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Abstract

Multidimensional NMR spectroscopy typically employs phase-sensitive detection, which results
in hypercomplex data (and spectra) when utilized in more than one dimension. Nonuniform
sampling approaches have become commonplace in multidimensional NMR, enabling dramatic
reductions in experiment time, increases in sensitivity and/or increases in resolution. In order to
utilize nonuniform sampling optimally, it is necessary to characterize the relationship between the
spectrum of a uniformly sampled data set and the spectrum of a subsampled data set. In this work
we construct an algebra of hypercomplex numbers suitable for representing multidimensional
NMR data along with partial-component nonuniform sampling (i.e. the hypercomplex components
of data points are subsampled). This formalism leads to a modified DFT—convolution relationship
involving a partial-component, hypercomplex point-spread function set. The framework presented
here is essential for the continued development and appropriate characterization of partial-
component nonuniform sampling.
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Introduction

Ever since NMR was invented by Rabi et al. [1], and further developed by Bloch and Purcell
et al. [2-4], scientists have continued to devise methods for enhancing sensitivity and
resolution. Ernst and Anderson introduced the Fourier Transform NMR in the mid 1960s
[5], which shortened experiment times and increased spectral sensitivity. Jean Jeener
conceived of the first 2D experiment in 1971 and it was ultimately carried out by Ernst et al.
in 1975 [6]. The long experiment times required by multidimensional NMR led to
Bodenhausen and Ernst’s accordion experiment in 1981 [7], which launched the concept of
nonuniform sampling (NUS) and further motivated the development of non-Fourier spectral
reconstruction [8]. The next significant change in sampling strategy that impacted sensitivity
came with the hypercomplex representation of phase-sensitive data by States et al. [9],
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which was later formalized by Delsuc [10]. Each hypercomplex entry in the
multidimensional data array contains a set of real valued components. The component
values give the magnitudes of the signal recorded at various phase angles.

Multidimensional NMR has incrementally evolved over the last several decades through the
continued development of novel NUS schemes and non-Fourier reconstruction techniques
(see [11] for review). One contributing factor to the improved understanding of NUS is the
advent of rigorous, quantitative methods for characterizing NUS schemes [12-15] and
reconstruction methods [8, 16-19]. Central to understanding these efforts has been the
Discrete Fourier Transform (DFT)—Convolution Theorem, which states for complex-valued
vectors aand b,

F(aob)=F(a)« Z(b), (1)

where 7 is the DFT operator, - is the Hadamard product (i.e. elementwise multiplication),
and * is convolution. For a “data vector” aand a “sampling function” b, the DFT-
Convolution Theorem states that the DFT of the sampling function ( 7 (b)), often referred to
as the point-spread function (PSF), relates the spectrum obtained by complete uniform
sampling ( 7 (a@)) to the spectrum obtained by subsampling ( 7 (a - b)). In particular, the
sampling artifacts in the PSF enter into the subsampled spectrum by way of convolution
with the uniformly sampled spectrum. It should be noted that while non-Fourier
reconstruction methods are often designed to suppress sampling artifacts and generally
achieve better sensitivity than the DFT of zero-augmented subsampled data, the PSF is still
appropriate for the refative comparison of sampling schemes.

Until the recent introduction of random-phase detection (RPD, [20]), subsampling ignored
the multi-component nature of hypercomplex data; samples included either all the
components of a data value or none of them (we call this full-component sampling). In
contrast, RPD, which is the first presentation of a partial-component sampling scheme,
collects only one component from each data value. In general, partial-component
subsampling of multidimensional, hypercomplex data can not be handled by the classic
DFT-Convolution Theorem. This paper formalizes a modified DFT—-Convolution Theorem
to accommodate partial-component subsampling and serves as an extension of the work by
Delsuc [10]. In addition, the derivation of the modified DFT-Convolution relationship
provides a means for characterizing the sampling-induced spectral aliases that arise from
any partial-component sampling scheme.

