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Abstract

Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with
each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate
hypothesis (GRH), increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote
selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the
GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might
promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can
respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor,
regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to
maximize the efficacy of therapy.
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Introduction

Cancer can be viewed as an ecological system: a tumor is a

heterogeneous population of cells, including both malignant and

non-transformed somatic cells of the stroma, which compete for

space and nutrients within the dynamic environment of the human

body [1–4]. Whatever intrinsic properties each individual cell may

have acquired through mutations – e.g. propensity for increased

proliferation, low mortality or both – cancer cells must first

allocate nutrients to survival and physiological cell maintenance

before they can proliferate, invade surrounding tissues and

metastasize.

High-energy electrons of organic carbon are the main energy

source for all cells. Moreover, both carbon (C) and phosphorus (P)

are among the primary components of cell building materials.

Specifically, glycolytic intermediates obtained from the breakdown

of glucose are used for the biosynthesis of nucleic acids via the

pentose phosphate pathway. This process involves generating

NADPH, which is then used for fatty acid synthesis, and ribose-5-

phosphate, which is used for synthesis of nucleotides and nucleic

acids [5]. These considerations underlie the growth rate hypothesis

(GRH), which suggests that highly proliferative cells are charac-

terized by relatively low C:P stoichiometry due to their up-

regulation of the P-rich ribosomes needed to support reproduction

[6–8]. Applied to cancer, the GRH predicts that tumors consisting

of highly proliferative clones should be characterized by low C:P

ratios, and their growth rates should increase with increased access

to P. The second prediction has been experimentally verified

[9,10]; the first prediction appears to be supported in cancers of

the colon and the lung but not in the kidney or liver, suggesting the

possibility that the micro-environment in these two organs may

favor selection of clones with propensity for apoptosis evasion

rather than increased proliferative potential [11].

As adaptive systems composed of interdependent, genetically

diverse cells, tumors, like other ecosystems, are likely to be too

complex to be controlled directly. However, manipulation of the

tumor environment, both locally (micro-environment) and globally

(whole-body), may allow for directing tumor evolution toward a

more desirable clinical outcome. Cancer cells can maximize their

fitness, that is, overall growth rates measured as the difference

between birth and death rates, by allocating available resources

(such as carbon and phosphorus) either towards rapid proliferation

(r-clones) or first allocating nutrients towards increased survival

and evasion of apoptosis, thus proliferating slowly (s-clones).

Within this construct, tumors can be viewed as genetically and

phenotypically heterogeneous populations of cells in which clonal

lineages vary by their genetic ‘choice’ of strategy along this

selective axis (rapid proliferation vs slow proliferation but

increased survival). Depending on the selective pressures that the

population has experienced in the past, at any given time the

tumor can be monomorphic (all cells use the same strategy) or

polymorphic (multiple clones using different strategies). Selective

pressures favoring rapid or slow proliferation vary with micro-

environment (local selection pressure) and the host’s general

physiological condition (global selection pressure). The purpose of

this work is to provide a modeling framework that will enable

further investigation of the GRH as applied to cancer, extending

the work done by Elser and colleagues [7,11]. Specifically, the

GRH is used as a theoretical foundation to construct a

mathematical model of tumor evolution from an ecological

perspective, which allows evaluating the effect of C:P stoichiom-

etry on natural selection within a tumor in response to the micro-

environmental conditions. The model is then used to assess

whether manipulation of this ratio can be exploited in to direct

evolution of a tumor away from a rapidly proliferating cell

phenotype.
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Materials and Methods

Model Description
Suppose cancer cells require some resource or combination of

resources (to be made explicit below) for both proliferation and

maintenance physiology. The amount of resource in the environ-

ment at time t is denoted as z(t). In this model, the evolutionary

strategy of how cell clones partition their resources, either for rapid

proliferation or slow proliferation but increased survival, is

henceforth referred to as r-strategy and s-strategy, respectively.

Per capita reproduction among r-clones is assumed to be

rp

z(t)

N(t)zjz(t)2
, where rp is their (constant) intrinsic division rate,

and N(t) is the total number of cells in the tumor; since r-clones

allocate only a minimum of resources to maintenance, it is

assumed that they die at some constant per capita rate d . The

functional form for the growth term is chosen in such a way as to

incorporate the assumptions that 1) all the available resource is

directly invested into increasing the number of cells, and 2)

proliferation is inhibited by excess resource, as has been observed

in other ecosystems (for phosphorus, for example) [12], which is

accounted for in the model with z(t)2. In contrast, the per capita

growth rate of s-clones takes the logistic form, rs(1{
N(t)

z(t)
), where

rs is the intrinsic rate of increase for s-clones and the carrying

capacity is proportional to the amount of resource. This functional

form allows for the incorporation of the proposed fundamental

difference in resource partitioning strategies between r- and s-

clones, while preserving the overall shape of the growth curve (see

Figure 1). Noticeably, the functional form of the growth functions

for the two clone types was chosen specifically to parallel the

functions used in corresponding ecological literature, and specif-

ically, in [13].

Now let us introduce parameter a [ ½0,1�, such that a given clone

allocates a constant proportion, a, of its resources to maintenance

physiology at the expense of rapid proliferation (s-strategy), while

the remaining 1{a is allocated to proliferation (r-strategy).

