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Abstract

Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology.
Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian
complex disorders which result as an interaction between genetics and environment. To understand health and
disease we must study how nature and nurture interact. Recent advances in human genomics and
high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products
simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and
analytic issues for gene-environment interaction studies in the “-omics” era, with a focus on environmental and
genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss
several study design issues for gene-environmental interaction studies, including confounding and selection bias,
measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions
in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power
and sample size considerations, especially in genome-wide gene-environment studies. Future research directions
are also discussed.
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Introduction
Although some diseases are predominantly environmen-
tal or genetic, both environmental and genetic factors
play an important role in most common or complex
human diseases. One of the major challenges of explor-
ing mechanisms and treatment of complex diseases is
that neither purely environmental factors, nor purely
genetic factors can fully explain the observed estimates
of disease incidence and progression. To correctly model
risk estimates, we must measure genetics and envi-
ronment together in the same studies. Recent advances
in human genomics have made it possible to study
tens of thousands of genes simultaneously and incorpor-
ate their interactions with the environment. In this
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review, we discuss design and analysis issues for gene-
environmental interactions studies.
Traditional study designs have been used to study

gene-environment interaction, including cohort and
case–control studies. However some designs tend to
favor the measurement of genetic over environmental
factors. For example, because genotypes do not vary over
time, case–control studies have been more common
than cohort studies for studying genetic associations.
Genotypes can always be presumed to precede pheno-
type and the efficiency of a case–control design over
a cohort design in determining genetic main effects is
well known. Several other methods, such as family-based
and case-only studies have also been used, but like case–
control studies, sampling is still predicated on the pres-
ence of the disease phenotype. Some of the earlier
discussions of these study designs in studying genes and
environment can be found in Caparaso et al. [1],
Langholz et al. [2] and Garcia-Closas et al. [3]. We focus
below on design and analysis issues in studying gene-
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environment interactions in environmental epidemio-
logical studies including recent developments.

How genetic and environmental factors work
together to affect phenotypes
The detection of a gene-environment interaction likely
depends on more than the measurement of a genotype
and an exposure. Even a cumulative index of exposure
to the environmental factor may not be sufficient. It is
well known that environmental exposures vary over
time, but what is frequently not considered is that gene
expression also varies over time. Human development
consists in large part on the timed expression and silen-
cing of specific genes in specific cells at specific life
stages. From a purely biological perspective it is difficult
to conceive of a gene-environment interaction occurring
when the environmental exposure occurs during a life
stage when the gene is not expressed. An overly simplis-
tic example might be a chemical which inhibits growth
by interacting with a variant in a growth factor gene.
Chemical exposure at age 25 years cannot affect final
height, while exposure in childhood can. In the field of
toxicology, the concept of critical developmental win-
dows of exposure has developed over the last 30 years.
Rather than considering a chemical as having a single
dose response curve for toxicity, chemicals appear to
Figure 1 The integrated paradigm of genetic susceptibility in environ
effects during critical developmental period (prenatal and childhood expos
have different dose response curves depending on the
life stage at which exposure occurs. For example, in
utero diethylstilbesterol exposure is associated with vagi-
nal cancer in offspring, while mothers who took the
drug do not appear to be at risk. In effect, gene-
environment interaction may be conceived as a 3-way
interaction, in which the time of the exposure is the 3rd

factor. Alternatively one can consider environmental ex-
posure as a time-varying covariate and study gene and
time-varying-environment interactions by considering
lag effects. As shown in Figure 1, we have integrated the
time of the exposure in the paradigm by highlighting dif-
ferent exposure effects during each life stage. Direct
measures of personal exposure, in particular biomarkers
of exposure, provide insights into chemical, social or
physical factors to specific individuals. The use of bio-
markers of effect in epidemiologic studies allows
researchers to study intermediate phenotypes (Figure 1)
[4-6]. For example, glycosylated hemoglobin, a measure
of chronic serum glucose, can be used to study diabetic
risk factors with more power than a study focused on
clinical diabetes. In spite of these potential advantages,
the results of biomarker measurements sometimes can
confuse the investigators a lot. Different conclusions
may arise due to the differences of specimen kinds, col-
lection and processing methods, laboratory error, and
mental disease development in different life stage. The exposure
ure) are highlighted.
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individual variation in the biomarker levels over time
[7]. The usefulness of a biomarker is strongly depending
on the specificity, sensitivity, assay reliability, and cost
[8].
Another approach, instead of studying unknown

effects, is by taking advantage of the established associa-
tions between genetic variations and exposure inter-
mediate phenotypes. These genetic variations can mimic
the modifiable exposure effects and serve as a surrogate
to test the association between exposure and disease.
This method has been referred to as ‘Mendelian
randomization’, which provides an approach for making
causal inferences about the exposure by using the nature
of randomly assigned genotypes from parents to off-
spring before conception [9,10]. However, as well with
all genetic association studies, potential confounding
effects by population stratifications and other limitations
can still occur [10,11]. Careful study conduction and
thorough verification remains essential before consider-
ing the causality.

Epigenetics
The role of epigenetics has been increasingly recognized
as a mechanism of gene-environment interaction. Epi-
genetics refers to changes in gene function without alter-
ing DNA sequence. These changes may last for several
generations [12]. Epigenetic mechanisms include altera-
tions in DNA methylation, histone modification, and
microRNA [13,14]. The toxic effects of exposure for sev-
eral environmental chemicals, such as metals, particulate
air pollution, benzene, endocrine-disrupting chemicals
and reproductive toxicants, have been found to be
mediated by epigenetic mechanisms [15]. Epigenetic
alterations may be induced by environmental exposure,
particularly in early development [16]. This field remains
particularly compelling because a number of epigenetic
events have been recognized as tissue-specific and re-
versible, which may help explain why exposures affect
specific organs and the complexity of individual suscep-
tibility among the exposed population. Epigenetic data,
such as DNA methylation, can also be collected for each
of the study designs described above. Epigenetic modifi-
cations provide a plausible link between the environ-
ment and alterations in gene expression that might lead
to change of disease phenotypes. An increasing number
of animal studies provide evidence of the role of envir-
onmental epigenetics both in disease susceptibility and
in heritable environmentally induced transgenerational
alterations in phenotype [17]. Thus, incorporating and
analyzing epigenetic data in G-E statistical analysis has
become immensely important. Epigenetic mechanisms
in somatic cells also provide a potential explanation of
how early life environmental exposures can program
long-term effects in chronic disease susceptibility[18,19].
This expanded environmental genomic paradigm is
shown in Figure 2.

