm/s) which highly

decreases the imaging time; on the other hand, it results into

a large amount of images for each single procedure [9, 10].

Two IVOCT images in different coordinate systems are

shown in Fig. 1.

Research is being carried out worldwide on IVOCT

images, but an automated strut detection method that works

robustly on routinely acquired clinical datasets remains a

challenge. Many studies still depend on the manual strut

detection. Two approaches [11, 12] require the lumen and

vessel wall contour to define the region of interest (ROI),

and subsequently detect the newly implanted and covered

struts in two different modes. For severely malapposed

struts, they may be located outside the ROI and therefore

cannot be detected. Another approach [13] detects the strut

luminal surface in each A-line (scan-lines in the polar

image) using flexible intensity thresholds. A priori

knowledge of the strut status (apposed or covered) is

needed for stent strut detection. The type of the implanted

device is also required for apposition assessment. The

catheter artifacts and guide wire are masked with a fixed

region and the guide wires beyond the mask region are

manually detected and removed, which may be time-

consuming.

Separating modes for different strut status: ‘‘malappo-

sition’’, ‘‘apposition’’ and ‘‘covered’’ usually can improve

the detection accuracy, but a pullback run or even a single

image may contain struts with different status. In this

paper, we present a robust algorithm to process an entire

IVOCT pullback run, which requires neither a priori status

information, nor lumen or vessel wall contours.

Materials

During this research, all of our IVOCT pullback runs were

acquired using a C7-XR FD-OCT intravascular imaging

system with a C7 DragonflyTM Intravascular Imaging

catheter (LightLab Imaging, Inc., Westford, MA, USA).

The intravascular imaging catheter works together with a

6F guiding catheter. The automated pullback speed is

20 mm/s with a data frame rate of 100 frames per second.

During the acquisition, a standard 0.014 inch steerable

guide wire may be used. Temporary blood flushing is

performed with a contrast infusion.

We use the 16-bit raw image data in polar coordinate

system instead of the commonly used 8-bit Cartesian image

Fig. 1 Examples of IVOCT images in a Cartesian coordinate system and in b polar coordinate system respectively. In both images, a stent strut,

the guide wire and the imaging catheter are annotated
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representation [12], because it contains all of the original

information and some details might get lost during the

conversion from polar to Cartesian. Each polar frame has

the same size of 960 9 504 pixels.

Although all the pullback runs were acquired with the

same IVOCT system, they differ significantly in image

quality. There are multiple reasons for that: for example,

the noise can be caused by the residual blood after the

infusion or by tiny air bubbles [7]. Moreover, the limited

penetration depth, imaging catheter position, cardiac

motion, redundant echo and many other factors can also

affect the image quality.

Method

General approach for stent strut detection

The automatic strut detection method was developed using

the MeVisLab toolbox (MeVis Medical Solutions AG,

Bremen, Germany) together with in-house developed C??

modules. As the flow chart in Fig. 2 shows, our detection

method consists of five steps: first, the pullback runs are

preprocessed to de-noise and define the proper ROI. Next,

the strut candidate pixels are detected by locating the front

edges of the struts in IVOCT images. In order to remove

false candidate pixels and to cluster the remaining pixels

into discrete struts, the shadow edges are detected. Finally

after clustering, the guide wire and some false positives are

removed using 3D information of the whole pullback run.

In the following sections, each of the subsequent steps for

the strut detection in IVOCT is described in further detail.

Preprocessing

The preprocessing starts with noise reduction in the IVOCT

pullback run since it hampers the strut detection. The main

part of the noise has a relatively low intensity value.

According to Ughi et al. [13], the lowest 5 % intensity

values of the histogram can be considered as noise. In a

similar fashion, we determine the histogram of the whole

pullback run and set all pixels below this threshold value to

0.

The preprocessing continues with the definition of the

Region of Interest (ROI). In order to detect also the mal-

apposed struts, we need to select a bigger ROI than the

region between lumen contour and vessel wall contour.

However in the lumen area, the imaging catheter may

generate very bright artifacts which have similar intensity

values as stent struts. The ROI should exclude these

artifacts.

The catheter artifact appears like rings in the center of

the image as Fig. 1a shows. After a proper z-offset cor-

rection, they are constant in all frames of a single pullback

run [14]. In the polar data, these artifacts are shown as

parallel vertical lines at the left side of the images and they

may affect the strut detection. To exclude these artifacts, a

minimum filter in z-direction and a vertical line detection

method [15] are applied to each IVOCT pullback run. The

region to the right of these continuous straight vertical lines

determines the ROI for our detection method.