The derivation reveals the proper form of the PSF under partial-component subsampling.
These results modernize the theoretical foundations of multidimensional NMR and provide a
platform for quantifying the spectral sensitivity of the next generation of novel sampling
schemes.

The following subsections introduce an algebra of hypercomplex numbers along with the
DFT, convolution and Hadamard operators necessary to define a modified DFT—
Convolution relationship suitable for analysis of partial-component, nonuniform sampling of
hypercomplex, multidimensional NMR data. Note that the algebra developed here is quite
different from the quaternion or octonion algebras commonly employed in other fields [21-
23]; among other things, our multiplication is commutative.
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An Algebra of Hypercomplex Numbers

Two fundamental properties of hypercomplex NMR data are:

Applying a 90-degree phase shift in dimension 7followed by a 90-degree phase shift in
dimension jyields the same result as applying the two phase shifts in the opposite order.

Applying a 180-degree phase shift in any dimension results simply in a change of sign.

The work of Delsuc [10] is extended by defining an algebra of hypercomplex numbers that
satisfies the above properties.

Each dimension in a &-dimensional hypercomplex number system has real and imaginary
components. A single real-valued unit, denoted by “1”, is common to all dimensions and is
the identity element of the algebra, whereas each dimension k=1, ..., dhas a unique
imaginary unit ¢, The imaginary units are the generators of the algebra and, along with the
identity element, can be used to construct a set of 29 basis elements of the algebra. The
particular set of basis elements or components (casually referred to as “phases” in NMR)
employed here is defined as

Za=le1- - @aler € {1, ud}, ()

where ¢1 - ¢yis a product of units performed according to the multiplication rules:

uiujzujui,
w=-1. @

These rules express the fundamental properties of hypercomplex NMR noted at the top of
this section, provided that multiplication by wy is interpreted as a phase shift by 90 degrees
in dimension .

A value in the ¢tdimensional hypercomplex space Hyis a weighted sum over the component
set. For example, consider the three-dimensional case. The generators ¢4, t» and ¢z produce
the component set

P3={1,u1, uz, u3, uitz, U1U3, U U3, U U2 U3}, (4)

and a general member of the space Hs can be written as

x=a+bui+cuy+duz+euur+ fuuz+guouz+huiuzuz,  (5)

where the coefficients 4, 4, ..., fare real numbers. In the context of multidimensional NMR,
the real unit along each dimension is typically referred to as “R” and the imaginary unit
along each dimension is referred to as “I”. In this notation, for example, the component ¢4 13
from 7s is expressed as “IRI” and Fabove could be referred to as the “IRI” coefficient of x.

As a simpler example, the 1-dimensional hypercomplex space H; has only one imaginary
unit, t4. Numbers in this space have only two components, R and |, and they can be written
in the form x= a+ buy. It’s easy to see that the multiplication operation defined in Equation
(3) makes this space isomorphic to the usual complex numbers.

The exponential function is defined for hypercomplex numbers according to the usual
Taylor series expansion. Using this formula one can show that the familiar properties of
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exponentials continue to hold: If xand yare hypercomplex numbers then XY= ¢¥. ¢, and
for any real number aand imaginary unit u;, we have ek = cos(a) + uysin(a).

We will write “x{¢}” for the real-valued coefficient of the component ¢ € 7: appearing in x.
Thus in Equation (5) above, f= x{ty 13}. It follows that a general member of Hcan be
written as

=3 e

pePy

A multidimensional array X of hypercomplex numbers is similarly expressed as

X= Z X{QD} 2 )

peEPy

where X{¢} is now the real-valued array whose elements are the coefficients of the
component ¢. The hypercomplex element of X located at the indices 4, ..., kywill be
written as “ X[k, ..., kg]”. This system of notation puts the square brackets and curly
brackets on equal footing, emphasizing how indexing along dimension is similar to indexing
along component.

Lette Hf be a hypercomplex vector of length A (the subscript on “H” indicates the
dimensionality of the phase-space and the superscript indicates the size of the vector). The
hypercomplex DFT on dimension jof t is the length- A vector f defined by:

1S ok
flkl=—= ) el )
n=0

This is the same as the usual formula for the DFT of a complex vector except that the
ordinary imaginary unit /has been replaced with ¢ We write f = #(t), with the subscript /
indicating the dimension on which * acts.

