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Abstract

A key problem in neuroscience is understanding how the brain makes decisions under uncertainty. Important insights have
been gained using tasks such as the random dots motion discrimination task in which the subject makes decisions based on
noisy stimuli. A descriptive model known as the drift diffusion model has previously been used to explain psychometric and
reaction time data from such tasks but to fully explain the data, one is forced to make ad-hoc assumptions such as a time-
dependent collapsing decision boundary. We show that such assumptions are unnecessary when decision making is viewed
within the framework of partially observable Markov decision processes (POMDPs). We propose an alternative model for
decision making based on POMDPs. We show that the motion discrimination task reduces to the problems of (1) computing
beliefs (posterior distributions) over the unknown direction and motion strength from noisy observations in a Bayesian
manner, and (2) selecting actions based on these beliefs to maximize the expected sum of future rewards. The resulting
optimal policy (belief-to-action mapping) is shown to be equivalent to a collapsing decision threshold that governs the
switch from evidence accumulation to a discrimination decision. We show that the model accounts for both accuracy and
reaction time as a function of stimulus strength as well as different speed-accuracy conditions in the random dots task.
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Introduction

Animals are constantly confronted with the problem of making

decisions given noisy sensory measurements and incomplete

knowledge of their environment. Making decisions under such

circumstances is difficult because it requires (1) inferring hidden

states in the environment that are generating the noisy sensory

observations, and (2) determining if one decision (or action) is

better than another based on uncertain and delayed reinforce-

ment. Experimental and theoretical studies [1–6] have suggested

that the brain may implement an approximate form of Bayesian

inference for solving the hidden state problem. However, these

studies typically do not address the question of how probabilistic

representations of hidden state are employed in action selection

based on reinforcement. Daw, Dayan and their colleagues [7,8]

explored the suitability of decision theoretic and reinforcement

learning models in understanding several well-known neurobio-

logical experiments. Bogacz and colleagues proposed a model that

combines a traditional decision making model with reinforcement

learning [9] (see also [10]). Rao [11] proposed a neural model for

decision making based on the framework of partially observable

Markov decision processes (POMDPs) [12]; the model focused on

network implementation and learning but assumed a deadline to

explain the collapsing decision threshold. Drugowitsch et al. [13]

sought to explain the collapsing decision threshold by combining a

traditional drift diffusion model with reward rate maximization.

Other recent studies have used the general framework of

POMDPs to explain experimental data in decision making tasks

such as those involving a stop-signal [14,15] and different types of

prior knowledge [16].

In this paper, we derive from first principles a POMDP model

for the well-known random dots motion discrimination task [17].

We show that the task reduces to the problems of (1) computing

beta-distributed beliefs over the unknown direction and motion

strength from noisy observations, and (2) selecting actions based on

these beliefs in order to maximize the expected sum of future

rewards. Without making ad-hoc assumptions such as a hypo-

thetical deadline, a collapsing decision threshold emerges naturally

via expected reward maximization. We present results comparing

the model’s predictions to experimental data and show that the

model can explain both reaction time and accuracy as a function

of stimulus strength as well as different speed-accuracy conditions.

Methods

POMDP framework
We model the random dots motion discrimination task as a

POMDP. The POMDP framework assumes that at any particular

time step, the environment is in a particular hidden state, m, that is

not directly accessible to the animal. This hidden state however

can be inferred by making a sequence of sensory measurements.

At each time step t, the animal receives a sensory measurement
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(observation), ot, from the environment, which is determined by

an emission probability distribution P(otDm). Since the hidden state

m is unknown, the animal must maintain a belief (posterior

probability distribution) over the set of possible states given the

sensory observations seen so far: bt(mDo1:t), where o1:t represents

the sequence of observations that the animal has accumulated so

far. At each time step, an action (decision) at[A made by the

animal can affect the environment by changing the current state to

another according to a transition probability distribution

P(m’Dm,at) where m is the current state, and m’ is a new state.

The animal then gets a reward R(m,at) from the environment,

depending on the current state and the action taken. During

training, the animal learns a policy, p(b)[A, which indicates which

action a to perform for each belief state b. We make two main

assumptions in the POMDP model. First, the animal uses Bayes

rule to update its belief about the hidden state after each new

observation otz1: P(mDo1:tz1)~
P(mDo1:t)|P(otz1Dm)

P(otz1Do1:t)
. Second, the

animal is trained to follow an optimal policy p�(b) that maximizes

the animal’s expected total future reward in the task. Figure 1

illustrates the decision making process using the POMDP

framework. Note that in the decision making tasks that we model

in this paper, the hidden state m is fixed by experimenters within a

trial and thus there is no transition distribution to include in the

belief update equation. In general, the hidden state in a POMDP

model follows a Markov chain, making the observations o1:t

temporally correlated.