Study design issues
Confounding and selection bias
When designing epidemiologic studies, issues of feasibil-
ity, efficiency, expense, and potential sources of bias
must be considered. Perhaps the most feasible and effi-
cient design is the case–control design, especially when
studying rare diseases. A case–control study is conducted
to collect data on environmental exposures retrospect-
ively, and collects biomarkers after disease diagnosis of
the cases. While genotypes are static and not prone to
differential bias, the assessment of environment retro-
spectively is fraught with potential recall bias. Unfortu-
nately, while biomarkers of exposure can reduce such
bias, these measures rarely can reconstruct past expos-
ure and may be affected by the current disease status,
which may be one of the great challenges of retrospect-
ive studies. A fundamental requirement of a case–con-
trol study design is that cases and controls should be
selected from the same population [20]. Population-
based incident cases allow investigators to maximize the
generalizability of the findings. Selection bias is generally
a concern in case–control studies[21]. While the assess-
ment of gene-environment interactions will not be sub-
ject to selection bias if participation does not differ by
genotype conditional on exposure and disease status
[22]. This assumption may seem reasonable for most
genes and exposures, with the possible exception of (1)
alleles that influence behavior, such as aldehyde dehydro-
genase polymorphisms and alcohol exposure [23]; or (2)
population stratification; or (3) alleles and exposure risk
factor that influence disease detection. For example, in
populations where prostate-specific antigen (PSA)
screening is commonly performed, higher PSA levels
often trigger for prostate biopsy and may increase early
diagnosis of prostate cancer [24,25]. Differential prostate
cancer screening and detection with respect to obesity
[26,27] and PSA associated genes [28,29] may cause se-
lection or detection bias. For fatal diseases, since only
some of the incident cases may be available for inter-
viewing, survivor bias can occur if genotypes or expos-
ure status differ by survival time.
Observational epidemiological studies often suffer

from confounding bias due to measured and unmeas-
ured confounders. An example of genetic confounding
bias is population stratification. Population stratification
can occur in ethnically mixed populations and can lead
to spurious (i.e. non-causal) associations if both the
baseline disease incidence and the allele frequency vary
by ethnicity [30]. Consider the hypothetical example
given in Additional file 1: Table S1. In this example,
there are a total of 2400 subjects in each of the two
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populations. Within each population, the OR associated
with a genotype, e.g. assuming a dominant model, G=1
versus G=0 is 1. However, if one ignores the population
labels and pools the data of the two populations together
the data, the OR becomes 1.8. This spurious association
between gene and disease is attributed to the fact that
most cases are from population 1 and most controls are
from population 2.
Although most bias due to population stratification

can be eliminated by following the rules of well-
designed, well-conducted study and matching or adjust-
ing on ethnicity, this may not apply to populations
whose ancestors recently mixed, such as African or His-
panic Americans [31,32]. Several genomic control
approaches have been used to attempt distinguishing the
ethnicity by genotyping markers that are unrelated to
disease and known to have different allele frequency in
ancestral populations [33,34]. Fully distinguishing the
observed association from population stratification bias,
can be achieved by replication of consistent findings
from multiple well-designed studies in different popula-
tions or family-based study design which preclude strati-
fication [32]. Unlike the traditional case–control studies
based on unrelated individuals, family-based studies are
immune to population stratification bias [35,36]. Family-
based studies of gene–environment interaction some-
times may be more powerful than population-based
studies [37]. However, the application could be limited
by shared environment among family members and the
difficulties to collect DNA samples from family members
than from unrelated cases and controls, especially for
long latency or late-onset diseases. Family-based studies
generally have less power for genetic main effects than
do case–control studies. Besides, family-based studies
usually collect environmental exposure information
retrospectively and may have similar problems in expos-
ure assessment as retrospective case–control studies.
The over sampling of intact families would also not be
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expected to represent social environments in the general
population. Another approach is to use the case-only
method to study gene-environment interaction. This ap-
proach does not allow evaluation of the main effects of
the genotype alone or the exposure alone, but only their
interaction [38,39]. The case-only design requires an as-
sumption of gene-environment independence in the
general population [40,41].
The prospective cohort study requires study subjects to

