Skip to main content
. Author manuscript; available in PMC: 2013 Dec 1.
Published in final edited form as: Can J Stat. 2012 Nov 7;40(4):629–645. doi: 10.1002/cjs.11162

Table 4.

Performance of Q-learning adjustment methods under the confounding by counterfactuals simulations: bias, Monte Carlo variance (MC var), mean squared error (MSE), and coverage of 95% bootstrap confidence intervals.

Randomized treatment Confounded treatment


Adjustment method Bias MC var MSE Cover Bias MC var MSE Cover
n = 250
   None 0.0020 0.0082 0.0082 94.0 0.2293 0.0080 0.0605 26.4
   Linear 0.0011 0.0032 0.0032 95.1 0.0051 0.0039 0.0039 93.8
   PS (linear) 0.0010 0.0052 0.0052 96.2 0.0548 0.0060 0.0090 89.4
   PS (quintiles) 0.0008 0.0056 0.0056 96.1 0.0779 0.0061 0.0121 83.2
   IPW 0.0004 0.0046 0.0046 93.9 0.0108 0.0075 0.0076 92.8
n = 1000
   None −0.0012 0.0022 0.0022 93.4 0.2246 0.0021 0.0525 0.5
   Linear 0.0001 0.0009 0.0009 93.5 0.0037 0.0010 0.0010 93.5
   PS (linear) −0.0002 0.0014 0.0014 95.5 0.0446 0.0015 0.0035 77.0
   PS (quintiles) −0.0004 0.0015 0.0015 95.7 0.0699 0.0015 0.0064 55.0
   IPW −0.0008 0.0012 0.0012 93.6 0.0018 0.0018 0.0018 93.6