Random dots task as a POMDP
We now describe how the general framework of POMDPs can

be applied to the random dots motion discrimination task as

shown in Figure 1. In each trial, experimenter chooses a fixed

direction d[f{1,z1g corresponding to leftward and rightward

motion respectively, and a stimulus strength (motion coherence)

c[½0,1�, where 0 corresponds to completely random motion and 1
corresponds to 100% coherent motion (i.e., all dots moving in the

same direction). Intermediate values of c represent a correspond-

ing fraction of dots moving in the coherent direction (e.g., 0:5
represents 50% coherent motion). The animal is shown a movie of

randomly moving dots, a fraction c of which are moving in the

same direction d.

In a given trial, neither the direction d nor the coherence c is

known to the animal. We therefore regard (c,d) as the joint hidden

environment state m in the POMDP model. Neurophysiological

evidence suggests that information regarding random dot motion

is received from neurons in cortical area MT [18–21]. Therefore,

following previous models (e.g., [22–24]), we define the observa-

tion model P(otDm) in the POMDP as a function of the responses of

MT neurons. Let the firing rate of MT neurons preferring

rightward and leftward direction be lMT
R and lMT

L respectively. We

can define:

lMT
R (c,d)~rpref

dz1

2
czrnull

1{d

2
czlMT

0

lMT
L (c,d)~rpref

1{d

2
czrnull

1zd

2
czlMT

0 ð1Þ

where lMT
0 ~20 spikes/second is the average spike rate for 0%

coherent motion stimulus, and rpref~40 and rnull~{20 are the

‘‘drive’’ in the preferred and null directions respectively. These

constants (rpref , rnull and lMT
0 ) are based on fits to experimental

data as reported in [23,25]. Let tt be the elapsed time between

time steps t and tz1. Then, the number of spikes emitted by MT

neurons rMT within tt follows a Poisson distribution:

Pr rMT
� �

~
e{lMTtt (lMTtt)

rMT

rMT!
: ð2Þ

We define the observation ot at time t as the spike count from MT

neurons preferring rightward motion, given the total spike count

from rightward and leftward-preferring neurons, i.e., the obser-

vation is a conditional random variable ot~rMT
R Dnt where

nt~rMT
R zrMT

L . Then ot follows a stationary Binomial distribution

Bino(n,m). Note that the duration of each POMDP time step need

not be fixed, and we can therefore adjust tt such that nt~n for

some fixed n, i.e., the animal updates the posterior distribution

over hidden state each time it receives n spikes from the MT

population. tt is exponentially distributed, and the standard

deviation of tt will approach zero as n increases. When n~1, ot

becomes an indicator random variable representing whether a

spike was emitted by a rightward motion preferring neuron or not.

It can be shown [26] that ot follows a Binomial distribution

Bino(n,m) with

m~
lMT

R

lMT
R zlMT

L

~
rpref

dz1
2

czrnull
1{d

2
czlMT

0

(rprefzrnull)cz2lMT
0

ð3Þ

m[½0,1� represents the probability that the MT neurons favoring

rightward movement will spike given that there is a spike in the

MT population. Since m is a joint function of c and d , we could

equivalently regard it as the hidden state of our POMDP model:

mw0:5 indicates rightward direction (d~z1) while mv0:5
indicates the opposite direction (d~{1). The coherence c~0
corresponds to m~0:5 while c~1 corresponds to the two extreme

values m~0 or 1 for direction d being left or right respectively.

Note that both direction d and coherence c are unknown to the

animal in the experiments, but they are held constant within a

trial.

Figure 1. POMP Framework for Decision Making. Left: The
graphical model representing the probabilistic relationship between
random variables c, d , l and r. In the POMDP model, the hidden state m
corresponds to coherence c and direction d jointly. The observation ot

corresponds to MT response rMT (t). The relations between these
variables are summarized in table 1. Right: In order to solve a POMDP
problem, the animal maintains a belief bt, which is a posterior
probability distribution over hidden states m~ of the world given
observations o1:t. At a current belief state bt , an action is selected
according to the learned policy p, which maps belief states to actions.
doi:10.1371/journal.pone.0053344.g001

Reward Optimization in the Primate Brain

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e53344



Bayesian inference of hidden state
Given the framework above, the task of deciding the direction of

motion of the coherently moving dots is equivalent to the task of

deciding whether d~1 or not, and deciding when to make such a

decision. The POMDP model makes decisions based on the

‘‘belief’’ state bt(m)~P(mDo1:t), which is the posterior probability

distribution over m~ cdz1
2

given a sequence of observations o1:t:

bt(m)~
Pr otDm½ �Pr mDo1:t{1½ �

Pr otDo1:t{1½ �

~
mmR(t)(1{m)mL(t)Pr m½ �

Pr½o1:t�

ð4Þ

where m(t)~
P

t nt~n � t, mR(t)~
Pt

t~1 ot, and

mL(t)~m(t){mR(t). To facilitate the analysis, we represent the

prior probability Pr m½ � as a beta distribution with parameters a0

and b0. Note that the beta distribution is quite flexible: for

example, a uniform prior can be obtained using a0~b0~1.