Candidate pixel detection

In IVOCT images, a metal stent strut appears normally as a

bright spot with a trailing shadow behind it, since the strut

reflects most of the light, while normal vessel tissue scat-

ters and attenuates the light. Therefore, a strut has higher

intensity values than the surrounding tissue. The pixels

having the maximum intensity value in each A-line are

candidates, under the assumption that there is only one

strut per A-line. This also means that currently we exclude

overlapping stents. Figure 3 shows two examples of the

intensity profile.

In general, one cannot state that the struts always have

the highest intensity values in an entire pullback run. For

that reason, a global intensity threshold is not applicable,

and we have decided to use the slope of the intensity

profile. By detecting the maximum intensity and the dis-

tance between this peak point and the first pixel of the

Input polar 
pullback runs

Preprocessing

Output strut 
positions

Candidate pixel detection

Peak point detection

Candidate pixel 
selection

Shadow edge 
detection

Clustering

False positive 
removal

Fig. 2 Flow chart of the strut detection algorithm processing steps
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potential shadow area, the slope is calculated. The potential

shadow area is defined by a window of 30 continuous low

intensity pixels. The maximum intensity value of the

potential shadow region was set as the 89th percentile of

the intensity histogram of the ROI in the entire pullback

run. The slope reflects the local intensity change, and strut

pixels usually are associated with a steeper slope than tis-

sue pixels. An example of the candidate pixel results is

shown in Fig. 4b. Because the distance from struts to their

trailing shadows are similar, we determine the slope

threshold based on the histogram as well.

Shadow edge detection

To cope with artifacts such as the sunflower artifact [14],

the position of a stent strut is defined by the middle point of

its front edge. It reflects the start position of a strut, which

can be used for the quantitative analysis of strut and the 3D

stent reconstruction.

The middle point is calculated by the average position of

a group of candidate pixels. However, it is difficult to

cluster the candidate pixels into individual struts directly,

because both the width of the struts and the gap between

two neighboring struts can vary significantly. We also need

to remove the false candidate pixels most of which are

located in the tissue area outside the struts regions as

Fig. 4b shows. In order to solve these issues, the width and

the location of each strut are needed. Additional informa-

tion is gathered by using the trailing shadows behind the

struts. As the trailing shadows align with the imaging

catheter, they are almost horizontal in the polar image, and

their width and location are approximations of the corre-

sponding strut width and location. The top and the bottom

edge of a shadow define the clustering region for the strut.

A Gaussian filter is applied to smooth the images before

the shadow edge detection. Next, a Prewitt compass

operator with two special kernels is applied to detect the

top and bottom edges separately [16]: one kernel is only

sensitive to the horizontal bright to dark edges (top edges);

while the other kernel is only sensitive to the horizontal

dark to bright edges (bottom edges). An example of the

bottom edges is shown in Fig. 4c. Only edges above a

certain length were accepted, to avoid the short false sha-

dow edges such as those associated with an eccentric

lumen boundary.

Clustering

The detected edges divide the polar images into consecu-

tive intervals, which define the location and width of the

struts. We cluster the candidate pixels in each interval.

Special attention is paid to edges at the top and bottom of

Fig. 3 Examples of intensity

profiles in polar images. The

A-line (1) in a crosses a stent

strut and its corresponding

intensity profile in b has a

higher peak point and a sharp

fall to the shadow area,

compared to the A-line (2) in a,

which passes purely through

tissue and its corresponding

intensity profile in b has a

longer distance between the

peak point and the shadow area.

‘‘Dist’’ indicates the distance

between the peak point and the

start point of the trailing shadow

32 Int J Cardiovasc Imaging (2013) 29:29–38

123



the polar images, since they actually could belong to each

other, but have been split into two halves due to the nature

of the polar image. At the start of the clustering, each

candidate pixel is a cluster [17]. Clusters merge if the

minimal distance between them is shorter than a threshold,

in our case determined experimentally at a 4 pixel distance.

This procedure continues until no more clusters can merge.

In some cases, only one edge of the shadow can be

detected, because the other edge is too short or too blurred,

especially when a strut is located far away from the

imaging catheter. At the same time, false edges may be

included if there is e.g. a seaming artifact [12] or highly

eccentric lumen boundary. An example of the seaming

artifact is shown in Fig. 6c. To avoid the false clusters

caused by these influences, we need to select the correct

candidate struts from the clusters. Because the strut is right

below its top edge and above its bottom edge, for each top

edge, the first cluster below it will be selected. Similarly,

for each detected bottom edge, the first cluster above it will

be selected. All the other clusters are removed. The average

position of the candidate pixels of the same cluster deter-

mines the corresponding strut position.