Therefore, the difference in growth rates among r-clones is due

entirely to variation in amount of resource they have been able to

acquire.

Now suppose that each cell can adopt a mixed strategy in its

resource allocation, allotting different proportions of its resources

towards rapid proliferation and physiological maintenance; such a

cell would then be characterized by its own intrinsic value of

parameter a and is henceforth denoted as xa: A collection of cells,

characterized by the same value of a is referred to here as a-clone.

Let A denote the range of possible values of parameter a. The total

population size can then be calculated as N(t)~
Ð

A
xa(t)da. The

dynamics of any single clone engaging in a mixed strategy is thus

described by

d xa

d t
~xa(t) ars 1{

N(t)

z(t)

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

slowly proliferating clones

z (1{a) rp
z(t)

N(t)zjz(t)2
{d

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rapidly proliferating clones

0
BBB@

1
CCCA ð1Þ

and the dynamics of the entire population is given by

N ’(t)~
P

a
dxa
dt

. Selection pressures on the various strategies vary

with environmental conditions, i.e., with changes in z(t). The

consequence of this selection is reflected in the per capita growth

rate for that clone, viz. (x{1
a ) d xa(t)=d t. That is, a clone with

many cells may have a higher overall growth rate but may still be

declining relative to another clone with a higher per capita growth

rate but with fewer cells. The transitional regime, in which neither

strategy (rapid proliferation or slow proliferation but increased

survival) holds a competitive advantage, occurs when

rp
z(t)

N(t)zjz(t)2
{d

� �
~rs 1{

N(t)

z(t)

� �
.

Schematically, this interaction is depicted in Figure 1, where the

growth functions are plotted for both ‘pure’ strategies relative to

each other. As can be seen, depending on the composition of the

population (the number of clones conforming to one strategy over

the other) at each time point, either ‘pure’ s-clones or ‘pure’ r-

clones have higher fitness (larger value of d xa=d t per xa). At the

intersection of the two curves, neither strategy provides either

clone type with a competitive advantage in terms of higher growth

rate, regardless of the distribution of clones in the population (i.e.,

regardless of the value of a). In order to appropriately address the

question of how the population composition will change due to

natural selection in response to micro-environmental perturba-

tions, and specifically, in response to changes in phosphorus

availability, a possibility of ‘intermediate’ strategies needs to be

introduced, which is done in the following sections.

Composite resource and biological stoichiometry
The amount of a given elemental resource available to an

organism is best measured not by its absolute abundance but by its

quantity relative to other elements making up the organism’s

biomass, since elemental ratios in biomass must remain balanced

(reviewed extensively in [6]; see also [8,12,14]). Here z is recast as

the amount of exploitable C relative to P. Carbon is usable only if

there is sufficient P to build a cellular apparatus (primarily

ribosomes) to process it. Therefore, we assume that z is a

saturating function of the C:P ratio, namely z~
CP

CzP
.

The full model
In our model, P traffics between intra- and extracellular

compartments within the tumor. Arterial P delivery occurs at rate

g2(P0{Pex(t)) , where P0 is the P concentration in arterial blood,

and g2 is the capillary permeability constant. The term is chosen

based on standard chemostat models (see, for instance, [15]). Cells

absorb this interstitial P via a saturating, bidirectional membrane

transporter (essentially facilitated diffusion) at a rate

mN(t)
Pex(t){Pin(t)

k2zPex(t){Pin(t)

� �
, where m represents maximal per

Figure 1. Schematic representation of the interaction between
the two growth strategies. Depending on the initial composition of
the population (the number of clones conforming to one strategy over
the other), either s-clones or r-clones have higher fitness (larger value of
d x=d t). At the intersection of the two curves, neither strategy gives the
clones an advantage, regardless of the distribution of clones in the
population (i.e., regardless of the value of a).
doi:10.1371/journal.pone.0051844.g001

ð1Þ
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cell transport rate, and k2 is the half-saturation constant for the

transporter. Intracellular P reenters the interstitium at rate

dN(t)Pin(t) when cells die. We assume that specialist cells within

a clone vary in resource uptake rate; therefore,

m~mp(1{a)zmsa, where mp and ms are the maximal nutrient

uptake rates for r-clones and s-clones specialists, respectively. The

absolute amounts of nutrient are then recalculated into concen-

trations, yielding the following system of equations (see Appendix

S1 for complete derivation):

d xa
dt

~xaFa(t),

d Pex
d t

~ g2 P0{Pex(t)ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
arterial delivery

{ m
Pex(t){Pin(t)

k2zPex(t){Pin(t)
{ Pex(t)Et½F �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

chain rule|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
phosphorus uptake by the cells

z dPin(t),|fflfflfflffl{zfflfflfflffl}
P from dead cells

d Pin
d t

~ m
Pex(t){Pin(t)

k2zPex(t){Pin(t)
{ Pex(t)Et½F �,|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

chain rule|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
phosphorus uptake by the cells

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

where z(t)~h
CinPin(t)

(CinzPin(t))

Fa(t)~ars(1{
N(t)

z(t)
)z(1{a)(rp

z(t)

N(t)zjz(t)2
{d),

m~mp(1{Et½a�)zmcEt½a�,

Et½F �~Fa(t), Et½a�~ 1

N(t)

ð1

0

axa(t) d a,

assuming a is continuous.