Without loss of generality, we will fix a0~b0~1 throughout this

paper. The posterior distribution can now be written as:

bt mð Þ!mmRza0{1 1{mð ÞmLzb0{1

~Beta mDa~mRza0,b~mLzb0½ �
ð5Þ

The belief state bt at time step t thus follows a beta distribution

with two parameters a and b as defined above. Consequently, the

posterior probability distribution over m depends only on the

number of spikes mR and mL for rightward and leftward motion

respectively. These in turn determine m̂m and t, where

m̂m~
mRza0

mRzmLza0zb0

ð6Þ

is the point estimator of m, and t~
mRzmL

n
. The animal only

needs to keep track of m̂m and t in order to encode the belief state

bt~Beta½mDa~m̂m(ntza0zb0),b~(1{m̂m)(ntza0zb0)�. After

marginalizing over coherence c, we have the posterior probability

over direction d :

Pr d~1Do1:t½ �~
ð1

m~0:5

Beta(mDa,b)dm~1{I0:5(a,b) ð7Þ

Pr d~{1Do1:t½ �~
ð0:5

m~0

Beta(mDa,b)dm~I0:5(a,b): ð8Þ

where Ix(a,b)~
Ð x

m~0
Beta(mDa,b)dm is the regularized incomplete

beta function.

Actions, rewards, and value function
The animal updates its belief after receiving the current

observation ot, and chooses one of the three actions (decisions)

a[fAR,AL,ASg, denoting rightward eye movement, leftward eye

movement, and sampling (i.e., waiting for one more observation)

respectively. The model assumes the animal receives rewards

R(m,a) as follows (rewards are modeled using real numbers). When

the animal makes a correct choice, i:e:, a rightward eye movement

AR when d~1 (mw1=2) or a leftward eye movement AL when

d~{1 (mv1=2), the animal receives a positive reward RPw0.

The animal receives a negative reward (i.e., penalty) or nothing

when an incorrect action is chosen RNƒ0. We further assume

that the animal is motivated by hunger or thirst to make a decision

as quickly as possible. This is modeled using a unit penalty

RS~{1 for each observation the animal makes, representing the

cost the animal needs to pay when choosing the sampling action

AS .

Recall that a belief state bt is determined by the parameters a,b.

The goal of the animal is to find an optimal ‘‘policy’’ p� that

maximizes the ‘‘value’’ function vp(bt), defined as the expected

sum of future rewards given the current belief state:

vp(bt)~E½
X?
k~1

R(btzk,p(btzk))Dbt~Beta(mDa,b)� ð9Þ

where the expectation is taken with respect to all future belief

states (btz1, . . . ,btzk, . . . ). The reward term R(bt,a) above is the

expected reward for the given belief state and action:

R(bt,AS)~nRS ð10Þ

R(bt,AR)~
X

d

ð1

c~0

R(c,d,AR)Beta(mDa,b)dc

~RP|½1{I0:5(a,b)�zRN|I0:5(a,b)

~(RP{RN )|½1{I0:5(a,b)�zRN

R(bt,AL)~(RP{RN )|I0:5(a,b)zRN

The above equations can be interpreted as follows. When AS is

selected, the animal receives n more samples at a cost of nRS .

When AR is selected, the expected reward R(bt,AR) depends on

the probability density function of the hidden parameter m given

belief state bt. With probability I0:5(a,b), the true parameter m is

less than 0:5, making AR an incorrect decision with penalty RN ,

and with probability 1{I0:5(a,b), action AR is correct, earning the

reward RP.

Finding the optimal policy
A policy p(bt) defines a mapping from a belief state to one of the

available actions a. A method for learning a POMDP policy by

trial and error using the method of temporal difference (TD)

learning was suggested in [11]. Here, we derive a policy from first

principles and compare the result with behavioral data.