The DFT operator 7 is extended to multidimensional arrays by performing a single DFT on
all the sub-vectors parallel to the j~th dimension. Thus, if 7is a &tdimensional array of
hypercomplex values then

Nj-1
15 iy
Tk, .. kal=—= > e Nk, ko ng ks okl (9)

\/ﬁjnj:()

where Njis the size of 7s jth dimension. Note that the dimension index /is used here in
two different ways: It specifies the location of elements in 7 (i.e., &j, 7, and A) and also the
hypercomplex unit in the exponential factor (i.e., ¢). By contrast, Equation (8) uses jonly to
select a hypercomplex unit, independently of the single dimension the vector f comprises.

A full DFT of a multidimensional hypercomplex data array involves performing a single
transform in each of the dimensions: 7 (7) = # (- %«(7) ---). The order of the transforms is
irrelevant because the ; units commute; the series of subscripts has been omitted from the

J Magn Reson. Author manuscript; available in PMC 2014 February 01.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Convolution

Page 5

multidimensional Fourier operator on the left hand side to indicate that a//dimensions have
been transformed. Written out in full, this becomes

Ny-1
.. Z6_27T<ulklnl/N1+"‘+uzlkzl"Ll/M1)T[n] sengl (10)

Ni-1
1
FMh,... k= ———= )" -
Ni--- Ny n1=0 ny=0

Let f,g € HS’ be hypercomplex vectors. The convolution of f and g (written as f * g) is the
length- A/ vector h defined by:

1 N-1
h[k]:W;f[nlg[k—n]- (11)

The vectors f and g are treated as periodic, with element indices that fall out of the range {0,
..., N= 1} wrapped back in range through the modulo operator. The hypercomplex
convolution defined above differs from the classic complex-valued convolution only in that
the multiplication operator (-) is now hypercomplex multiplication performed according to
Equation (3).

Convolution is defined similarly for multidimensional, hypercomplex data sets. The sums
run over all the dimensions:

N -1 Ny—1
1
FxG)lkr, .. kil=—mmmz Y o+ D Flninal-Glki=m, . ka=nal. (12)
Nl e Nd 111_0 nd_o

With these definitions, the DFT—Convolution theorem (Equation (1)) holds for
hypercomplex vectors (if 7 is replaced by ©) and for multidimensional arrays of
hypercomplex values.

NMR Data and Sampling in Time/Phase

In the original NUS scheme, for each hypercomplex point in the data set, either all the
components are sampled or none of them are (i.e. full-component sampling). This can be
represented mathematically using the Hadamard operator. Let 7 be a fully sampled data set;
then the NUS data set is specified by 7- S, where Sis a multidimensional array of the same
size as 7whose elements are 1 (for the data points that are sampled) or O (for the points that
are not). Sis called the sampling function.

The Hadamard product will not suffice for the more general case of partial-component
subsampling (e.g. RPD, in which each element of the array is sampled at exactly one of its
components). To handle such schemes we introduce a modified Hadamard operator (®) and
define partial-component subsampling as

T=ToS, @13

where the sampling function Sis written as a hypercomplex array in which the coefficient
values are 1 for the points and components that are sampled and 0 for those that are not. (It
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is worth emphasizing that the hypercomplex representation of Sis for notational
convenience only. The sampling function should be viewed rotas a single array of
hypercomplex values, but rather as a set of real valued arrays, with one array for each
hypercomplex component. While it may be useful to store or refer to the set as a single
hypercomplex array, it does not act mathematically as a hypercomplex array.) In the
modified Hadamard product of two arrays, the values are multiplied element-wise and
component-wise within elements. In other words, for each component ¢

(T oS)p)=T{p} o S{p}, (@4)

and therefore

') TleloSteh o g

ey

The modified Hadamard product on hypercomplex data arrays is thus a summation of real
valued Hadamard products.