Since the goal of the proposed model is to evaluate how

fluctuations in external nutrient supply, and particularly variations

of parameter P0, affect the distribution of cell phenotypes within a

tumor, a way to measure how the phenotypic distribution changes

over time is needed. Assume that different clones within the tumor

are represented in different proportions depending on the value of

parameter a, falling within some initial known distribution. If the

choice of strategy with respect to interactions with the resource

(using available resources for rapid proliferation or for slow

proliferation but increased survival) affects fitness, then each

subpopulation of clones, characterized by a, will grow at different

rates. Consequently, the distribution of clones within the entire cell

population will be changing over time, and so will the expected

value of a. In its current form, System (2) is infinitely dimensional.

However, let us introduce auxiliary ‘keystone’ variables q(t) and

g(t) such that

q(t)0~rs 1{
N(t)

z(t)

� �

g(t)0~rp
z(t)

N(t)zjz2(t)

� �
:

8>>><
>>>:

ð3Þ

Then the equation for the total population of cells xa(t) can be

rewritten as

dxa(t)

xa(t)
~aq’(t)z(1{a)(g’(t){d) ð4Þ

Integrating Equation (4) yields the following explicit expression for

xa(t) in terms of keystone variables g(t) and q(t):

xa(t)~xa(0)eaq(t)z(1{a)(g(t){dt) ð5Þ

Then the full population size becomes

N(t)~

ð
a

xa(t)da~N(0)

ð
a

eg(t){dtea(q(t){g(t)zdt)Pa(0)da~

N(0)eg(t){dtM0½q(t){g(t)zdt�
ð6Þ

where Pa(0)~
xa(0)

N(0)
and M0 is the moment generating function

(mgf) of P0, so that the final distribution of clones over time

becomes

Pa(t)~
xa(t)

N(t)
~Pa(0)

ea(q(t){g(t)zdt)

M0½g(t){q(t)zdt� : ð7Þ

With these transformations, the otherwise infinitely-dimensional

System (2) can now be rewritten as a system of four non-

autonomous ODEs:

Pex(t)0~g2(
P0{Pex(t)

N(t)
){m

Pex(t){Pin(t)

k2z(Pex(t){Pin(t))
{Pex(t)Et½F �zdPin(t)

Pin(t)0~m
Pex(t){Pin(t)

k2z(Pex(t){Pin(t))
{Pex(t)Et½F �

q(t)0~rs(1{ N(t)
z(t)

)

g(t)0~rp( z(t)

N(t)zz2(t)
):

8>>>>>>><
>>>>>>>:

ð8Þ

The mean value of parameter a is given by

Et½a�~
ð

aPa(t)da~

ð
aPa(0)

ea(q(t){g(t)zdt)

M0½g(t){q(t)zdt� da~
M 0

0½g(t){q(t)zdt�
M0½g(t){q(t)zdt� ,

ð9Þ

where M0
0½d� is the derivative of the moment generating function

at d~g(t){q(t)zdt; the total population size is defined above.

Population composition with respect to strategy choice can now be

tracked through changes in the mean of a such that the higher the

value of Et½a�, the more s-clones there are in the population, and

therefore fewer cells remain that will invest primarily into rapid

proliferation.

Note that System (8) is non-autonomous, rendering standard

bifurcation analysis techniques inapplicable. However, sensitivity

analysis can be performed in order to evaluate, variations in which

parameters would cause the largest changes in the overall system

dynamics, thus guiding further investigations.

Parameter estimation. The proposed model is character-

ized by three variables and thirteen parameters. Pin(t) and Pex(t)
are the concentrations of intracellular and extracellular phospho-

rus in the tumor micro-environment (
mass

volume
). xa(t) is the volume,

occupied by a set of cells, characterized by intrinsic value of a (we

choose to case xa(t) in the units of volume and not mass of cells in

order to be able to model nutrient uptake as a difference of

ð2Þ
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concentrations of mass/volume), and N(t) is the total volume

occupied by all the cell clones.

The key parameter P0, which accounts for extrinsic phosphorus

inflow, was estimated based on the following considerations,

outlined also in [7]: if we assume a dietary intake of approximately

210 mg of phosphorus per day for a healthy 70 kg person, then

the daily share of P for a 10 kg organ is approximately 30 mg. The

concentration of intracellular carbon Cin is held constant; its value

is estimated based on the normal homeostatically maintained

concentration of glucose in the blood, which is &10
mg

ml
. The per

capita growth and death rates of cell clones, as well as saturation

constant k2 and the phosphorus ‘gating’ constant g2, were taken

from a previously published model [7]; the values for the growth

and nutrient uptake rates of s-clones (parameters rs and ms) were

taken as relative to the corresponding values of r-clones

(parameters rp and mp), based on theoretical considerations

outlined in the previous sections. Parameters pertaining to

population heterogeneity, and specifically to the initial distribu-

tions, such as parameters m and N0, were chosen arbitrarily due to

a lack of data on the possible distributions of clones with respect to

resource uptake ‘strategy’ within tumors; however, with a possible

development of appropriate measurement techniques, such data

could theoretically be obtained. The values for scaling constants h

and j were also chosen arbitrarily due to lack of data.

All variables and parameters with corresponding units are

summarized in Table 1.

Sensitivity analysis. Parameter values, estimated above,

describe average tumor growth. Within each parameter, however,

there can be significant variability, which is reflected in patient-

specific clinical disease courses of tumors of the same organ.