One standard way [12] to solve a POMDP is to first convert it

into a Markov Decision Process (MDP) over belief state, and then

apply standard dynamical programming techniques such as value

iteration [27] to compute the value function in equation 9. For the

corresponding belief MDP, we need to define the transition

probabilities T(btDbt{1,at{1). When at{1~AS , the belief state

can be updated using the previous belief state and current

observation based on Bayes’ rule:

T(btDbt{1,AS)~Pr a’,b’Da,b,AS½ �

~Pr otDa,b½ �da’~azot db’~bzn{ot

ð11Þ

for all ot[f0, . . . ,ng. In the above equation, d(:) is the Kronecker

delta, and Pr otDa,b½ � is the expected value of the likelihood

function Pr otDm½ �~m over the posterior distribution bt:

Reward Optimization in the Primate Brain

PLOS ONE | www.plosone.org 3 January 2013 | Volume 8 | Issue 1 | e53344



Pr otDa,b½ �~
n

ot

� �
aot bn{ot

(azb)n , ð12Þ

which is a stationary distribution independent of time t. When the

selected action is AR or AL, the animal stops sampling and makes

an eye movement. To account for such cases, we include an

additional state C, representing a terminal state, with zero reward

R(C,a)~0 and absorbing behavior, T(CDC,a)~1 for all actions a.

Formally, the transition probabilities with respect to the absorbing

(termination) state are defined as Pr CDbt,a[fAR,ALg½ �~1 for all

bt, indicating the end of a trial.

Given the time-independent belief state transition Pr b
0
tDbt,a

� �
,

the optimal value v? and policy p?~ arg maxp vp can be obtained

by solving Bellman’s equation:

p?(bt)~ argmax
a
½R(bt,a)z

X
b
0
t

Pr b
0
t Dbt,a

h i
v�(b

0
t)�

v?(bt)~ max
a
½R(bt,a)z

X
b
0
t

Pr b
0
tDbt,a

h i
v�(b

0
t)� ð13Þ

Before we proceed to results from the model, we note that the

one-step belief transition probability matrix T(btDbt{1,AS) with

n~n0 can be shown be mathematically equivalent to the n0-steps

transition matrix Tn0 (btDbt{1,AS) with n~1. The solution to

Bellman’s equation 13 is independent of n. Therefore, unless

otherwise mentioned, the results are based on the most general

scenario where the animal needs to select an action whenever a

new spike is received, i:e:, n~1.

We summarize the model variables as well as their statistical

relationships in table 1.

Results

Optimal value function and policy
Figure 2 (a) shows the optimal value function computed by

applying value iteration [27] to the POMDP defined in the

Methods and Analysis section, with parameters RP~50, RN~0,

and RS~{0:1. The x-axis of Figure 2 (a) represents the total

number of observations m~mRzmL encountered thus far, which

is equal to the elapsed time t in the trial. The y-axis represents the

ratio m̂m~
mRza0

mza0zb0

, which is the estimator of the hidden

parameter m. In general, the model predicts a high value when

m̂m is close to 1 or 0, or equivalently, when the estimated coherence

is close to 1. This is because at these two extremes, selecting the

appropriate action has a high probability of receiving a large

positive reward RP. On the other hand, for m̂m near 0:5 (estimated c
near 0), choosing AL or AR in these states has a high chance of

resulting in an incorrect decision and a large negative reward RN

(see [11] for a similar result using a different model and under the

assumption of a deadline). Thus, belief states with mR*mL have a

much lower value compared to belief states with mR&mL or

mR%mL.

Figure 2 (b) shows the corresponding optimal policy p? as a joint

function of m̂m and t. The optimal policy p? partitions the belief

space into three regions: PR, PL, and PS , representing the set of

belief states preferring actions AR, AL and AS respectively. Let

Pa
m be the set of belief states preferring action a after m

observations, for a[fAR,AL,ASg and m~mRzmL. Early in a

trial, when m is small, the model selects the sampling action AS

regardless of the value of m̂m. This is because for small m, the

variance of the point estimator m̂m(m) is high. For example, even

when m̂m~1 when m~2, the probability that the true mv0:5 is still

high. The sampling action AS is required to reduce this variance

by accruing more evidence. As m becomes larger, the variance of

m̂m decreases, and the deviation between m̂m and the true value of m
diminishes by the law of large numbers. Consequently, the animal

will pick action AR even when m̂m is only slightly above 0:5. This

gradual decrease in the threshold over time for choosing the overt

actions AR or AL has been called a ‘‘collapsing bound’’ in the

decision making literature [28–30].

The optimal policy p? is entirely determined by three reward

parameters fRP,RN ,RSg. At a given belief state, p? picks one of

the three available actions that leads to the largest expected future

reward. Thus, the choice is determined by the relative, not the

absolute, value of the expected future reward for the different

actions. From equation 10, we have

R(a,b,AL){R(a,b,AR)!RN{RP: ð14Þ

If we regard the sampling penalty RS as specifying the unit of

reward, the optimal policy p? is determined by the ratio
RN{RP

RS

alone. Figure 2 (c) shows the relationship between
RN{RP

RS

and

the optimal policy p? by showing the rightward decision

boundaries wR(t) for different values of
RN{RP

RS

. As
RN{RP

RS

increases (e.g., by making the sampling cost Rs smaller), the

boundary wR(t) gradually moves towards the upper right corner,

giving the animal more time to make decisions which results in

more accurate decisions. To better understand this relationship,

we fit the decision boundary to a hyperbolic function:

wR(t){0:5!
t

tzt1=2

ð15Þ

We find that t1=2 exhibits nearly logarithmic growth with

RN{RP

RS

. Interestingly, a collapsing bound is obtained even with

extremely small RS because the goal is reward maximization

across trials: it is better to terminate a trial and accrue reward in

future trials than to continue sampling noisy (possibly 0%
coherent) stimuli.