Fig. 4 Results of each step in the shadow edge detection. a shows the

original image. b Shows the results of the candidate pixel detection

including false positives. Peak points are indicated as ‘circle’.

c shows the result after Prewitt compass edge detection for only

bottom edges. In d, the top edges are indicated by ‘plus sign’ and the

bottom edges by ‘times symbol’. e Shows the clustering results which

are indicated by ‘circle’. In f the final results after guide wire removal

are presented with the struts indicated by ‘circle’
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In cases where the struts are located far away from the

imaging catheter or covered with a thick layer of hyper-

plasia, a strut may have a low intensity value comparable to

the surrounding tissue, and the described candidate pixel

detection may fail. If there is no candidate strut between a

pair of top and bottom edges, we check if there is a non-

bright strut. We first assign a search range based on the

start points of the shadow edges. In this search range, the

pixel with the highest intensity value of each A-line in the

shadow region is detected. All the pixels with an intensity

value higher than the maximum shadow intensity threshold

will be clustered as a non-bright strut.

False positive removal

If a guide wire is present during the image acquisition, it

also reflects most of the energy and causes a trailing sha-

dow behind it. It will be improperly recognized as a strut

by our method. Compared with the real struts, a guide wire

is usually located closer to the imaging catheter and its

coordinates are continuous throughout the whole pullback

run. Therefore, we have defined a guide wire distance

threshold to measure the guide wire continuity. By using

this spatial feature, a guide wire filter was developed,

which searches a series of continuous candidate struts

which are located closer to the imaging catheter than any

other. Figure 4f shows the strut detection result after the

guide wire removal. If no guide wire is used, the filter will

not remove any candidate struts. Figure 5 shows the result

for the guide wire removal.

In Fig. 5b, it is clearly demonstrated that there are only a

few strut candidates in the proximal and distal part of the

pullback run. The reason is that the pullback usually is

much longer than the stent length. By analyzing the amount

of struts detected in each frame of the pullback run, we can

identify the stented segment automatically and remove all

the strut candidates outside this segment. An example

result is shown in Fig. 5c.

Validation

To evaluate our automatic detection algorithm, we used 10

pullback runs of stented coronary segments of 7 retro-

spectively selected patients from a 1-year follow-up study.

Eight of our polar IVOCT pullback runs have 271 frames

each, and the other two pullback runs both have 541

frames.

We applied our approach to all 10 pullback runs which

in total contain 3,250 frames. One observer (A) indicated

the start point of the struts in all the images to compare

them to the automated results for validation. In three

Fig. 5 a shows the detected

guide wire from the whole

pullback run. In some frames,

there is more than one guide

wire because of the artifacts;

b shows the strut results after

the guide wire removal. In the

beginning and the ending

segments of this pullback run,

no real stent exists; c shows the

result after stented segment

detection
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pullback runs, there are a total of 19 frames that were not

marked because of the very low image quality. We did not

take these frames into account for our validation. In a total

of 3,231 frames, 18,311 struts were marked manually.

To determine how accurate a human observer can find

and indicate exactly the same location for the same strut, a

second independent observer (B) analyzed a subset of 179

images from 8 of the 10 pullbacks. On this subset observer

A indicated 2,033 struts, while observer B indicated 1,864

struts, resulting in 1,841 corresponding struts. Expert

observer A also categorized all the IVOCT pullback runs

into three groups based on the image quality: high, medium

and low. This selection was based on the amount of noise

in the images, and the experienced difficulty during the

manual definition of the strut positions. In this paper, 4

pullback runs were assigned to the high quality group, 3

pullback runs to the medium quality group and the

remaining 3 pullback runs to the low quality group. Each

strut was also assigned to one of three categories based on

the strut status: malapposition, apposition and covered. The

malapposition group contains all the malapposed struts and

the struts over the side-branches. The apposition group

includes uncovered struts and the struts with minimum

neointimal hyperplasia. There are 681 struts in the mal-

apposition group, 5,382 for the apposition group and

12,248 for the covered group, respectively.

To examine the robustness of our method, we compared

the results from our method with the manual results from

observer A for different combinations of image quality and

strut status. We also tested each main parameter for three

values, the recommended value and ±20 % of the rec-

ommended value to investigate the sensitivity of the

algorithm. In Table 3, the performance and the distance

error are presented to quantify the effect of these parameter

variations.