Unfortunately the classic DFT—-Convolution relationship does not hold for the modified
Hadamard operator. Instead, a separate relation holds for each component ¢:

F(T 0 S){eh=F (T{p}) = -F(S{e}), (16)

which results from applying Equation (1) to Equation (14). Multiplying each side by ¢ and
adding leads, by way of Equation (7), to

FT)=F (T 0S)= Z F(T{e} - @) = F(S{gh). an
YeZ

This expresses the spectrum of a partial-component NUS data set, 7 (7, in terms of a

convolution between component-isolated spectra of the fully sampled data set, 7 (7 {¢} - ¢),

and a component-isolated point-spread function, 7 (S{¢}). The latter is a member of the

component-isolated PSF set

PSE(S)={Z(S{eDlp € Z4}. (18)

The relationships among the functional components of Equation (17) are shown in Figure 1;
a visualization of these relationships is shown in Figure 2, in which a 1-dimensional
spectrum containing a synthetic peak in the real component and another in the imaginary
component is paired with RPD sampling. The component-isolated PSF set defined in
Equation (18) is shown in the cyan box. The yellow box shows that the true peaks are
aliased by the separation of 7'into its components. However, due to the change in sign, the
convolution products in the magenta box show constructive interference at the true locations
of the synthetic peaks (left of center in the real component, right of center in the imaginary
component) and destructive interference at the aliased locations of the synthetic peaks (right
of center in the real component, left of center in the imaginary component).

It is instructive to apply this analysis to the degenerate case of full-component subsampling.
In this situation, for each point in the time domain either all the components are sampled or
none of them are. Hence for each element of S, either all the component coefficients are 1 or
all are 0. It follows that the component-isolated sampling functions S{¢} are all equal to a

J Magn Reson. Author manuscript; available in PMC 2014 February 01.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Schuyler et al.

Page 7

single real-valued sampling function S, which then distributes out of the summation in
Equation (17). The end result is

32(T’>=[ D F(Tle)- 90)] + F(SH=F ()« Z(S)), (o)
$EZy

which agrees with Equation (1) as expected.

PSF Peak-to-sidelobe Ratio (PSR)

Let 7 be a multidimensional, hypercomplex array of time domain data and let Sbe the
corresponding sampling function. In characterizing the aliasing artifacts present in the PSF,
we observe that all of the component-isolated PSFs defined in Equation (18) enter into the
summation of convolutions in Equation (17). Further, the components of the PSFs “mix”
with the components of 7(7) and are recombined through the summation to determine the
components of (7 © S). Given these interconnections, it is appropriate to measure the
spectral aliasing in terms of the power of the PSF taken across all components:

powerPSP= 3 3 (FSIeDle D

Weydtp'e!?d

where the squaring is taken element-wise so that power(PSF) is a real-valued
multidimensional array of the same size as S.

The PSF power gives an upper bound on the magnitude of spectral aliasing. Consider a
subsampled data set and let ¢; and ¢, be two of the hypercomplex components. The ¢; and
¢ components of the data will necessarily be correlated with each other because they are
subsets of the same fully sampled signal. The structure of Smay be such that 7 (S{¢1}) and
F(S{¢2}) both have non-central peaks at the same location, but of opposite amplitudes.
When convolved with 7 (7 {¢}) and F(7{¢,}) according to the right-hand side of
Equation (17), it is possible for the aliased peaks to cancel out in the summation over the
components and not appear in the final spectrum. Since the interference of sampling artifacts
depends on the sampling function and on the structure of the time domain data, it is not
possible to decouple the contributions in the general case. As such, we employ the PSF
power and expect that alternative metrics may be developed in the future.