Model predictions: psychometric function and reaction
time

We compare predictions of the model based on the learned

policy p� with experimental data from the reaction time version

(rather than the fixed duration version) of the motion discrimina-

tion task [31]. As illustrated in Figure 3, the model assumes that

motion information regarding the random dots on the screen is

processed by MT neurons. These neurons provide the observa-

tions ot (and n{ot) to right- and left-direction coding LIP neurons,

which maintain the belief state bt~fa~
P

t ot,b~
P

t (n{ot)g.
Actions are selected based on the optimal policy p�. If bt[PR

t or

bt[PL
t , the animal makes a rightward or leftward decision

respectively and terminates the trial. When bt[PS
t , the animal

chooses the sampling action and gets a new observation otz1.

Reward Optimization in the Primate Brain
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The performance on the task using the optimal policy p� can be

measured in terms of both the accuracy of direction discrimination

(the so-called psychometric function), and the reaction time

required to reach a decision (the chronometric function). In this

section, we derive the expected accuracy and reaction time as a

function of stimulus coherence c, and compare them to the

psychometric and chronometric functions of a monkey performing

the same task [31].

The sequence of random variables fm̂m1,m̂m2, . . . ,m̂mtg forms a (non-

stationary) Markov chain with transition probabilities determined

by equation 11. Let Y(m̂mt,tDm) be the joint probability that the

animal keeps selecting AS until time step t:

Y(m̂mt,tDm~Pr m̂m1[PS
1 ,m̂m2[PS

2 , . . . ,m̂mt[PS
t

� �
: ð16Þ

At t~0, the animal will select AS regardless of m̂m under p�, making

y(m̂m,0Dm)~Pr m̂m0½ �. At t§1, Y(m̂mt,tDm) can be expressed recursively

as:

Y(m̂mt,tDm)~
X

m̂mt{1[PS
t{1

Pr m̂mtDm̂mt{1½ �Y(m̂mt{1,t{1Dm) ð17Þ

Let Pr t,RDm½ � and Pr t,LDm½ � be the joint probability mass

functions that the animal makes a right or left choice at time t,
respectively. These correspond to the probability that the point

estimator m̂m(t) crosses the boundary of PR or PL for the first time

at time t:

Pr t,RDm½ �~Pr m̂mt[PR
t ,m̂mt{1[PS

t{1, . . . ,m̂m1[PS
1 Dm

� �
~
X

m̂mt[PR
t

X
m̂mt{1[PS

t{1

Pr m̂mtDm̂mt{1½ �Y(m̂mt{1,tDm) ð18Þ

Pr t,LDm½ �~
X

m̂mt[PL
t

X
m̂mt{1[PS

t{1

Pr m̂m tDm̂m t{1½ �Y(m̂mt{1,tDm) ð19Þ

The probabilities of making rightward or leftward eye

movement are the marginal probabilities summing over all

possible crossing times: Pr RDm½ �~
P?

t~1 Pr t,RDm½ � and

Pr LDm½ �~
P?

t~1 Pr t,LDm½ �. When the underlying motion direction

is rightward, Pr RDm½ � represents the accuracy of motion discrim-

ination and Pr LDm½ � represents the error rate. The mean reaction

times for correct and error choices are the expected crossing times

over the conditional probability that the animal makes decision AR

and AL respectively at time t:

RTR(m)~
X?
t~1

t
Pr t,RDm½ �
Pr RDm½ � ð20Þ

Table 1. Summary of model variables and paramters.