be recruited before the onset of disease. This approach
has the advantage of prospective collection of environ-
mental information and biomarkers, which both precede
the disease and will be unaffected by recall bias [42]. Ef-
fective follow-up should minimize selection bias second-
ary to attrition, one can estimate the disease incidence
rate, and the inference for an underlying cohort is often
well defined. Analysis of data from cohort studies is sub-
ject to bias due to loss of follow-up. As incidence rates
of most diseases are low, even with many years of
follow-up a cohort study often requires collection of an
extremely large number of individuals before the onset
of disease and a sufficient follow-up time, which simul-
taneously lead to extraordinary cost increase (i.e. by
completing follow-up and data collection, including the
data of baseline characteristics, exposure, and genotyp-
ing data). Hence, prospective studies are considerable
challenges for diseases with low incidence rate. Risk-
based sampling is being used to increase the power of
prospective studies by enrolling first-degree relatives of
probands, such as the Sister Study for breast cancer risk
[43,44] or the on-going Early Autism Risk Longitudinal
Investigation (EARLI) study for autism risk. For com-
mon pediatric diseases such as asthma, obesity, and
some adverse birth outcomes, a prospective cohort study
will be extremely valuable to identify environmental risk
factors as well as evaluate gene-environment interaction
mechanisms [45,46]. Prospective cohort studies on a na-
tional scale [47] or by pooling data from existing pro-
spective cohorts [48] should be conducted to ensure
sufficient power in gene-environmental studies. The U.S.
Congress, through the Children’s Health Act of 2000,
authorized the National Institute of Child Health and
Human Development (NICHD) “to conduct a national
longitudinal study of environmental influences (includ-
ing physical, chemical, biological, and psychosocial) on
children’s health and development” [49]. The National
Children’s Study is a 21-year prospective cohort study of
100,000 US-born children. Environmental exposures, in-
cluding chemical, physical, biological, and psychosocial
exposure, will be assessed repeatedly during pregnancy
and childhood in children’s homes, schools, and commu-
nities. The National Children’s Study will provide great
opportunities to gene-environment interactions for com-
mon pediatric diseases.
Measurements of exposure and effects by life
stage
Exposure biology
Measurement errors, such as misclassification of geno-
types or exposure status, can exist regardless of study
design. Measurement of environmental exposures have
been a great challenge in epidemiologic studies due to
the complex pattern of long-term exposures and the
need to collect accurate and repeated individual expos-
ure data in large populations [50]. Misclassification of
exposure generally leads to attenuation of the main
effects when the error is non-differential [51]. Non-
differential misclassification can also bias away from the
null in some circumstances, including (1) if the exposure
is multilevel (>2 levels), the intermediate levels of expos-
ure could be biased away from null [52,53]; (2) if the
misclassifications are correlated with other errors
[54,55]; (3) if the measured exposure do not change
monotonically with the true exposure [53,56]. However,
in the estimation of multiplicative gene-environment
interaction effect, Garcia-Closas et al. [57] showed that
under a set of conditions typically satisfied in studies of
gene-environment interactions, both differential and
non-differential misclassification of a binary environ-
mental factor biases a multiplicative interaction effect
toward the null value. These conditions are that: (1) the
environmental exposure is independent of the genotype
among the controls, and (2) exposure misclassification is
non-differential to the genotype. This result is also true
for misclassification of genetic factors.
The use of questionnaires for exposure assessment re-

lies on personal memory and has the potential for recall
bias. Several technologies have been developed to im-
prove measurements of environmental exposures. To in-
corporate qualitative and quantitative changes of
environmental exposures, such as atmospheric condi-
tions and topography, over time and space, as well as
individuals’ diverse demographic characteristics, life-
styles, activity patterns, geographic information systems
(GIS)/global positioning system (GPS), personal moni-
toring, and biomonitoring are now being used in envir-
onmental epidemiology. Combined geospatial tools with
statistical models allow investigators to model the trans-
port of the pollutants from source to residence, e.g.,
using wind speed, temperature, and traffic density in
addition to measurements from the central site, to esti-
mate an individual-level exposure as well. Direct expos-
ure monitoring includes personal monitoring by
measuring toxics on or near the body, such as measuring
air pollutants exposure levels at the breathing zone, or
by sampling biological properties, such as the measure-
ment of urinary 1-hydroxypyrene (1-OHP) as a bio-
marker of short-term polycyclic aromatic hydrocarbon
(PAH) exposure [58]. Biomarkers of exposure are
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biological indicators of exogenous agents within the bio-
logical system, or other event in the biological system
related to the exposure. With stringent quality control,
these monitoring data hold great promise for improving
exposure assessment by providing objective individual-
level measurements. Biomarkers can be used to reflect
the effects of earlier exposures and the association be-
tween exposure and disease at the molecular level [4-6].
Examples of intermediate biomarkers include chromo-
somal alterations, DNA, RNA and protein expression. In
response to exposure, patterns of gene expressions, pro-
teins, or metabolic profiles in cells and tissues change
can serve as biomarkers for exposure or effect. These
dynamic features however, make their interpretation in
human studies challenging. Single measurement may not
be reliable especially in those investigating long-term
chronic effects. Incorporating long-term monitoring data
with different exposure assessment techniques is needed
to provide an integrated view of exposure in complex
exposure–disease relationships [59,60].
Developmental life stage and gene-environment
interactions
Measuring environment has added complexity beyond
issues of measurement error or selection bias. Even
measuring cumulative exposure prospectively may be in-
sufficient to capture gene-environment interaction. This
is because human development occurs in life stages dur-
ing which gene expression undergoes radical yet tempor-
ary changes. Environmental exposures might alter the
timing of normal developmental regulation of gene ex-
pression or the gene product expressed solely at a spe-
cific life stage may interact with the environmental
exposure. In particular, during prenatal life and child-
hood, critical biological events occur that establish the
number, connections and proper function of cells within
given tissues. As an example, changes in gene expression
could be modulated through DNA promoter methyla-
tion or chromatin remodeling, which may be induced by
environmental exposure, particularly in early develop-
ment [16]. Toxicological studies show that the central
nervous system is especially vulnerable to toxic injury
[61] and epidemiological studies clearly show an associ-
ation between adverse neurodevelopment and in utero
exposure to chemicals such as methyl mercury [62,63],
PCBs [64], while exposure later in life demonstrates less
toxicity. Epidemiological studies of chemicals typically
show a large variance around the effect estimate for the
dose–response relationship. While many factors contrib-
ute to this variance, including measurement error in ex-
posure and/or phenotype, it is likely that the timing of
the exposure and variant genetic factors that modify the
response to toxicants contribute significantly to the
observed variance. Genetic variants that produce gene-
environment interactions may only do so when the ex-
posure corresponds to a critical developmental window
during which that gene is highly expressed. This is a fun-
damental concept in developmental biology that is often
overlooked in epidemiologic studies. Indeed the concept
of fetal origins of adult diseases demonstrates the critical
nature of exposure timing in producing later health
effects (e.g., the association of maternal smoking during
pregnancy and reduced fetal growth [65], obesity [55],
decreased lung function [66] and diabetes [67] in the off-
spring). Although a prospective study can address timing
of exposure in a clearly unbiased manner, it is still chal-
lenging to assess the details of exposure timing and risk
as the critical window likely differs for different pheno-
types and for different exposures. It is also not possible
to know with certainty what the critical exposure win-
dow is a priori (i.e. in utero vs. childhood vs. puberty).
The difficulties in assessing the effects of exposure by
timing present in carefully designed observational stud-
ies and even trial results. An example is the initial report
from Women’s Health Initiative (WHI) randomized trial
and epidemiologic data on the risk of coronary heart dis-
ease (CHD) and the menopausal hormone therapy.
Large observational studies include Nurses’ Health Study
(NHS) suggested a reduced risk of CHD among postme-
nopausal hormone therapy [8,68] while WHI rando-
mized trial found increased risk of CHD among women
assigned to the menopausal hormone therapy compared
to the placebo group [69]. Hernán et al. re-analysis of
the Nurses’ Health Study and concluded that most of
the difference could be attributed to the age distribution
at the time of initiation of hormone therapy and length
of follow-up [70].
Unfortunately, for most adult diseases, an unbiased re-