The PSF power shows the multidimensional distribution of artifacts and careful visual
inspection may reveal features of a candidate sampling scheme. However, the conclusions
may be subjective and difficult to automate. As a first-order approximation to sensitivity, the
peak-to-sidelobe ratio (PSR, an adapted form of the sidelobe-to-peak ratio of Lustig et al.
[24]) may be employed. PSR is defined as the ratio between (1) the central element of the
PSF power (i.e. the element at zero frequency) and (2) the largest non-central element of the
PSF power. The sampling function corresponding to complete sampling has a PSF power
with a central element proportional to the square root of the number of sampled points; all
the other elements of the PSF power are 0, leading to an infinite PSR. At lower sampling
coverages, the central element is smaller and the structure embedded in the sampling
function reveals itself as non-central peaks in the PSF, thereby reducing the PSR to a finite
value. For example, the sampling function in Figure 2, has PSR=8.6.
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Conclusion

Given a hypercomplex, multidimensional data array, a fu/l-component sampling function
may by expressed as a single real-valued array and the subsampled data is obtained with a
Hadamard product. The classic DFT—-Convolution Theorem is applicable and the
hypercomplex DFT of the real-valued sampling function defines the PSF, which serves to
characterize the sampling artifacts introduced in the NUS spectrum. A partial-component
sampling function has a real-valued array for each component, and the subsampled data is
obtained by taking the Hadamard product of each component of the sampling function with
the corresponding component of the data array. The component-weighted summation of
Hadamard products propagates through the classic DFT—-Convolution Theorem, which leads
to the central result of this paper.

While the modifications to the classic DFT—-Convolution relationship necessary to
accommodate partial-component subsampling may appear minor, their implications are
significant. The component-weighted summation of convolutions on the right hand side of
Equation (17) effectively superimposes the convolution products. Even though each of the
component-isolated PSFs is completely determined by the sampling function, the extent to
which their artifacts constructively or destructively mix is partially determined by the
specific values of the time domain data being subsampled. In the general case, this “many-
to-one” mapping can not be decoupled, thereby complicating metrics based solely on the
PSF, as discussed in the PSR section above and demonstrated in Figure 2.

NMR spectroscopists have relied on the classic DFT—-Convolution Theorem to govern the
characterization of sampling artifacts since the inception of NUS. Subsampling schemes
have evolved and have outgrown the underlying mathematical foundation. The derivations
in this paper provide the formal foundation for a new generation of subsampling schemes,
which is essential for proper characterization and optimization.
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Figure 1. DFT—Convolution Theorem Modified for Partial-Component Subsampling

Each hypercomplex component of the time-domain data (panel A) is subsampled by the
corresponding component of the sampling function (panel B) according to the Hadamard
product (-) to produce zero-augmented, subsampled data (panel C). All quantities in the time
domain (left column) are transformed to the frequency domain (right column) by the DFT
(denoted by the horizontal arrows labeled with 7). Each component of the time-domain data
is isolated and processed by DFT, producing a set of hypercomplex spectra (indicated by the
“one-to-many” grouping of arrows from panel A to panel D). Each of the real-valued
sampling function components is processed by DFT to produce a set of hypercomplex PSFs
(indicated by the set of disjoint arrows from panel B to panel E). The spectrum of the zero-
augmented, subsampled data can be reached either by taking its DFT (indicated by the single
arrow from panel C to panel F) or by pairwise convolving the set of uniformly sampled
spectra with the PSF set and adding (indicated by the “many-to-one” grouping of arrows
from panels D and E to panel F). The equivalence of these results (shown in panel F) is the
modified DFT—Convolution relationship.
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Figure 2. Illustration of Modified DFT—Convolution Relationship in 1D

Each complex valued function involved in Equation (17) is shown with the real component
in the top panel and the imaginary component in the bottom panel. All arrows are labeled
with operators as defined in the text. As this figure serves a qualitative, not quantitative
purpose, the numerical values on axes have been omitted to reduce visual clutter, but the
scaling on the vertical axes within each real/imaginary plot pair is the same. The horizontal
axes are labeled “[t]” for time domain data, which runs from 0 to 63, and “[w]” for
frequency domain data, which has OHz centered. The inputs (i.e. synthetic peak and sample
schedule) are encompassed by a gray box along with their associated functions. The
component-isolated DFTs of the time domain data are shown in the yellow box. The PSF set
is shown in the cyan box. The convolution products are shown in the magenta box.
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