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Abstract
Laser-induced breakdown spectroscopy (LIBS) was used in a blind study to successfully
differentiate bacterial pathogens, both species and strain. The pathogens used for the study were
chosen and prepared by one set of researchers. The LIBS data were collected and analyzed by
another set of researchers. The latter researchers had no knowledge of the sample identities other
than that (1) the first five of fifteen samples were unique (not replicates) and (2) the remaining ten
samples consisted of two replicates of each of the first five samples. Using only chemometric
analysis of the LIBS data, the ten replicate bacterial samples were successfully matched to each of
the first five samples. The results of this blind study show it is possible to differentiate the
bacterial pathogens Escherichia coli, three clonal methicillin-resistant Staphylococcus aureus
(MRSA) strains, and one unrelated MRSA strain using LIBS. This is an important finding because
it demonstrates that LIBS can be used to determine bacterial pathogen species within a defined
sample set and can be used to differentiate between clonal relationships among strains of a single
multiple-antibiotic-resistant bacterial species. Such a capability is important for the development
of LIBS instruments for use in medical, water, and food safety applications.
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INTRODUCTION
Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic analysis technique in
which a laser pulse vaporizes nanogram to microgram quantities of material and thermally
excites the vaporized material in a short-lived plasma (~8000 K). Light emitted from atoms,
ions, and simple molecules in the plasma is collected and analyzed. Traditionally, LIBS is an
elemental analysis technique used to determine the composition of the target material via
unique elemental fingerprint spectra. More recently, chemometric1 or other analysis
techniques have been applied to LIBS spectra for both classification and identification of
various materials. In these cases, the entire LIBS spectrum is used for identification of
materials as opposed to particular elemental lines.

The LIBS technique has been used in many applications, including compositional analysis
of rocks and soils, detection of explosives, sorting of metals, and trace element detection in
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aerosols, liquids, and solids.2–4 Most recently, LIBS has also been investigated as a tool for
detecting and identifying biological material. Morel et al. demonstrated that LIBS could
detect and sort species using six bacteria and two pollens in pellet form.5 Guyron et al.
studied the differences in LIBS bacterial spectra for both ns-LIBS and fs-LIBS.6 Rehse et al.
and Diedrich et al. have shown that both pathogenic and non-pathogenic Escherichia coli (E.
coli) cultured strains grown in both nutrient-rich and nutrient-free media can be
differentiated using discriminative functional analysis (DFA) on LIBS spectra.7–9 Both
Gottfried et al. and Snyder et al. have shown that LIBS can be used to differentiate
biological warfare simulants in a defined sample set. Gottfried et al. demonstrated
discrimination using both linear correlation and partial least squares regression
discriminative analysis (PLS-DA) on LIBS spectral data preprocessed with respect to
selected elemental lines.10 Snyder et al. demonstrated discrimination using multiple linear
regression (MLR) and neural network analysis on LIBS data that was also preprocessed.11

Work has also been done using principal component analysis (PCA) and neural networks on
LIBS data to detect hazardous biological materials using both laboratory size and
miniaturized LIBS experimental components.12

To our knowledge, the work presented here is the first use of LIBS to discriminate pure,
viable pathogen samples based only on raw (unprocessed) LIBS spectra. It is also the first
blind study demonstration showing that LIBS can be used to match unknown viable, pure
pathogen species and strains to a defined sample set. This is an important result because
LIBS has many advantages as a biosensing method for the identification of pathogenic
microorganisms. These advantages include simplicity of use (focus the laser pulse on the
material and collect the light), rapid in situ analysis (results in less than a minute), little or no
sample preparation, and the feasibility of automated analysis. The ability to differentiate
both species and strain using only raw spectra implies that LIBS shows promise for the
development of instrumentation that could be used to support rapid medical diagnosis in
both laboratory and field situations by personnel without any specific LIBS expertise.

For the blind study presented here, E. coli and four strains of Staphylococcus aureus (S.
aureus) were chosen. Multiple-antimicrobial-resistant methicillin-resistant S. aureus
(MRSA) causes serious infections in hospital patients and within the general populace, and
MRSA demonstrating reduced susceptibility to the important antistaphylocccal drug
vancomycin have been reported.13 Normally, numerous time-consuming culture-media-
based and molecular biology techniques are required to differentiate common bacterial
pathogens, resolve their clonal relationship among single specie strain collections, and
determine antimicrobial resistance profiles.14–16 Determining antimicrobial resistance
phenotype is imperative when determining which antimicrobial regimen will best suit a
diseased individual. In the present study, we demonstrate that LIBS can be used to
differentiate the most common hospital-borne bacterial pathogens E. coli from S. aureus
strains and to determine clonal relationships among well-characterized related and unrelated
MRSA strains.