Moreover, low dimensionality of the proposed model may result in

a compression of several parameter values into the same

parameter, introducing further variability. In order to evaluate,

which parameters in System (8) would have the largest impact on

the overall system dynamics, sensitivity analysis was performed. To

measure global sensitivity, it was assumed that each parameter is

perturbed by a uniformly distributed random variable within the

range of 25% of the initial parameter value. The sensitivity indices,

which are defined as fractions of total output variance generated

by the uncertainty in the respective parameter value, were

calculated using the Fourier Amplitude Sensitivity Test (FAST)

method [16], an approach that allows investigating the effect of

large, concurrent perturbations in model parameters.

First, the sensitivity of concurrent perturbations to all the

thirteen parameters in System (8), namely, P0, rp, rs, d , k2, g2, m,

N0, h, mp, ms, Cin and j. was investigated. The results, albeit

expected, proved to be stronger than anticipated, revealing that by

time t~10, over 90% percent of variation in the final outcome of

system behavior is due to uncertainty in the rate of phosphorus

Table 1. Summary, brief description and range of all parameters in System (2).

Meaning Range Units

xa(t) Volume, occupied by a set of cells, characterized by intrinsic value of a xa§0 vol

a Proportion of slowly proliferating clones (s-clones) in the population a[½0,1� n/a

N(t) Volume, occupied by the total cell population size: N(t)~
Ð 1

0
xada N(t)§0 vol

z(t) Amount of composite resource: z(t)~ CinPin (t)
CinzPin (t)

z(t)§0 mass

vol

Pex(t) Concentration of extracellular phosphorus Pex(t)§0 mass

vol

Pin(t) Concentration of intracellular phosphorus Pin(t)§0 mass

vol

rs Intrinsic growth rate of slowly proliferating cells (s-clones) rsw0 1

time

rp Intrinsic growth rate of rapidly proliferating cells (r-clones) rpw0 1

time

d Per capita cell death rate dw0 1

time

j Resource uptake conversion factor for r-clones jw0 1

vol

g2 Scaling constant for P inflow g2w0 vol

time

P0 Gradient constant for amount of arterial P inflow P0w0 mass

vol

k2 Half saturation constant for P uptake by the cells k2w0 mass

vol

h Scaling constant for optimal C:P ratio hw0 vol2

mass

ms Phosphorus uptake rate of s-clones msw0 mass

vol � time

mp Phosphorus uptake rate of r-clones mpw0 mass

vol � time

m Total carbon uptake rate: m~ms(a)zmp(1{a) mw0 mass

vol � time

Cin Concentration of intracellular carbon (constant) Cinw0 mass

vol

doi:10.1371/journal.pone.0051844.t001
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inflow, given by parameter P0 (see Figure 2a). The only other

parameter that also caused significant variations in overall system

behavior at the initial stages of tumor growth was parameter g2, a

‘gating’ parameter, which accounts for diffusion of extracellular

phosphorus into and out of the tumor micro-environment.

Relative contributions of some of the other parameters are shown

in Figure 2b.

Next, we wanted to evaluate the relative influence of other

parameters under the condition of constant P inflow. For this

purpose, P0 was fixed at a value of 30, the estimated ‘normal’

inflow of extracellular phosphorus into the tumor micro-environ-

ment, effectively reducing the parameter vector to twelve

parameters. As can be seen in Figure 3a, the parameters that

consistently have the largest influence on overall system behavior

are parameter g2, the phosphorus ‘gating’ parameter and

parameter d, the natural death rate of highly proliferative tumor

cells (Figure 3b). Moreover, the relative influence of different

parameters seems to be quite variable over time. As shown in

Figure 3c, relative per capita growth rates of both clone types,

namely, parameters rp and rs, are of vital importance in the initial

stages of tumor growth, before t~100, while nutrient uptake rates

mp and mc become important later on, supposedly when the

number of cells is large enough (Figure 3 d) for the dynamics to

become primarily influenced by active competition for nutrients,

and specifically to this case, phosphorus. Finally, it is also

important to note that parameters associated with modeling

parametric heterogeneity in the population, namely N0 and m,

which determine the initial composition of the population and the

total population size, are also of vital importance in the initial

stages of tumor growth.

In addition to parameter P0, parameters that pertain to

interactions between two clone types, i.e., rp and rs, mp and ms,

and m, and their effect on tumor dynamics and composition will be

the focus of the following section.

Results

First, the hypothesis that increased phosphorus inflow could

shift population composition toward a more rapidly proliferating

phenotype due to increased availability of building materials for

DNA, RNA and ribosomes [11,12] was evaluated. Changes in

population composition were measured through the changes in the

Figure 2. First order sensitivity indices defined as the fraction
of the total variance in system behavior caused by the
variation in each parameter value. Calculations were performed
for a 13-parameter vector V = [P0 , rp , rs , d , k2, g2 , m, N0 , h, mp , ms, Cin , j],
using the FAST method and under the assumption that parameters are
varied uniformly by no more than 25%. Due to vast differences in
relative importance of different parameters, the results are reported on
two separate graphs; only parameters with sensitivity indices over 1%
are reported.
doi:10.1371/journal.pone.0051844.g002