construction of childhood exposure is difficult, if not im-
possible. Thus, a major limitation of adult epidemiologic
research will continue to be the inability to reconstruct
childhood factors that predict disease. At least some of
the difficulty in finding gene-environment interactions
for adult disease is likely that the relevant exposure may
have occurred in childhood, and a measure of cumula-
tive exposure, while preferable to cross-sectional mea-
sures, cannot capture exposure during the critical
developmental life stage predisposing to disease.
Statistical analysis issues for gene-environment
studies
Longitudinal studies
In order to incorporate exposure effects by life stage,
gene-environment interaction may be conceived as a 3-
way interaction, in which the time of the exposure is the
3rd factor. In general the gene-environment interaction
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as a function of time can be modeled by considering a
general nonparametric model

Yij ¼ f Gij; Eij; tij
� �þ eij;

where Yij is the response of interest of the i-th subject at
the j-th time point tij; Gij and Eij are the genetic and en-
vironmental covariates measured at tij, and eij are ran-
dom errors. Here the function f(.) models the combined
effect of gene, environment and any possible interactions
as function of time. Note that the formulation above can
incorporate multiple genetic and environmental vari-
ables and thus has potential to model gene-gene interac-
tions as well as gene-environment interactions involving
several genes as well. For such general model of longitu-
dinal data, Zhang [71,72] presented multivariate adaptive
spline smoothing based estimation methods. For high-
dimensional data, such as GWAS studies directly applying
such methods for a large number of SNPs is undesirable.
Zhu et al. [73] adapted the multivariate spline method-
ology for GWAS: Specifically, the procedure starts by
starting with a model containing only intercept (the sim-
plest model) and then gradually growing the model by
adding terms (e.g., individual SNPs, SNP-SNP interaction)
that minimizes a weighted least squares criteria. Finally
the end model is selected via a backward step by deleting
one least significant term at a time from the model.
Another popular and useful approach for modeling

factors that change over time is the varying coefficient
modeling strategy. Specifically for G-E interaction, one
can consider the time-varying coefficient model

Yi tij
� � ¼ β0 tij

� � þ GijβG tij
� � þ EijβE tij

� �

þ Gij�EijβGE tij
� � þ eij;

where tij denotes the time point for the j-th measure-
ment of the i-th subject; Gij and Eij are the genetic and
environmental covariates measured at tij; βG(.), βE(.) and
βGE(.) are unknown gene, environment and G-E inter-
action effect, respectively, depending on time. Note that
this is a generalization of the conventional two-way G-E
interaction model Yi(tij) = β0 + GijβG + EijβE + GijEijβGE
+ eij with non-time-varying effects. Depending on the
data at hand, one could also consider different version of
this model in various ways, e.g., βG(tij) = βG corresponds
to the model where one assumes that only the intercept,
the environment effect and G-E interaction effect vary
over time but the gene effect does not. There is a rich
literature on varying coefficient models discussing esti-
mation and testing procedures, e.g., Hoover, Rice, Wu
and Yang [74] and Wu and Chiang [75] among many
others. The coefficient βGE(.) reflects the G-E interaction
effect as it changes over time. Thus, if the G-E inter-
action is prominent at a specific window of time but
dormant in others, plotting this coefficient function over
time could potentially reveal such patterns.

Case–control studies
Case–control studies are commonly used in studying for
genes and environment. Case–control studies sample
disease subjects (cases, D=1) and healthy subjects (con-
trols, D=0), and retrospectively collect information about
genes (G) and environment (E). The description of a
simple case–control study is given in Additional file 1:
Table S2, where both E and G are binary. The data from
a case–control study can be used to compute three odds
ratios (ORs), using subjects who are unexposed and have
typical genotypes as they occur in nature (also known as
wild type) (E=G=0) as the reference group: OR11 for
subjects with both the gene and the exposure (E=G=1),
OR10 for subjects with only the exposure (E=1, G=0),
and OR01 for subject with the only gene (E=0, G=1).
Then under the multiplicative interaction model, the
null hypothesis of no interaction can be written as OR11