EXPERIMENTAL
The MRSA strains LP9, MM61, MM66, and MM66-4 utilized in this study have been
previously described,14 and E. coli strain DH5α is commonly utilized for nucleic acid
cloning procedures. Restriction fragment length polymorphism (RFLP) produced from
pulsed field gel electrophoresis of infrequently cut SmaI-restricted chromosomal DNA, a
gold standard for determining S. aureus strain evolutionary relatedness,17 demonstrated that
strain LP9 was unrelated to strains MM61, MM66, and MM66-4.14 MM61 is 96% identical
by SmaI-RFLP with low-level hetero-vancomycin intermediate S. aureus (hVISA) strain
MM66, yet MM61 has an additional SmaI band of 80 kb and is vancomycin-susceptible.14
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MM66-4 is a MM66 high-level vancomycin-intermediate S. aureus (VISA) mutant that was
produced by plating MM66 onto nutrient plates containing 3 mg/L vancomycin and
randomly picking surviving colonies.14

All bacterial cell samples were prepared by researchers at New Mexico State University
(NMSU) by initially growing the cells in Luria–Bertani liquid media (Becton, Dickinson and
Company, Sparks, MD) (37 °C, 200 rpm, flask to volume ratio: 10:1), harvested by
centrifugation (8000 × g, 4 °C, 10 min), washed in cold phosphate buffered saline (pH 7.4),
and then reharvested. The resulting cell pellets were frozen overnight at −80 °C in sterile
lyophilization flasks, which were subsequently attached to a pre-cooled vacuum (−40 °C,
0.133 mBar) freeze-dry system (Labconco, Kansas City, MO) and lyophilized for 12 h.
Lyophilized samples were then stored in a desiccator at 25 °C for 2 days and 0.5 mg samples
were then placed in disposable plastic cuvettes (trUView, Bio-Rad laboratories, Inc. CA) for
LIBS analysis.

Researchers from Applied Research Associates, Inc. (ARA) were not told anything about
the samples other than that each was a pathogen, the first five samples were unique, and that
each of the remaining ten samples were replicates, two each, of the first five. All samples
were labeled alphabetically (A–O) with samples A–E identified as the unique samples and
samples F–O identified as the replicates. LIBS spectra were collected from the lyophilized
bacterial samples using the experimental setup illustrated in Fig. 1.

Each lyophilized pathogen sample was placed in a cuvette and pulses from a Q-switched
Nd:YAG laser (1064 nm, 60 mJ/pulse, 10 Hz) were focused onto the sample by orienting the
open cuvette end towards the laser and sparking the pathogen inside the cuvette. Data were
collected with samples located in a biological safety level-2 hood. Plasma light was
collected using an off-axis parabolic mirror and fiber optic and then routed to an echelle
spectrometer (Catalina SE200 with Andor DH734-18F-03, I-Star intensified charge-coupled
device (ICCD) camera). A hole in the parabolic mirror permitted the optical path of the laser
pulses and light collection to be collinear, eliminating parallax. It should be noted that the
lens-to-sample distance changed during interrogation because of the pressure waves created
during sample ablation, which caused the lyophilized samples (powders) to move about
within the cuvette. Each recorded spectrum represented the accumulation of ten spectra
(camera acquisition parameters: 1 µs delay, 20 µs window) over an exposure period of 1 s. A
total of 1050 individual spectra (70 spectra datasets for each sample) were collected for this
study.

ANALYSIS
The analysis goal for this blind study was to determine whether LIBS plus chemometric
analysis could be used to successfully match each of the samples F–O to one of samples A–
E. Because the sample identities were unknown and to mimic an analysis situation in which
data are collected and not controlled for quality, all collected spectra were used in the
analysis with no screening for spectral quality and no data preprocessing. For each sample
A–E, the 70 spectra collected were randomly separated into two sets: 50 spectra to be used
in chemometric model building (classification set) and 20 to be used to test the performance
of the various models (verification set). For the modeling, the entire wavelength range of the
spectral data was used with each intensity measurement at each spectral wavelength treated
as a variable value. Because the entire spectral range of 205.42 to 1000 nm was used (this
range intentionally extends beyond the range of useful sample data, 205.42–850 nm), the
modeling was done over 39 730 variables for each sample (205.42–1000 nm range, 0.02 nm
resolution).
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Various chemometric modeling methods such as PCA and projection to latent structures
(PLS) regressions were applied to sample data sets A through E using commercially
purchased analysis software (The Unscrambler, Camo Software Inc.). Each model was built
using the classification spectra sets and tested on the verification spectra sets. Model
performance was evaluated based on the percentage of verification set spectra that were
matched correctly to the associated sample. After investigating multiple modeling
methodologies, it was found that the best results were obtained using PLS2 for
discrimination between two samples.