Figure 3. First order sensitivity indices defined as the fraction of the total variance in system behavior caused by the variation in
each parameter value under constant P0~30. Calculations were performed for a 12-parameter vector V = [rp, rs , d , k2 , g2 , m, N0 , h, mp , ms , Cin, j],
using the FAST method and under the assumption that parameters are varied uniformly by no more than 25%. Due to vast differences in relative
importance of different parameters, the results are reported (a) together and (b–e) on four separate graphs, grouped by the order of magnitude of
the corresponding sensitivity index; only parameters with sensitivity indices over 1% are reported.
doi:10.1371/journal.pone.0051844.g003
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expected value of parameter a as P0 is increased. The higher the

value of a, the larger the proportion of s-clones is present in the

population. The initial conditions were taken to be N0~2,

Pex(0)~10, Pin(0)~9, Et½a�~0:05 (m~20), q(0)~g(0)~0 and

all the parameter values are taken to be d~:03, rp~:2, rs~:2,

mp~:2 ,ms~:2, P0~30, h~1, k2~1:1, g2~1, unless indicated

otherwise. Numerical solutions were calculated until tmax~6000.

Parameter values were chosen to illustrate conceptual differences

between dynamical behaviors and do not conform to any

particular data set. The initial distribution was taken to be

truncated exponential on the interval a[½0,1�. Matlab2010a code is

available upon request.

Numerical solutions to System (8) support the hypothesis that

increasing availability of extracellular phosphorus indeed creates

an environment that favors expansion of r-clones, which is

reflected in the changes in the expected values of a. In Figure 4,

one can see which clone type comes to predominate over time

depending on the initial value of parameter P0. The results suggest

that there in fact exists a ‘window’ of values of P0 (relative to Cin,
which in this model is kept constant), where slowly proliferating

clones are favored over rapidly proliferating ones. Unexpectedly,

when the value of P0 is increased beyond 30, one can additionally

observe transitional regimes, as Et½a� increases briefly, temporarily

favoring s-clones in a population, composed primarily of r-clones.

This effect could be interpreted as saltatory tumor growth [17],

and can be observed in the proposed model only under the

assumption of the possibility of ‘futile metabolism’ (also known as

‘the paradox of enrichment’), which predicts decline in growth

rates under the conditions of nutrient over-saturation (a more

detailed discussion of this phenomenon is given below) and which

is captured here using a variant of the Holling type III function to

describe growth rates of r-clones; noticeably, assumption of

Holling type II functional form, i.e., when N ’~N(rp
z

Nzz
{d),

did not predict saltatory tumor growth regardless of the

concentration of extracellular phosphorus (calculations not

shown).

Differences in growth rates and nutrient uptake rates
Next, changes in population dynamics in response to differences

in nutrient uptake rates were evaluated for P0~20 ,35 ,50. When

s-clones have higher phosphorus uptake rates, population compo-

sition unexpectedly does not shift toward the predominantly slowly

growing cell phenotype over time (Figure 5); this effect can be

accounted for by growth limitations that are imposed by carbon

availability, which in our model is kept constant. However,

interestingly and counter-intuitively, higher phosphorus uptake

rates do not promote selection for r-clones over time either, as can

be seen on Figure 5 through the changes in Et½a] over time when

ms~0:2, mp~0:3. This effect can be explained in the following

way: even though more r-clones take up more phosphorus, unless

they have enough carbon to meet the energy demands for rapid

proliferation, they cannot use it, thus engaging in a form of ‘futile

metabolism’. These results suggest that under the conditions of

constant glucose supply, increased P uptake rates would not give r-

clones an advantage regardless of which clone type has this

adaptation, and so targeting phosphorus transporters would in fact

promote rapidly proliferating clones rather than inhibit their

growth. Noticeably, for P0~50, which simulates conditions that

are expected to be most conducive to expansion of r-clones under

the GRH, oscillations in tumor size are predicted by the model,

which are typically not recorded in patients. This is most likely due

to the fact that conditions of such high concentrations of P relative

to C are unlikely to be observed, except after high doses of

cytotoxic therapies, which would cause extensive cell death and

consequent release of large amounts of intracellular phosphorus in

the bloodstream (hyperphosphoremia). The model predicts that

such conditions would be conducive to expansion of the rapidly

proliferating cell types, and consequently this is when one could

expect to see oscillations in tumor size over time, driven by

changes in tumor composition.

Next, the effect of changes in the intrinsic growth rates of either

clone type on the overall population composition were evaluated

for P0~20, 35, 50. As can be seen on Figure 6, depending on the

initial value of P0, the ratio of rp to rs needed to be increasingly

Figure 4. A heat map of the change in the expected value of a over time for different fixed P0; a~1 corresponds to predominance of
s-clones, a~1 – to predominance of r-clones.
doi:10.1371/journal.pone.0051844.g004
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larger in order to give r-clones a sufficient competitive advantage

to enable them to predominate within the population for longer

periods of time. Interestingly, the overall final population size

could remain the same regardless of composition, as can be clearly

seen on Figure 6b for rp~0:20 and rp~0:23. This suggests that

tumor size is not necessarily a good predictor of population

composition, and the distribution of clones within the tumor needs

to be evaluated separately, since a tumor may respond differently

to micro-environmental changes – whether it be nutrient

availability or the presence of therapeutic agents – depending on

the initial distribution of clones within it.