= OR01 × OR10. Thus, to test for GxE interaction, one
defines the interaction odds-ratio as ORI = OR01 ×
OR10/ OR11 and tests for H0: ORI = 1. From Additional
file 1: Table S2, the sample log(ORI) can be estimated as
log(bche/adfg), and one can then construct a Z-statistic
to test for H0 (see for example, [76]).
Logistic regression is commonly used for analysis of

case–control studies, especially in the presence of cov-
ariates. A typical logistic model for assessing gene-
environment interaction is

logit pð Þ ¼ β0 þ β1G þ β2E þ β3G ∗ E
þ β4X ð1Þ

where p is the population disease probability and X is a
vector of covariates. As subjects are sampled based on the
case–control status and cases are over-sampled, the likeli-
hood depends on distribution of the independent variable
(G, E and X) in the population and the case–control sam-
pling probability. Hence the intercept β0 cannot be esti-
mated from the case–control sample. However, Cornfield
[77] and later Prentice and Pyke [78] showed that one
can estimate all the regression coefficients β except for
the intercept using the ordinary logistic regression likeli-
hood as if the data were obtained in a prospective study.
Under model (1), the OR of (G, E) versus (G0, E0) is

then given by exp{ β1(G - G0) + β2(E - E0) + β3(GE-
G0E0)}. In the presence of gene-environment interaction,
the OR of disease and gene depends on exposure. For
example, consider the case when both G and E are bin-
ary. The covariate X adjusted OR of D and G in the un-
exposed group (E=0) is exp(β1) and the OR of D and G
in the exposed group (E=1) is exp(β1+ β3). The inter-
action ORI = exp(β3). The null hypothesis H0: β3 =0
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constitutes a no gene-environment interaction. Note that
no assumption about the distribution of gene (G), envir-
onment (E) and covariates X, e.g., independence of gene
and environment, is made in logistic regression.
Several advanced models have been developed to in-

corporate gene-environment interactions. Selinger-
Leneman et al. [79] explored the conditions under which
accounting for gene-environment interaction enhances
the ability to detect the genetic effects in complex dis-
eases. Chatterjee, et al. [80] developed a maximum score
based testing procedure for main gene effects in the
presence of possible gene and environment interaction
using parametric models. Kraft et al. [81] applied a two
degree-of-freedom likelihood ratio test for the associ-
ation between a disease and a genetic locus, allowing for
the possibility that the genetic effect may be modified by
an environmental factor. Maity et al. [82] developed
more flexible statistical tests for genetic main effects in
presence of possible gene-gene and gene-environment
interactions using a semiparametric method.
Nevertheless, one should be aware that the case–con-

trol method may not be applicable for association stud-
ies in some situations, such as in the presence of
population stratification that can not be estimated from
the data. It is useful to complement case–control studies
with family studies using genetic analytic techniques
such as segregation and linkage methods [83].

Case only studies
An important matter in case–control studies is the
choice of control group. An inappropriate choice of con-
trols, e.g., hospital based controls or shared controls for
different studies, may result in erroneous findings, e.g.,
due to population stratification. To address this prob-
lem, several approaches have been developed, see e.g.,
[40]. One of these approaches to assess G-E interaction
is the case-only design where one uses only cases (D=1).
A key assumption to study G-E interaction on D in

the case-only design is that the distributions of gene and
environment are independent. Examples of such situa-
tions are the cases when an environmental factor is not
directly controlled by individual behaviors, e.g., air pollu-
tion. Specifically, in the absence of covariates, under
model (1), assuming rare disease, Pr(D=0 | G, E) is ap-
proximately 1. Assuming that G and E are binary and in-
dependent in the population, it can be shown that the
OR relating exposure and genotype in cases only is

pr G ¼ 1;E ¼ 1jD ¼ 1ð Þ pr G ¼ 0;E ¼ 0jD ¼ 1ð Þ=
½pr G ¼ 0;E ¼ 1jD ¼ 1ð Þ prðG ¼ 1;E ¼ 0jD ¼ 1Þ� ¼ expðβ3Þ:

This corresponds to the OR in a simple 2x2 contin-
gency table (Additional file 1: Table S3)
Thus, one can estimate the effect of the G-E inter-
action term approximately correctly without performing
a logistic regression of D. This approach can also be ap-
plied in logistic models in the presence of covariates
[39]. Under the assumption of the independence of gene
and environment, the case-only analysis yields a smaller
standard error when estimating the interaction term β3,
thus increasing power to detect GxE interaction [39].
Umbach and Weinberg [84] conjectured that imposing
the gene and environment independence assumption in
studies where controls are available could also improve
precision for estimating main effects. They also investi-
gate the power gain in detecting GxE interaction via
simulation studies and find that in several parameter
configurations considerable precision advantages can ac-
crue by estimating the interaction term using G-E inde-
pendence assumption. They find that sometimes the
variance of the interaction term can be reduced by more
than two-fold, even near the null value β3=0. Thus, in
situations where the key independence assumption is
met, a study analyzed with G-E independence assump-
tion may need considerably fewer subjects than one ana-
lyzed with the full model without G-E independence
assumption to achieve the same power for detecting
gene-environment interaction. Several researchers ex-
ploit the assumption of gene-environmental independ-
ence in the population to develop more powerful
statistical tests for gene and environment interactions in
more complex settings, see e.g., [84-86].
However, one should exercise caution when applying