POMDP Variables Descriptions

m The hidden variable of POMDP, m~ c|dz1
2

[½0,1�. In the random dots task, m is a

constant over time

c The coherence (motion strength) of the random dots task. c[½0,1�. c is fixed during a
task.

d The underlying direction of the random dots task. d[f+1g. d is fixed during a task.

lMT
R,L

The average spike rate of MT neurons preferring rightward or leftward direction,
respectively, as a function of both coherence c and d described in equations 1.

rMT
R,L

The number of spikes emitted by MT neurons preferring rightward or leftward

direction, respectively during one POMDP step. rMT follows a Poisson distribution with

mean lMT

nt Total number of spikes emitted by MT neurons during one POMDP step. nt~rMT
R zrMT

L

ot The noisy observation at time step t, which is a conditional random variable ot~rMT
R Dnt

following a Binomial distribution Bino(nt,m). Note that o1, . . . ,ot are conditional
dependent of each other given the hidden variable m

bt The belief (posterior distribution) bt~P(mDo1:t). With a beta-distributed initial belief
b0~Beta(a0,b0), bt is also beta distributed due to the binomial distributed emission
probability P(ot Dm). Without loss of generality, a0~b0~1 throughout the paper.

at Action chosen by the animal at time t. at[fAS ,AR,ALg.
Model Parameters

RS A negative reward associated with the cost of an observation.

RP A positive reward associated with a correct eye movement.

RN A negative reward associated with an incorrect eye movement.

RTstep The duration of a single observation, the real elapsed time per POMDP step. Only used
to translate the number of POMDP time steps to real elapsed time when comparing
with experimental data.

RT0 Non-decision residual time. Both RTstep and RT0 are obtained from a linear regression

to compare model predictions (in unit of POMDP steps) with animals’ response time (in
unit of seconds), independent of the POMDP model.

doi:10.1371/journal.pone.0053344.t001
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RTL(m)~
X?
t~1

t
Pr t,LDm½ �
Pr LDm½ � ð21Þ

The left panel of Figure 4 shows performance accuracy as a

function of motion strength c for the model (solid curve) and a

monkey (black dots). The model parameters are the same as those

in Figure 2, obtained using a binary search within Rp[f0,2000g
with a minimum step size 10.

The right panel of Figure 4 shows for the same model

parameters the predicted mean reacton time RTR(m) for correct

choices as a function of coherence c (and fixed direction d~1) for

the model (solid curve) and the monkey (black dots). Note that

RTR(m) represents the expected number of POMDP time steps for

making a rightward eye movement AR. It follows from the Poisson

spiking process that the duration of each POMDP time step

follows a exponential distribution with its expectation proportional

to lR(m)zlL(m). In order to make a direct comparison to the

monkey data RT�R(m), which is in units of real time, a linear

regression was used to to determine the duration RTstep of a single

Figure 2. Optimal Value and Policy for the Random Dots Task. (a) Optimal value as a joint function of m̂m~
mRza0

mza0zb0

and the number of

POMDP steps t. (b) Optimal Policy as a function of m̂m and the number of POMDP steps t. The boundaries wR(t) and wL(t) divide the belief space into

three areas: PS (red), PR (green), and PL (blue), each of which represents belief states whose optimal actions are AS ,AR and AL respectively. Model

parameters: RP~50, RS~{0:1, and RN~0. (c) Left: The rightward decision boundary wR(t) for different values of
RN{RP

RS

. Right: The half time t1=2

of wR(t) for different values of
RN{RP

RS

, where wR(t1=2)~
wR(0){wR(?)

2
.

doi:10.1371/journal.pone.0053344.g002
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observation and the onset of decision time RT0:

RT�R(m)~RTstep � (lR(m)zlL(m)) � RTR(m)zRT0: ð22Þ

Note that the reaction time in a trial is the sum of decision time

plus the non-decision delays whose properties are not well

understood. The offset RT0 represents the non-decision residual

time. We applied the experimental mean reaction time reported in

[31] with motion coherence c~f0:032,0:064,0:128,0:256,0:512g

to compute the two coefficients RTstep and RT0. The unit duration

per POMDP step RTstep~9:20 ms/step, and the offset

RT0~358:5 ms, which is comparable to the 300 ms non-decision

time on average reported in the literature [23,32].

There is essentially one parameter in our model needed to fit

the experimental accuracy data, namely, the reward ratio
RN{RP

RS

. The other two parameters RTstep and RT0 are

independent of the POMDP model, and are used only to translate

the POMDP time steps into real elapsed time. This reward ratio

has direct physical interpretation and can be easily manipulated by

the experimenters. For example, changing the amount of awards

for the correct/incorrect choices, or giving subjects different speed

instructions will effectively change
RN{RP

RS

. In Figure 5 (a), we

show performance accuracies Pr RDm½ � and predicted mean

reaction time RTR(m) with different values of
RN{RP

RS

. With

fixed RN and RP, decreasing RS makes the observations more

affordable and allows subjects to accumulate more evidence, in

turn leads to a longer decision time and higher accuracy. Our

model thus provides a quantitative framework for predicting the

effects of reward parameters on the accuracy and speed of decision

making. To test our theory, we compare the model predictions

with the experimental data from a human subject, reported by

Hanks et al [33], under different speed-accuracy regimes. In their

experiments, human subjects were instructed to perform the

random dots task under different speed-accuracy conditions. The

red crosses in Figure 5 (b) represent the response time and

accuracy of a human subject in the direction discrimination task

with instructions to perform the task more carefully at a slower

speed, while the black dots represent the task under normal speed

conditions. The slower speed instruction encourages human

subjects to accumulate more observations before making the final

decision. In the model, this amounts to reducing the negative cost

Figure 3. Relationship between Model and Neural Activity. The input to the model is a random dots motion sequence. Neurons in MT with
tuning curves lMT emit rMT spikes at time step t, which constitutes the observation ot in the POMDP model. The animal maintains the belief state bt