Results

The inter-observer agreement is defined as the number of

agreements divided by the average number from two

observers and the agreement was found to be 95 %. The

mean and standard deviation of the distance between these

corresponding struts were found to be 2.9 ± 3.3 pixels.

According to our experts, a 10-pixels distance (about

0.05 mm) is an acceptable distance when comparing the

algorithmic results to the expert results of observer

A. Within this acceptable distance, the mean and standard

deviation of the distance error is 1.7 ± 1.1 pixels. Table 3

shows the distance error between two manual results and

the distance error between the manual results of expert

A and the automated results.

The sensitivity of the detection method is defined as the

ratio between the number of struts correctly detected by our

algorithm and the number of struts found by expert observer

A. In Table 1, the average sensitivity of our automated

approach for the different categories is given in percentages.

The false positives (FPs) show the ratio of the number of

false positives in the automatic results compared to the

number of struts as defined by observer A. Next, the subtotals

of the algorithm performance for different image qualities or

different strut status categories are also given in Table 1.

In all groups, our method shows a good agreement with

the expert results. For high, medium and low quality

IVOCT images, the new method found 96, 92 and 89 % of

the stent struts, respectively. For apposition, malapposition

and covered status, 91, 93 and 94 % of the struts were

found, respectively. The average sensitivity is 94 %. All

combinations contain only a few false positives (4 %).

According to our validation, the algorithm works best for

apposed struts in high quality images, since they usually

appear as very clear bright spots and have nice trailing

shadows. Malapposed struts may have short or blurred

shadows which cause difficulties in the detection. Generally,

in our low quality data set, malapposed struts are brighter

than other struts. The most difficult situations are the

apposed and covered struts in low quality images. Compared

to the other struts, they usually have a less bright appearance

and blurred shadows because of the noise or the thick cov-

erage which causes more absorption and scattering of light.

Their trailing shadows appear fuzzier and shorter compared

to the other situations. Our algorithm is relatively robust in

case of different image quality, but low image quality is still

the main reason for false positives and false negatives. In

Table 1 The sensitivity of the new algorithm for all combinations of the image quality and strut status

Strut status image quality Malapposed (%) Apposed (%) Covered (%) Subtotal (%) FPs (%)

High 92 98 96 96 4

Medium 87 93 92 92 4

Low 92 88 89 89 6

Subtotal 91 93 94 94 4

The numbers indicate the sensitivity of the algorithm in percentages. FPs means the percentage of false positive detected struts compared to the

manual results
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case of severe restenosis, a strut is not visible anymore

except for a weak trailing shadow. Even experts have dif-

ficulty to mark these correctly. It is also not always clear

how to separate a cluster due to the structure of the stent. All

these factors may affect the result of the proposed algorithm.

Eight of the pullback runs were acquired with a guide

wire, while the remaining two had no guide wire. Our

guide wire filter successfully detected the pullback runs

that contain guide wires, and filtered all the guide wires

from them. For the other two pullback runs that contain not

guide wire, the filter did not remove any strut candidates.

For processing, we used a Windows XP Professional

x64 Edition Version 2003 with SP2 computer with

2.0 GHz CPU and 4 GB memory. Generally, it takes less

than 5 min to process a pullback run containing 271 frames

with MeVisLab 2.1. We also implemented a pure C??

version of this method in QCU-CMS version 4.68

(Research version of QIvus 2.1, Medis medical imaging

systems, Leiden, The Netherlands), which decreases the

computing time to less than 2 min.

Discussion

Automatic stent strut detection is important as it can sim-

plify and speed up quantitative stent strut analysis and 3D

stent reconstruction. We present a 3D detection method for

stent struts in IVOCT pullback runs, which is based on the

intensity features and shadow edge detection. It is also

important to note that spatial information is used to remove

the guide wire and the false struts in the empty frames.

Because only in an IVOCT pullback run which contains a

guide wire, a continuous list of strut candidates through the

whole pullback run can be found. With a good performance

in all situations, our method can detect stent struts robustly

and independent of strut status or image quality. The val-

idation study showed that the new method successfully

detected 94 % of the 18,311 struts from 10 pullback runs.

Compared to former research, our method requires no

lumen contour or vessel wall segmentation and it is rela-

tively insensitive to the image quality. Moreover, the new

method does not require different modes for different strut

status, so that no a priori information or user input is

needed. Additionally, we presented a novel guide wire

filter to classify and remove guide wire automatically.

Parameter selection and sensitivity analysis

The whole method contains more than 10 parameters.