Projection to latent structures is a technique that generalizes and combines features from
both PCA and multivariate regression. It is especially useful when trying to predict a set of
dependent variables from a very large set of independent variables. In PLS analysis it is
assumed that all of the measured variance is useful variance to be explained. The latent
variables are estimated as exact linear combinations of the observed measures to create an
exact definition of component scores. Through an iterative estimation technique, a general
model is developed that encompasses canonical correlation, redundancy analysis, multiple
regression, multivariate analysis of variance, and principal components. The iterative
algorithm consists of a series of ordinary squares analyses. No distributional form is
assumed for the measured variables. PLS2 is a PLS method in which several variables are
modeled simultaneously to take advantage of possible correlations between the variables.
Once a model has been generated for the sample classes, it can be used on test samples to
produce a predictor value (in this case between 0 and 1) to be used to match the tested
sample to one of the sample classes.

For this analysis, the dependent variable was the sample and the independent variables
associated with the sample were the intensity measurements at each wavelength. Examples
of LIBS classification set spectra obtained for samples A through E and used as input to
create the PLS2 regression models are shown in Fig. 2. From these spectra, elemental
compositional differences can be clearly seen. In all samples, spectral lines are present
indicating the presence of C, Mg, Si, CN, H, K, O, Na, and N. Ca is observed only in sample
B. The relative intensities of K and O vary for all samples and the most striking relative
intensity difference is observed in sample D. These differences in elemental lines and their
associated intensities contribute to the creation of a distinctive set of 39 730 variables for
each sample.

The goal of the analysis was to match each of the unknown samples to one of samples A–E.
Because PLS2 regression analysis comparing one sample to another was found to have the
best discrimination results, to cover every possible comparative combination of samples A
through E, the following models were built: A vs. B (model AB), A vs. C (model AC), A vs.
D (model AD), A vs. E (model AE), B vs. C (model BC), B vs. D (model BD), B vs. E
(model BE), C vs. D (model CD), C vs. E (model CE), and D vs. E (model DE). Each model
was built using the raw unprocessed spectra in the classification spectra sets and then tested
on the verification spectra sets to verify discriminative performance. The score plot for the
first two principal components (PC2 vs. PC1) for each model along with a plot of the results
obtained when the model was tested on the verification sets is presented in Fig. 3. From
examining the prediction value plots obtained for the verification data sets, it is clear that a
discriminative prediction value can be chosen to separate the samples such that any sample
with a larger prediction value could be associated with the first sample in the model and any
sample with a lower prediction value could be associated with the second sample in the
model.

The next step in the analysis was to understand how to apply the two sample comparative
models to correctly match each of samples F–O with one of samples A–E. To do this, the
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following procedure was used: (1) each model was tested on the verification spectral set for
each of the samples A–E; (2) the prediction values obtained for each spectra were averaged
to produce a single prediction value for the verification set; (3) the average prediction value
was compared to a selected discriminative prediction value (0.35 chosen) and the
classification for each sample in each model was determined; (4) a table was made of the
average prediction values and the sample classifications of each sample for each model (see
Table I); (5) the table was studied to assess how each sample classified in each model; and
(6) once the sample classification performance as a function of model was understood, a
sample-matching algorithm using a subset of the comparative models was created to use in
matching sample F through O to samples A through E.

For the matching algorithm, it was found that model AB reliably identified sample B as “B”.
So, the first step in the algorithm was to apply model AB. If the unknown sample was
classified as “B” in the AB model, it was determined to be matched to sample B and no
further testing was done. Sample D classified as sample “A” in the AC model, and as sample
“D” in the AD and DE models. Therefore, the next step in the test flow was to apply models
AC, AD, and AE. If the unknown classified as “A” in model AC, and as “D” in models AD
and DE, then the sample was determined matched to sample D and no further testing was
done. Sample E was classified as “E” in models AE and DE. Therefore, the third step in the
testing flow was to apply models AE and DE. If the unknown sample classified as “E” in
both of these models, then the sample was determined to be matched to sample E and no
further testing was done. Sample C classified as “C” in models AC and CE. Therefore, the
fourth step in the testing flow was to apply models AC and CE. If the unknown sample
classified as “C” in both of these models, the sample was determined to be matched to
sample C and no further testing was done. If the unknown sample was not matched in any of
the above tests, it was determined to be matched to sample A. It should be noted that the
order of applying the matching tests was critical to the success of the matching algorithm. A
flowchart of the matching algorithm is presented in Fig. 4 and the elements or molecules
with the highest contributions to regression coefficients of the models used in the algorithm
may be found in Table II.