by computing m̂mt (bt can be parameterized by m̂mt and t - see text). The optimal policy is implemented by selecting rightward eye movement AR when

m̂mt§wR(t), or equivalently, when (m̂mt{wR(t))§0 (and likewise for leftward eye movement AL).
doi:10.1371/journal.pone.0053344.g003

Figure 4. Comparison of Performance of the Model and
Monkey. Black dots with error bars represent a monkey’s decision
accuracy and reaction time for correct trials. Blue solid curves are model
predictions (RTR(m) and RTR(m) in the text) for parameter values
RP~50,RS~{0:1, and RN~0. Monkey data from [31].
doi:10.1371/journal.pone.0053344.g004
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associated with each sample Rs. Indeed, this tradeoff between

speed and accuracy was consistent with predicted effects of

changing the reward ratio. We first fit the model parameters to

experimental data under normal speed conditions, based on fitting
RN{RP

RS

, RTstep~7:7 ms/step, and RT0~204 ms (Figure 5 (b),

black solid curves). The red dashed lines shown in Figure 5 (b) are

model fits to the data under slower speed instruction. There is just

one degree of freedom in this fit, as all model parameters except

the reward ratio were fixed to the values used to fit data in the

normal speed regime.

Figure 5. Effect of
RN{RP

RS

on speed-accuracy tradeoff. (a) Model predictions of psychometric and chronometric functions for different values

of
RN{RP

RS

. (b) Comparison of model predictions and experimental data for different speed-accuracy regimes. The black dots represent the response

time and accuracy of a human subject in the direction discrimination task under normal speed conditions, while the red crosses represent data with a

slower speed instruction. The model predictions are plotted as black solid curves (with
RN{RP

RS

~450) and red dashed lines (
RN{RP

RS

~1250),

respectively. The per-step duration and non-decision residual time are fixed to be the same for both conditions: RTstep~7:7 ms/step, and
RT0~204 ms. Human data are from human subject LH in [33].
doi:10.1371/journal.pone.0053344.g005
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Neural response during direction discrimination task
From Figure 2 (b), it is clear that for the random dots task, the

animal does not need to store the whole two dimensional optimal

policy but only the two one-dimensional decision boundaries wR

and wL
. This naturally suggests a neural mechanism for decision

making similar to that in drift diffusion models: LIP neurons

compute the belief state from MT responses and employ divisive

normalization to maintain the point estimate m̂mt~
mRza0

mza0zb0

. We

now explore the hypothesis that the response of LIP neurons

represents the difference between m̂m and the optimal decision

threshold wR(t). In this model, a rightward eye movement is

initiated only when the difference
mR

mRzmL

{wR
reaches a fixed

bound (in this case, 0). Therefore, we modeled the firing rates in

the lateral intraparietal area (LIP) lLIP as:

lLIP
R (t)~lLIP

0 zB̂B(
mRza0

mza0zb0

{wR(t)z
b0

a0zb0

) ð23Þ

where lLIP
0 is the spontaneous firing rate for LIP neurons. Since

wR(0)~1, a constant
b0

a0zb0

is added to make lLIP
R (0)~lLIP

0 . B̂B

represents the termination bound; B̂B~49:6 spikes s{1 from [30].

The firing rate lLIP
L is defined similarly.

The above model makes two testable predictions about neural

responses in LIP. The first is that the neural response to 0%
coherent motion (the so called ‘‘urgency’’ signal [30,34]) encodes

the decision boundary wR(t) (or wL(t) for leftward-preferring LIP

neurons). In Figure 6a, we plot the model response to 0% coherent

motion, along with a fit to a hyperbolic function u(t)!
t

tzt1=2

, the

same function that Churchland et al [30] used to parametrize the

experimentally observed ‘‘urgency signal.’’ The parameter t1=2 is

the time taken to reach 50% of the maximum. The estimate of t1=2

for the model from Figure 6 (a) is 123 ms, which is consistent with

the t1=2~133:2 ms estimated from neural data [30].