Different initial distributions
Since tumors evolve over time, the overall composition of the

cell population may vary at different time points, and hence the

population as a whole may respond differently to the same set of

Figure 5. The effects of differences in nutrient uptake rates on cell population size composition at P0~20, 35, 50. Noticeably, r-clones
are either practically unaffected or at a loss regardless of the relative values of parameters ms and mp , which suggests that targeting phosphorus
transporters might in fact give advantage to r-clones regardless of which clone type may have this adaptation.
doi:10.1371/journal.pone.0051844.g005

Figure 6. Effects of variation in intrinsic growth rates on population size and composition at P0~20, 35, 50. Population size does not
necessarily reflect population composition, suggesting that devising treatments based solely on tumor size may not necessarily be adequate.
doi:10.1371/journal.pone.0051844.g006
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micro-environmental perturbations. This predicted effect was

evaluated in the model through varying the initial distribution of

clones within the population. In Figure 7, it was observed that

under exactly the same set of initial conditions, the population as a

whole evolved in different directions, depending on the initial

distribution of cell clones in the population with respect to a.

Specifically, it was shown that the higher the initial proportion of s-

clones in the population, the more phosphorus was required to

shift the population composition towards being dominated by a

more rapidly proliferating phenotype. This is due to the fact that

the direction in which the system evolves is dependent not only

upon external factors but also on population composition, since

cells within the population impose as much of a selective pressure

on each other as is imposed on them by their extrinsic

environment. Therefore, from a therapeutic point of view, in

order to evaluate the extent of micro-environmental manipulation

required to shift the population composition away from a more

malignant phenotype, one would first need to evaluate tumor

composition with respect to rapidly-proliferating vs. slowly-

proliferating phenotype, i.e., using this particular characteristic

as a metric by which to quantify the level of heterogeneity;

naturally, other metrics would need to be used for other types of

treatments, where tumor heterogeneity plays a role.

Discussion

Tumors can be viewed as evolving adaptive ecological systems,

in which heterogeneous populations of cells compete with each

other and with somatic cells for limited space and nutrients.

Regardless of the properties that the cells may have acquired

through mutations, they first need nutrients to survive, and may

adopt different strategies to achieve this goal. Depending on the

specific conditions in their micro-environment, cells try to

maximize their fitness by investing the available resources

primarily in proliferation or in physiological maintenance,

achieved at the expense of rapid proliferation. Consequently,

appropriate manipulation of the tumor environment, both locally

(micro-environment) and globally (whole-body), may allow to

direct tumor evolution toward a more desirable clinical outcome.

Proposed here is a focus on phosphorus as one of the key

elements of the cell micro-environment, and specifically, on

stoichiometric ratios between phosphorus and carbon, which,

according to the growth rate hypothesis (GRH), may influence the

direction of system evolution over time [8]. It is hypothesized that

increased availability of phosphorus in the tumor micro-environ-

ment might promote selection for more rapidly proliferating cell

types and thus for a potentially more malignant tumor. The

hypothesis is evaluated using a system of ordinary differential

equations, which models changes in tumor composition with

respect to the strategy that the cells use for resource utilization

subject to changes in resource availability.

It is assumed that each cell can adopt a mixed strategy for its

resource partitioning, allocating different proportions of its

resources to rapid proliferation and to physiological maintenance;

the extent to which each cell favors one strategy over the other is

accounted for by its own intrinsic value of parameter a[½0,1�,
where a~1 corresponds to investing the resource primarily for

physiological maintenance at the expense of rapid proliferation (s-

clones), and a~0 corresponds to using the resources to invest

primarily in rapid proliferation (r-clones). It is assumed that

different clones within the tumor are represented in different

proportions depending on the value of parameter a, falling within

some initial known distribution. Fluctuations in population

composition are tracked through the changes in the mean value

of a as the system evolves over time. Within the context of the

proposed model, a set of cells characterized by the same value of a

is defined as a-clone; fitness of each clone is defined as
dxa

dt
=xa.

Figure 7. Changes in the mean of a and the full population size at P0~20, 35, 50. with respect to differences in initial composition of the
population, reflected through varying E0½a�. The results suggest that just knowing the state of the tumor micro-environment is not necessarily
enough to be able to predict in which direction the population will evolve; the composition of tumor must also be known.
doi:10.1371/journal.pone.0051844.g007
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The results of numerical computations (see Figure 4) suggest

that indeed, increased inflow of extracellular phosphorus promotes

a shift towards the more rapidly proliferating cell type largely in

accordance to GRH. This was also experimentally suggested by

[11], where it was shown that the intracellular concentration of

phosphorus was indeed significantly higher in some types of

tumors than in somatic tissues. The authors suggested that some

tumors may be composed of cell types that use available resources

primarily for rapid proliferation, as opposed to physiological

maintenance, depending on the micro-environmental conditions

in each particular organ of tumor origin. The evolutionary and

ecological perspective on cancer development also suggests that

sampling a tumor at just one time point might not give accurate

information about its stage of development along the evolutionary

track due to genotypic and phenotypic changes in tumor

composition over time.