RESULTS
To match samples F through O to samples A through E, all 70 spectra collected for each
sample were input into each model used in the matching algorithm and the results were then
averaged. The discrimination prediction value used in the matching algorithm development
was then applied to obtain the classification of each sample for each model (see Table III).
The matching algorithm was then applied and the results were transmitted to the NMSU
researchers for review. Using the matching methodology herein described, samples F
through O were 100% correctly matched to samples A through E. At this time, the NMSU
researchers revealed that sample A was S. aureus LP9, sample B was E. coli DH5α, sample
C was S. aureus MM61, sample D was S. aureus MM66, and sample E was S. aureus
MM66-4. The matching results and the sample identities are presented in Table IV.

CONCLUSION
Based on this work, we conclude that LIBS, in combination with appropriately constructed
chemometric models and defined testing flows, can be used to successfully classify an
unknown pathogen, both species and strain, provided the unknown pathogen is within a
defined set of pathogens. This is an important result that can be viewed as proof-of-principle
for a LIBS-based instrument for pathogen detection. To our knowledge, in all previous work
involving the use of LIBS to detect pathogen and pathogen simulants, researchers had
knowledge of the pathogen identity and composition and used this information to create
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classification models. In contrast, here it is demonstrated that raw unprocessed LIBS spectra
not screened for quality can be used to create reliable classification models and that
knowledge of sample identity is not necessarily required.

We have demonstrated that LIBS can be utilized to differentiate both bacterial pathogen
species and strain and match species and strain to known pathogen species and strain. In
medical treatment applications, this capability could possibly be used to create testing
algorithms to assist in rapid pathogen identification, thereby speeding the initiation of an
appropriate antimicrobial-therapeutic regimen. We also have demonstrated that LIBS can be
used to differentiate between tightly related MRSA, suggesting that LIBS might be used in
bacterial pathogen epidemiology studies that identify bacterial pathogenic clones spreading
in hospital environments. It is further demonstrated that hVISA (MM66) and VISA (MM66)
strains can be differentiated from a related vancomcyin-susceptible strain (MM61). This
suggests that LIBS might be used with further development to differentiate the presence or
absence of unique antimicrobial resistance mechanisms in bacterial pathogens.

When sample identities are known, in contrast to the blind study conducted here, it is no
longer necessary to create models to cover every permutation of pathogen comparison.
Pathogens can be grouped and subdivided in various combinations for modeling to create
the simplest possible differentiation algorithm. In subsequent, yet to be published work by
us, an algorithm similar to what has been presented here was used to differentiate 13
different pathogens (eight pathogen species and five pathogen strains). In this algorithm, it
was possible to develop single models to be used at the various steps of the analysis
algorithm and multiple models were not needed for decision making. As sample sets
increase, we will investigate automated methods, such as neural networks, to aid in
algorithm development.
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Fig. 1.
Diagram of the experimental setup used to collect LIBS spectra of pathogens. The cuvette
and pathogen sample were located inside a biological safety level-2 hood. LIBS emission
was collected along the path of the laser light to remove parallax.
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Fig. 2.
Examples of LIBS classification spectra used for building models. The units of the ordinate
axes are detector counts. True identities of the spectra are: sample A, S. aureus LP9; sample
B, E. coli DH5α; sample C, S. aureus MM61; sample D, S. aureus MM66; and sample E, S.
aureus MM66-4.

Multari et al. Page 10

Appl Spectrosc. Author manuscript; available in PMC 2013 January 22.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Multari et al. Page 11

Appl Spectrosc. Author manuscript; available in PMC 2013 January 22.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Multari et al. Page 12

Appl Spectrosc. Author manuscript; available in PMC 2013 January 22.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 3.
Score plots for the first two principal components (PC2 vs. PC1) for each PLS2 regression
model along with a plot of the prediction values obtained when the model was tested on the
verification spectral sets. From the prediction value plots, it is clear that a prediction value
can be chosen for each model to separate the two samples being compared.
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Fig. 4.
Flow chart of matching algorithm developed to match samples F through O to samples A
through E.
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