The second prediction concerns the buildup rate (in units of

spikes s{2 coh{1) of the LIP firing rates. The buildup rate of LIP

at each motion strength is calculated from the slope of a line fit to

model LIP firing rate during the first 120 ms of decision time. As

shown in Figure 6 (b), buildup rates scaled approximately linearly

as a function of motion coherence. The effect of a unit change in

coherence on the buildup rate can be estimated from the slope of

the fitted line to be 227:7 spike s{2 coh{1, similar to what has

been reported in the literature [30] (222:5 spike s{2 coh{1).

Discussion

The random dots motion discrimination task has provided a

wealth of information regarding decision making in the primate

brain. Much of this data has previously been modeled using the

drift diffusion model [35,36], but to fully account for the

experimental data, one has to sometimes use ad-hoc assumptions.

This paper introduces an alternative model for explaining the

monkey’s behavior based on the framework of partially observable

Markov decision processes (POMDPs).

We believe that the POMDP model provides a more versatile

framework for decision making compared to the drift diffusion

model, which can be viewed as a special case of sequential

statistical hypothesis testing (SSHT) [37]. Sequential statistical

hypothesis testing assumes that the stimuli (observations) are

independent and identically distributed whereas the POMDP

model allows observations be temporally correlated. The obser-

vations in the POMDP are conditionally independent given the

hidden state m, which evolves according to a Markov chain. Thus,

the POMDP framework for decision making [11,14,16,38,39] can

be regarded as a strictly more general model than the SSHT

models. We intend to explore the applicability of our POMDP

Figure 6. Comparison of Model and Neural Responses. (a) Model response to 0% coherence motion is shown in red. Blue curve depicts a fit

using a hyperbolic function u(t)~u?
t

tzt1=2

where t1=2~123 ms, which is comparable to the value of 133:2 ms estimated from neural data [30]. (b)

The first 120 ms of decision time was used to compute the buildup rate from the model response following the procedure in [30]. The red points
show model buildup rates estimated for each coherence value. The effect of a unit change in the coherence on buildup rate can be estimated from
the slope of the blue fitted line: this value, 227:7 spike s{2 coh{1 , is similar to the corresponding value 222:5 spike s{2 coh{1 estimated from neural
data [30].
doi:10.1371/journal.pone.0053344.g006
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model to time-dependent stimuli, such as temporally dynamic

attention [40] and temporally blurred stimulus representations

[41] in future studies.

Another advantage of a POMDP model is that the model

parameters have direct physical interpretations and can be easily

manipulated by the experimenter. Our analysis shows that the

optimal policy is fully determined by the reward parameters

fRP,RN ,RSg. Thus, the model psychometric and chronometric

functions, which are derived from the optimal policy, are also fully

determined by these model parameters. Experimenters can control

these reward parameters by changing the amount of awards for

the correct/incorrect choices, or by giving subjects different speed

instructions. This allows our model to make testable predictions, as

demonstrated by the effects of the change in the reward ratios on

the speed-accuracy trade-off. It should be noted that these reward

parameters can be subjective and may vary from individual to

individual. For example, RP can be directly related to the external

food or juice reward provided by the experimenter while RS may

be linked to internal factors such as degree of hunger or thirst,

drive, and motivation. The precise relationship between these

reward parameters and the external reward/risk controlled by the

experimenter remains unknown. Our model thus provides a

quantitative framework for studying this relationship between

internal reward mechanisms and external physical reward.

The proposed model demonstrates how the monkey’s choices in

the random dots task can be interpreted as being optimal under

the hypothesis of reward maximization. The reward maximization

hypothesis has previously been used to explain behavioral data

from conditioning experiments [8] and dopaminergic responses

under the framework of temporal difference (TD) learning [42].

Our model extends these results to the more general problem of

decision making under uncertainty. The model predicts psycho-

metric and chronometric functions that are quantitatively close to

those observed in monkeys and humans solving the random dots

task.

We showed through analytical derivations and numerical

simulation that the optimal threshold for selecting overt actions

is a declining function of time. Such a collapsing decision bound

has previously been obtained for decision making under a deadline

[11,29]. It has also been proposed as an ad-hoc mechanism in drift

diffusion models [28,30,43] for explaining finite response time at

zero percent coherence. Our results demonstrate that a collapsing

bound emerges naturally as a consequence of reward maximiza-

tion. Additionally, the POMDP model readily generalizes to the

case of decision making with arbitrary numbers of states and

actions, as well as time-varying state.

Instead of traditional dynamic programming techniques, the

optimal policy p� and value v� can be learned via Monte Carlo

approximation-based methods such as temporal difference (TD)

learning [27]. There is much evidence suggesting that the firing

rate of midbrain dopaminergic neurons might represent the

reward prediction error in TD learning. Thus, the learning of

value and policy in the current model could potentially be

implemented in a manner similar to previous TD learning models

of the basal ganglia [8,9,11,42].
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