case-only analysis, as it makes a strong assumption that
G and E are independent in the population, possibly
conditioning on covariates. If the distribution of G and E
depend on each other, the case-only design will yield a
biased estimate of the interaction term β3. In addition, it
only estimates the interaction term β3 and cannot esti-
mate the main effects β1 and β2. In practice, the assump-
tion of G-E independence in the population may not
hold. For example, the genetic variants in a smoking
pathway may affect the degree of addiction. In such sce-
nario, a case-only study for studying the effects of genes
and lung cancer risk would not be applicable. Further,
the validity of a case-only study also hinges on the as-
sumption that there is no hidden population stratifica-
tion in the study population. Wang and Lee [87] showed
that if a population stratification exists, then case-only
studies may be biased, and the bias involves the coeffi-
cient of variation of the exposure prevalence odds, the
coefficient of variation of the genotype frequency odds,
and the correlation coefficient between the exposure
prevalence odds and the genotype frequency odds. In
other words, a case-only study may be biased if a sys-
tematic difference is present in either genotype frequen-
cies or exposure prevalence between subpopulations.
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Case-parent and case-sib design
In a ‘case-sib’ design, each case is matched to one or
more unaffected siblings [88-90]. Compared to the case–
control design, this design has the advantage that cases
and controls are perfectly matched on the ethnic back-
ground, thus this design reduces the bias due to popula-
tion stratification.
In the ‘case-parent’ design, the parents of cases are

used as a sort of control group to study genetic markers
that could be associated with disease risk or be in link-
age disequilibrium with alleles at a neighborhood locus.
Genotypes are obtained from each case and his/her two
parents, while environmental data are required only
from cases [41]. Similar to the case-sib design, this de-
sign provides a perfect control for ethnic confounding.
The main effect of environmental factors cannot be
assessed in the case-parent design, but analysis of gen-
etic main effects and G- E interactions can be con-
ducted. Umbach and Weinberg [91] proposed an
association test, which examines the joint effects of gene
and environment using case-parent trios. The case-
parental control method requires the availability of
genotypic information on both parents of cases, al-
though the EM algorithm can be used to maximize the
likelihood if some genotypes are missing and the method
has been extended to situations where only one parent is
available [92]. Witte et al. [90] and Gauderman et al.
[89] compared the relative efficiency of the case-sib and
case-parent designs to the matched case–control design
for estimation of genetic main effects. They also pro-
vided some comparisons of efficiency for estimation of
the G × E interaction effect. They found that because of
overmatching on genotype, the use of sibling controls
leads to estimates of genetic relative risk that are ap-
proximately half as efficient as those obtained with the
use of population controls, while relative efficiency for
cousin controls is approximately 90%. However, they
also find that for a rare gene, the sibling-control design
can lead to improved efficiency for estimating a G × E
interaction effect.
Genome-wide association studies
A genome-wide association study involves scanning tens
of thousands of genetic markers (SNPs) across the gen-
ome to identify the genetic variations that are associated
with a disease or a trait [93,94]. Such studies are particu-
larly useful in finding common genetic variations that
contribute to common and complex diseases, such as
heart disease, cancer, and diabetes. Compared to linkage
analysis, GWAS can be more powerful in detecting
genes associated with modest increases in disease risk
[95]. In the past few years, GWAS have been successful
in identifying over a hundred common genetic variants
that are associated with complex diseases (http://www.
genome.gov/gwastudies).
In a traditional case–control GWAS, one observes a

disease outcome D, environmental exposure E, and the
genotypes of M SNPs spanning the genome, with g1, g2,
. . ., gM denoting the genotypes at the M loci. Illumina
and Affymetrix provide common genotyping platforms
for GWAS, where the genotypes of a million or more
SNPs can now be simultaneously measured. Several
models can be used for the pattern of inheritance of the
genetic susceptibility. Under the dominant model, sub-
jects with genotype g = AA or Aa are genetically suscep-
tible, that is, they are at either increased or decreased
risk compared to the baseline group (g = aa). This
structure can be captured by defining the genetic covari-
ate G such that G = 0 for g = aa, and G = 1 for g = AA
or g = Aa. Under the recessive model, we have G = 1 for
g = AA and G = 0 otherwise. Under the co-dominant
model, one can use two dummy variables or an additive
model (G=0,1,2) to model the genetic effect. Let p and
q = 1- p be the probabilities of observing A and a
respectively. Assuming Hardy-Weinberg equilibrium, the
distribution of genotypes g in the population is given by
pr(g = AA) = p2, pr (g = Aa) = 2pq, and pr(g = aa) = q2.
Hardy-Weinberg equilibrium should be checked when
the genotype data are cleaned.
GWAS studies have primarily focused on detecting the

main gene effect by fitting the traditional logistic main
effect model for each SNP Gj separately as

logit pð Þ ¼ β0 þ β1Gj þ β2E þ β4X; ð2Þ

where X is a vector of covariates and often also includes
a few principal components to control for population
stratification [96]. A correction for multiple compari-
sons, such as the Bonferroni correction, or modified
Bonferroni correction [97], is often used to control for
the genome-wide type I error. Several multi-locus tests
have been proposed to improve the power in GWAS
studies[98]. Top SNPs from GWAS are then selected for
validation in independent samples.
To study gene-environment interaction in GWAS, one

can fit model (1) for each SNP separately and test for
H0: β3 = 0 and use the Bonferroni correction to adjust
for multiple comparisons. A main challenge in using
GWAS to test for G-E interaction is that most GWAS
have limited power to detect gene-environment inter-
action on the genome wide scale after accounting for
multiple comparisons. One might consider using the
case-only analysis to increase the analysis power. How-
ever, the case-only analysis relies on the strong assump-
tion of the independence of gene and environment in
the population, which might be not reasonable across all
SNPs that are scanned in a GWAS.