Some parameters are related to the size of the input image,

while some other parameters are fixed based on the histo-

gram of the input image, for example, the maximal inten-

sity threshold for trailing shadow and the slope threshold

for candidate pixels detection. The most important

parameters for our method are presented in Table 2. We

used the same parameter rule for all the pullback runs.

To evaluate our method when the parameters are

changed, we varied the main parameters by ±20 %. We

also computed the mean distance error between the algo-

rithmic results and the manual results from observer A and

its standard deviation. The distance error is calculated only

between the successfully detected struts. The performance

and the distance error are shown in Table 3 and demon-

strate that even if the parameters are changed by 40 %

(±20 %); the position of the struts that are detected by our

algorithm does not change much.

Limitations

The presented method can cluster the strut even if only one

shadow edge was detected. However, for severe in-stent

restenosis, some struts are covered by such a thick layer of

new tissue that only bright spots exist without any trailing

shadow. The trailing edge is blurred away due to scattering

in the thick layer of tissue.

In another situation, some struts have only a trailing

shadow without a bright spot. These situations are very

common in bad quality pullback runs as Fig. 6c, d show.

Both the expert and our detection method have difficulty to

deal with these cases. The edge detection has difficulties to

eliminate sew-up stitches as showed in Fig. 4f. Although

the shadow edge based clustering can largely eliminate this

problem, false edge may introduce false struts.

Unlike the guide wire which consists of a single wire

cable, the stent patterns are much more complex. Without

knowing the pattern of the implanted stent, it is difficult to

remove or recover stent struts within the stented segment

using the spatial information. Taking into account that

there are hundreds of different stent designs, using the 3D

stent structure information for stent strut detection is a very

Table 2 The major parameters used in this method

Parameter Value Parameter Value

Max shadow intensity threshold 89th percentile of the histogram Shadow edge length threshold 100 pixels

Sliding shadow size 30 pixels Clustering distance threshold 4 pixels

Slope threshold -48 Guide wire distance threshold 40 pixels
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challenging task. In addition, the described method is not

suitable for new bioabsorbable stent struts which appear as

small dark boxes instead of bright spots in IVOCT images.

Conclusion and future research

With the high resolution of in vivo microstructure in coro-

nary arteries, IVOCT allows a better understanding of the

pathophysiology of coronary disease. We presented an

automatic stent strut detection method in IVOCT image

sequences regardless of strut status and image quality. The

new method uses the local image intensities to detect the

candidate pixels of the stent struts in preprocessed IVOCT

image sequences. The edges of the trailing shadows are

detected to assist the candidate pixels clustering for each

strut, to reduce the false positives and to find the dark struts

with clear shadows. After clustering, the guide wire is filtered

out using 3D restriction. The method is independent of pre-

selection the strut status or lumen/vessel wall segmentation.

Table 3 The correlation and the distance between the manual result from observer A and the algorithmic results with standard parameters and

after the parameters are changed by ±20 %

Parameter Performance TP [FP]* (%) Distance Error (pixel)

Change 0 % -20 % ?20 % 0 % -20 % ?20 %

Max shadow intensity threshold 94 [4] 91 [5] 94 [7] 1.7 ± 1.1 1.8 ± 1.3 1.8 ± 1.3

Sliding shadow size 94 [4] 92 [5] 93 [5] 1.7 ± 1.1 1.7 ± 1.2 1.7 ± 1.2

Slope threshold 94 [4] 93 [7] 92 [5] 1.7 ± 1.1 1.8 ± 1.3 1.8 ± 1.2

Shadow edge length threshold 94 [4] 85 [12] 88 [5] 1.7 ± 1.1 1.8 ± 1.3 1.8 ± 1.3

Clustering distance threshold 94 [4] 94 [6] 93 [4] 1.7 ± 1.1 1.8 ± 1.2 1.7 ± 1.2

The distance error and its standard deviation are measured in pixel size

* Performance TP value means the sensitivity our method. FP value in [] shows the percentage of false positive detected struts compared to the

manual results

Fig. 6 Examples of the three image quality groups; a, b show a good quality image and a medium quality image respectively. c, d are two low

quality images; c has blurred shadows and a seaming artifact, while d shows some struts having only clear shadow without bright spot
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A clinical data analysis was carried out to evaluate the

performance of our method. Automatic results were com-

pared with the results that were manually detected by

expert observers. For IVOCT images with different quality

levels, it turned out to be a robust and reliable automatic

method. In conclusion, with ongoing development of

IVOCT technology, our method could be helpful for stent

implanting treatment evaluation, patient follow up and

vascular response of different types of stent. As a next step,

the result will be used as input for 3D visualization and

quantification.
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