An interesting effect that occurred at very high concentrations

of extracellular phosphorus could be observed in numerical

simulations: both tumor size and composition fluctuated, but not

in a steady oscillatory manner (see Figure 4, and panels (e–f) in

Figures 5, 6 and 7). Instead, the population composition evolved

primarily towards a rapidly proliferating phenotype but with the

occasional temporary appearance of slower-growing cell clones; in

terms of tumor size, these fluctuations corresponded to temporary

decreases in the total population size. A possible clinical

manifestation of this effect could be saltatory tumor growth,

which can be observed in several tumor types, such as

hemangioblastomas [18–20]. In the proposed model, the concen-

tration of metabolically available carbon was taken to be constant,

which can be interpreted as similar to micro-environmental

conditions in the brain. The model thus proposes an explanatory

mechanism for saltatory tumor growth as being driven by cell

heterogeneity within the tumor. Although this effect originated

due to increased nutrient availability, it is possible that these

fluctuations that resulted from changes in cell composition could

be caused by other micro-environmental changes that are not yet

understood.

The effects of up-regulation of nutrient transporters on the

direction in which the cell population evolved were also

investigated in order to evaluate whether therapeutically targeting

nutrient transporters could be expected to significantly affect

tumor growth dynamics. Results obtained from numerical

calculations suggested that increasing nutrient uptake rates of the

s-clones did not give them a significant competitive advantage,

since their growth was also limited by carbon availability, which in

this model was held constant. However, unexpectedly, increasing

phosphorus uptake rates of r-clones did not confer them a

competitive advantage (Figure 5). One possible explanation for this

counter-intuitive result could be activation of a form of ‘futile

metabolism’, where a cell is forced to spend available energy

sources to rid itself of excess phosphorus instead of proliferating, if

the appropriate C:P ratio necessary for proliferation is not

available in the cell micro-environment. There results suggest

that targeting phosphorus transporters therapeutically could in fact

be counter-productive. Instead, one should attempt to devise

strategies that would ‘encourage competition’ between tumor cells,

promoting utilization of resources that are available to tumor cells

for intra-tumor competition, as opposed to rapid proliferation or

development of therapeutic resistance [21].

Next, the effects of variation in growth rates for different cell

types were evaluated. Through numerical calculations, it was

observed that while population composition with respect to each

strategy can vary, depending on which clone type has a higher

growth rate, the final population size could be the same regardless

of population composition (Figure 5). The significance of this

observation lies in the fact that the entire cell population may

respond very differently to changes in the micro-environment

depending not on its size but on its initial composition.

Next, the effects of changes in the micro-environment on

population composition when different clones are present in

different proportions at the initial time moment were evaluated. It

could be observed that under the same set of micro-environmental

conditions, the evolutionary dynamics of the tumor as a whole is

dependent on the proportion of r-clones vs. s-clones initially

present in the population (Figure 7). More specifically, the more

skewed the initial distribution of clones was to Et½a�~1 (being

dominated by s-clones), the more extracellular phosphorus was

required to shift population composition towards a more rapidly

proliferating phenotype. This hysteretic effect is due to phenotypic

heterogeneity within the tumor: if the cell population were

homogeneous, a micro-environmental perturbation would have

had a clear-cut bifurcation point, and predicting exactly when the

population would start evolving towards a particular strategy

would be possible. However, since the population is heteroge-

neous, population composition is a part of the environment;

consequently, the fitness of each cell is affected not only by

resource availability or by the cell’s intrinsic properties, but also by

the quantity and intrinsic properties of other cells. Consequently,

the population as a whole may respond differently to the same

micro-environmental perturbation, implying that any predictions

about system dynamics that are made without taking into account

population heterogeneity are likely to be incorrect. Therefore, in

order to be able to influence the evolution of the system through

micro-environmental manipulations, not only the properties of the

individual cells need to be understood, but also the composition of

the cell population as a whole.

The observed hysteretic effect could also account for variable

effectiveness of similar treatments for similar cancer types in

different patients, since treatment efficacy would be determined

not only by tumor type and the current state of the micro-

environment but also by tumor composition, which should be

evaluated with respect to an appropriate metric (within the context

of the proposed model, it is resource allocation; different metrics

could be applicable for different tumors).

Tumor dormancy
One possible manifestation of what has been termed here ‘s-

clones’ is tumor dormancy. Crocker et al. [22] make the following

distinction between the two types of cancer cells that may be

classified as dormant: solitary dormant cells that are believed to be

quiescent, defined by lack of both proliferation and apoptosis; and

micro-metastatic dormant cells characterized not by the absence of

proliferation and apoptosis but by their balance. It is the quiescent

cells that could be interpreted within the frameworks of the

proposed model as s-clones.

Tumor cells can stay dormant throughout a person’s lifetime,

and the triggers that would cause a switch to activity are not yet

fully understood. Several mechanisms have been proposed to

explain this transition from indolence to active proliferation [22–

24]. It has been proposed that the cells can be kept in the dormant

state by the immune system [25,26] or by the lack of angiogenesis

[24,27,28], and could switch to a rapidly proliferating state due to

surgery [29] or trauma [28] that would disturb the micro-

environment. The proposed model suggests that tumor cells could

also progress out of the dormant state as a result of nutrition and

specifically, due to the relative amounts of carbon and phosphorus

in a person’s diet.
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Conclusions
Tumors are evolving systems that can often adapt to any

changes in their micro-environment. Acquired therapeutic resis-

tance and disease recurrence are natural consequences of tumor

heterogeneity as cytotoxic therapies wipe out the numerous more-

susceptible cancer cells, leaving small subpopulations of resistant

cells to grow and expand. However, one can try to ‘harness’ tumor

heterogeneity for therapeutic purposes instead of attempting to

eliminate it. It is conceivable that creating an environment which

favors slower-growing clones might create a delay in disease

progression, ultimately resulting in prolonged patient survival and

better quality of life. For instance, some murine models suggest

that maintaining a tumor at a constant size using minimal

necessary (as opposed to maximal tolerable) chemotherapy

substantially increased survival time of tumorous mice [21]. So

perhaps a combination of moderate therapy, reversing adaptations

that tumors created for themselves [4], such as neutralizing

glycolysis-induced acidic micro-environment [30] to prevent

metastatic progression, and controlling phosphorus and carbon

availability in the tumor micro-environment might in fact promote

survival and increase quality of life for cancer patients better than

can be achieved with intensive cytotoxic therapies.