http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies
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Several approaches have been recently proposed to im-
prove power for detecting gene-environment interac-
tions in GWAS. Kraft et al. [81] proposed to screen for
top genes in the presence of possible gene-environment
interactions using a 2-df test for testing for the main
genetic effect and G×E interactions jointly. They showed
that under a variety of parameter settings, the 2-df test
was often more powerful than a test of the main effect
or the traditional test for G×E interactions.
Assuming binary E, Murcray et al. [99] proposed a

two-step approach where they first use a likelihood ratio
test of the association between G and E based on the lo-
gistic model pr(E = 1 | G) = a0 + a1G and test for H0:
a1=0. This corresponds to the standard case-only test for
the G×E interaction. One then screens for the significant
genes with p–values below a threshold. In the second
step, the screened SNPs are then tested using the stand-
ard G x E interaction test under model [1] with correc-
tion for multiple comparisons. They showed this two-
stage test is more powerful than the standard one-stage
test for the gene-environment interaction (H0: β3=0)
using model [1]. The added power of this two-stage pro-
cedure derives from the fact that the multiple compari-
son in the second step is performed only based on the
genes chosen in the first step, not the entire set of genes.
As shown by Murcray et al., this two-step method can
be almost twice powerful than the traditional one-step
procedure if the G-E independence assumption is valid
for a large fraction of G-E combinations under study.
However, the power gain of the procedure diminishes as
the total number of genetic markers increases [100].
Mukherjee and Chatterjee [101] proposed a 1-stage in-

ferential procedure on G-E interactions using an empir-
ical Bayes-type shrinkage estimation approach. They
estimate the interaction using a weighted average of the
case-only and case–control estimators where the weights
are based on the difference between the two estimators
and the variance of the robust case–control estimate.
This estimator is shown to be robust to the departure
from the G-E independence assumption. The associated
test can gain efficiency and power when the assumption
of G-E independence in satisfied in the underlying popu-
lation but also preserves Type I error when the inde-
pendence assumption is violated.

Cohort studies
In prospective cohort studies, a sample of healthy sub-
jects in a pre-specified cohort of subjects are recruited,
environmental and lifestyle data and Biological samples,
such as blood, are obtained at baseline (the start of the
study), and the subjects are then followed prospectively
over time for disease onset or quantitative traits. Ques-
tionnaire data and biological sample may be also
updated over time. As Clayton and McKeigue [102]
state, “The rationale for setting up cohort studies of gen-
etic effects on disease risk is based on the argument that,
because cohort studies can measure environmental
exposures before disease onset, they are better than the
case–control design for study of gene-environment
interactions. Study of such interactions is thought to
make detection of genes that influence disease risk eas-
ier, to allow individuals at high risk to be identified for
targeted intervention, and to advance understanding of
biological pathways leading to disease.”
For binary D, E, and G, the data layout for a cohort

study is similar to that of a case–control study in Add-
itional file 1: Table S2, except that, unlike case–control
studies, one can now estimate disease risks and subse-
quently estimate relative risks (RRs). Parallel to the odds
ratio calculations in case–control studies, one can define
four RRs. For example, using the non-exposed and non-
high-risk genotype (G=E=0) as the reference group: RR11

is the RR comparing the exposed and high-risk genotype
group (G=E=1) and is estimated as h(a+c)/(f+h)a, simi-
larly one can define RR10, RR01, and RR00. Under the
multiplicative interaction model, the null hypothesis of
no G-E interaction can be written as H0: RR11 = RR01 ×
RR10. This is equivalent to testing H0: OR11 = OR01 ×
OR10 and can proceed with logistic regression.
One major limitation of cohort studies is that rare

events will not occur at sufficient frequency so that most
cohort studies may not record sufficient numbers of
cases for rare diseases and might have only marginal
power for common diseases [102]. Cohort studies can be
used to study gene effects and gene-environment inter-
actions for disease progression and censored time-to-
event data using survival analysis techniques, e.g., the
Cox model [103], and for longitudinal phenotypes using
mixed models and GEEs [104].

Nested case–control design and case-cohort studies
Epidemiologic cohort studies and disease prevention
trials typically require the follow-up of several thousand
subjects for a number of years before yielding useful
results, and hence can be prohibitively expensive. To ad-
dress this issue, a pseudo case–control design can be
used to reduce the number of subjects for whom covari-
ate data are required (see for example, [105-108]), where
each subject developing disease is matched to one or
more subjects without disease at the same point in 'time'
using incidence-density sample. Henceforth, relative
risks are estimated using a matched case–control ana-
lysis. In this setup, one only requires the covariate mea-
surements for only cases and their matched controls.
This is the so-called 'case-control nested within a cohort'
design.
However, intuitively the alignment of each selected

control subject to its matched case could be inefficient,
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since that subject may also properly serve as a member
of the comparison group for cases occurring at a range
of other times. In the context of a disease prevention
trial, it is often desirable to have a subset of the trial co-
hort for whom covariate data are analyzed on an
ongoing basis in order to monitor intervention effective-
ness and compliance. The case–control approach is not
well suited to this purpose since covariate histories are
only assembled following case occurrence. As an alterna-
tive, Prentice [78] proposed a ‘case-cohort’ design which
involves the selection of a random sample (or a stratified
random sample) of the entire cohort, and the assembly
of covariate histories only for this random subcohort
and for all cases. The subcohort in a given stratum con-
stitutes the comparison set of cases occurring at a range
of failure times. The subcohort also provides a basis for
covariate monitoring during the course of cohort follow-
up. Very similar designs have also been proposed by
Kupper, McMichael & Spirtas [109] and Miettinen [110].
These more efficient designs have started being used to
study gene-environment interactions in cohort studies
[111].
The statistical efficiency for a case-cohort study over a

nested case–control study is small. Wacholder [112]
pointed out that nested case–control designs have a
small to moderate advantage for studies with substantial
late entry or censoring. Case-cohort studies gain small
advantage in studies with little late entry or censoring.
However, a major practical advantage of the case-cohort
studies is the ability to use the same subcohort for sev-
eral outcomes such as different subtypes of disease
[112]. If one intends to compare the risk factors of dif-
ferent outcomes then adjustments of significance levels
and confidence intervals are required due to multiple
comparisons and to account for possible correlations be-
tween outcomes [113]. However, if the main focus is on
the evaluation of risk factors for each disease separately
then no such adjustment is required.

Two-stage designs and biased sampling
In many situations, the exposure of interest and the dis-
ease endpoint can both be rare and studies of their rela-
tionship between them require a very large number of
samples, and hence can be very expensive. In such cases,
a two-stage design, originally proposed by White [114],
can be employed. A major assumption in this scenario
that the exposure information is already available for a
large sample of controls and cases in the screening stage.
Complete covariate and genotype information is then
collected only on a subsample, where the sampling frac-
tion can depend jointly on disease and exposure status.
For example, in case of a rare exposure, one can over-
sample those who are more likely to have exposure and
perform the genotyping on a more informative subset of
subjects. A similar approach can be taken where a spe-
cific rare genotype is of interest and exposure is expen-
sive to record. White [114], assuming the exposure and
disease status are both binary, presented a procedure to
derive valid estimates of odds ratio by incorporating the
information from the first both stages sample and the
sampling proportions for the second stage. Cain and
Breslow [115] extended this approach by allowing for a
multilevel exposure variable, and any number and type
of any covariates. There is a large recent literature on
analysis of two-stage case–control designs using more
efficient inverse probability weighted estimation proce-
dures and semiparametric efficiency procedures [116].
Weinberg and Wacholder [117] developed designs of
case–control studies with biased sampling for more
general cases. They developed and presented analytic
techniques and estimation procedures. They show that
unbiased estimation procedure of the main and the
interaction effects are possible assuming given the
sampling fractions are known for the second stage sam-
pling. From the simulation studies of Weinberg and
Wacholder, it is seen that the effect of the screening/
matching factor in the stage 1 sampling can often be
estimated with better precision compared to completely
sampling. In addition, the main and interaction effects
can be also estimated more efficiently compared to ran-
dom sampling. The advantage of this design appears to
improve the efficiency of estimation of the interaction
coefficient; the efficiency gain could be as large as 250%.
The efficiency gain is however dependent of the odds
ratio relating the exposure and genotype to the disease.

Power and sample size considerations
Gene-environmental studies often require large sample
sizes to detect interactions compared to studies for
detecting main gene and environmental associations.
Thus, power and sample size considerations are critical.
There have been several publications about sample size
and power calculations in G-E studies (Table 1). The
software QUANTO developed by Gauderman [37] is
convenient for power and sample size calculations for a
range of gene-environmental designs.

Discussion
With advancement in human genetics and risk assess-
ment, current research has shown that the interplay be-
tween genes and environment is critical to disease risk
and progression. Consequently, more research efforts
need to be directed towards investigating the genetic
basis of individual susceptibility and the role of the gen-
ome and epigenome, to various environmental agents.
The methodological issues raised above are focused on
the “how to” approaches to assessing gene-environment
interactions.



Table 1 Summarized publications regarding sample size and power calculations in gene-environment studies

Source Design

Yang et. al. [118] Case-only

Cai and Zheng [119] Case-cohort

Schaid [41] Matched case–control

Gauderman [37] Case-sibling

Case-parent

Lubin and Gail [120] Unmatched case–control, Multivariate regression models for odds ratio

Hwang et al. [121] Unmatched case–control, binary genetic and environmental factors

Foppa and Spiegelman [122] Unmatched case–control, binary genetic factor and an environmental exposure with multiple categories
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All individuals are exposed to a variety of hazardous
agents and chemicals in the environment. However, gen-
etic pathways are thought to have evolved for minimiz-
ing the adverse effects from these environmental insults.
Genes expressed in these pathways, referred to broadly
as environmentally responsive genes, exhibit heritable
variability that may be associated with altered efficiency
of the pathway. Hence, gene-environment investigation
needs to go beyond individual genes to investigate the
roles of genetic pathways and networks.
Several research programs were launched to promote

and facilitate research in environmentally responsive
genes. In the 1990’s, the National Institute of Environ-
mental Health Sciences (NIEHS), of the U.S. National
Institutes of Health, initiated a multiyear project entitled
the NIEHS Environmental Genome Project (EGP). The
focus of the NIEHS EGP is on common sequence varia-
tions, referred to as genetic polymorphisms, in environ-
mentally responsive genes. The NIH-wide Genes,
Environment and Health Initiative (GEI) was launched
in February 2006 to support research that will lead
to the understanding of genetic contributions and
gene-environment interactions in common disease. Nu-
merous scientific advances have been made through
these initiatives.
More advanced statistical and computationally effi-

cient methods need to be developed to investigate the
interplay of genes and environment in human diseases.
Data integration is becoming more and more important.
More interdisciplinary research by integrating molecular
biological knowledge, environmental sciences, bioinfor-
matics and computational biology, and statistical and
computational methods is likely to advance research in
genes and environment. More research is needed in sev-
eral emerging research areas in genes and environment,
such as exposure biology for identifying new biomarkers
for better measuring exposures, mediation (causal infer-
ence) analysis, e.g., for effects of environment of disease
phenotypes through epigenetic markers, statistical meth-
ods for high-dimensional data analysis for genes and
environment, and risk prediction using genes and
environment. It should be noted that the process of
translating genetic and ‘omic research into practice in
environmental and occupational health is considered to
be in an early phase. Thus, most research findings from
genetic susceptibility studies should be communicated
with caution to the general public at this time. Policy
research on genes and environment deserves more
attention.

Conclusion
In conclusion, we are entering an exciting period of
research and knowledge generation about gene-
environment interactions. The potential for combining
basic bench work with human population studies opens
up many opportunities to examine the health effects of
complex environmental exposures. The challenges for
the next decade for human population work in this field
include maintaining rigorous epidemiologic study de-
sign, improving environmental exposure analysis, advan-
cing genomic technology and knowledge, and expanding
the necessary analytic and computational tools for high-
throughout “-omic” and environmental data, and the
concomitant policy and ethical implications.
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