Supporting Information

Appendix S1

(PDF)

Acknowledgments

The author would like to thank John Nagy for his invaluable help with

model formulation and manuscript preparation, and Jan Poleszczuk for his

help with sensitivity analysis using the FAST method.

Author Contributions

Conceived and designed the experiments: IK. Performed the experiments:

IK. Analyzed the data: IK. Contributed reagents/materials/analysis tools:

IK. Wrote the paper: IK.

References

1. Merlo L, Pepper J, Reid B, Maley C (2006) Cancer as an evolutionary and

ecological process. Nature Reviews Cancer 6: 924–935.
2. Nagy J (2005) The ecology and evolutionary biology of cancer: a review of

mathematical model of necrosis and tumor cell diversity. Mathematical

Biosciences and Engineering 2: 381.
3. Crespi B, Summers K (2005) Evolutionary biology of cancer. Trends in Ecology

& Evolution 20: 545–552.
4. Kareva I (2011) What can ecology teach us about cancer? Translational

Oncology 4: 266.
5. Weinberg F, Chandel N (2009) Mitochondrial metabolism and cancer. Annals of

the New York Academy of Sciences 1177: 66–73.

6. Sterner R, Elser J (2002) Ecological stoichiometry: the biology of elements from
molecules to the biosphere. Princeton, NJ: Princeton University Press.

7. Elser J, Nagy J, Kuang Y (2003) Biological stoichiometry: an ecological
perspective on tumor dynamics. BioScience 53: 1112–1120.

8. Elser J (2006) Biological stoichiometry: a chemical bridge between ecosystem

ecology and evolutionary biology. The American Naturalist 168: S25–S35.
9. Jin H, Xu C, Lim H, Park S, Shin J, et al. (2009) High dietary inorganic

phosphate increases lung tumorigenesis and alters akt signaling. American
Journal of Respiratory and Critical Care Medicine 179: 59–68.

10. Camalier C, Young M, Bobe G, Perella C, Colburn N, et al. (2010) Elevated

phosphate activates n-ras and promotes cell transformation and skin tumori-
genesis. Cancer Prevention Research 3: 359–370.

11. Elser J, Kyle M, Smith M, Nagy J (2007) Biological stoichiometry in human
cancer. PLOS ONE 2: e1028.

12. Boersma M, Elser J (2006) Too much of a good thing: on stoichiometrically
balanced diets and maximal growth. Ecology 87: 1325–1330.

13. Krakauer D, Page K, Erwin D (2009) Diversity, dilemmas, and monopolies of

niche construction. The American Naturalist 173: 26–40.
14. Mulder C, Elser J (2009) Soil acidity, ecological stoichiometry and allometric

scaling in grassland food webs. Global Change Biology 15: 2730–2738.
15. Lange K, Oyarzun F (1992) The attractiveness of the droop equations.

Mathematical Biosciences 111: 261–278.

16. Cukier R, Fortuin C, Shuler K, Petschek A, Schaibly J (1973) Study of the
sensitivity of coupled reaction systems to uncertainties in rate coefficients. i

theory. The Journal of Chemical Physics 59: 3873.

17. Wood P, Bove K, You S, Chambers A, Hrushesky W (2005) Cancer growth and

spread are salutatory and phase-locked to the reproductive cycle through
mediators of angiogenesis. Molecular Cancer Therapeutics 4: 1065–1075.

18. Asthagiri A, Mehta G, Zach L, Li X, Butman J, et al. (2010) Prospective

evaluation of radiosurgery for hemangioblastomas in von Hippel–Lindau
disease. Neuro-oncology 12: 80–86.

19. Song D, Lonser R (2008) Pathological satiety caused by brainstem hemangio-
blastoma. Journal of Neurosurgery Pediatrics 2: 397.

20. Ammerman J, Lonser R, Dambrosia J, Butman J, Oldfield E (2006) Long-term
natural history of hemangioblastomas in patients with von Hippel-Lindau

disease: implications for treatment. Journal of Neurosurgery 105: 248–255.

21. Gatenby R, Silva A, Gillies R, Frieden B (2009) Adaptive therapy. Cancer
Research 69: 4894–4903.

22. Croker A, Townson J, Allan A, Chambers A (2009) Tumor dormancy,
metastasis, and cancer stem cells. Stem Cells and Cancer: 141–153.

23. Uhr J, Pantel K (2011) Controversies in clinical cancer dormancy. Proceedings

of the National Academy of Sciences 108: 12396–12400.
24. Almog N (2010) Molecular mechanisms underlying tumor dormancy. Cancer

Letters 294: 139–146.
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