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Abstract
Over the past decades, there has been growing recognition that light can provide a powerful
stimulus for biological interrogation. Light-actuated tools allow manipulation of molecular events
with ultra-fine spatial and fast temporal resolution, as light can be rapidly delivered and focused
with sub-micrometer precision within cells. While light-actuated chemicals such as photolabile
“caged” compounds have been in existence for decades, the use of genetically-encoded natural
photoreceptors for optical control of biological processes has recently emerged as a powerful new
approach with several advantages over traditional methods. Here we review recent advances using
light to control basic cellular functions and discuss the engineering challenges that lie ahead for
improving and expanding the ever-growing optogenetic toolkit.
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Introduction
Living cells depend on precise spatial and temporal coordination of molecular events. In
fields such as neurobiology and developmental biology, tools allowing inducible control
over cellular processes have been indispensible for probing the inherent complexities of
biological systems. Chemical-genetic strategies, in which small molecules are used to
inducibly control cellular function on user-defined timescales, have provided a wealth of
information for experimental biologists. While such strategies have been invaluable,
chemical-genetic approaches generally do not provide spatial resolution and are not easily
reversible. Photocaged and photolabile moieties attached to chemical groups overcome this
problem as they provide spatial and temporal control over release of biologically active
compounds, however such compounds can be expensive or difficult to obtain, are not
typically photoreversible, are highly diffusive, and are difficult to deliver to cells in some
cases.

Recently, there has been growing interest in using modified photoreceptor proteins as tools
for conditional control, as such tools promise dose-dependent molecular manipulation with
high spatiotemporal resolution in a genetically encoded system. The engineering and use of
these tools has broadly been designated the field of optogenetics. Pioneering research with
light-gated cation channels and anion pumps, such as Channelrhodopsin-2 and
halorhodopsin, created the first widely-adopted optogenetic technologies (Boyden et al.,
2005; Li et al., 2005; Han and Boyden, 2007; Zhang et al., 2007) These rhodopsin-based
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systems have revolutionized neurobiology as they provide a method for stimulating or
silencing neural activity with cellular resolution and temporal precision. These innovative
tools have been the subject of a number of reviews (Deisseroth, 2011; Yizhar et al., 2011;
Zhang et al., 2011; Chow et al., 2012; Mei and Zhang, 2012) and will not be covered here.

One of the most recent advances in optogenetics is the development of a growing suite of
light-controlled modules for interrogating cellular functions. These tools use natural or
engineered photosensory proteins to control basic cellular functions, such as protein
localization and protein-protein interactions. These new technologies allow activation of
signaling cascades, transcription, and other cellular events with high spatial resolution and
temporal precision using genetically-encoded proteins. In this review, we cover this second
generation of optogenetic tools, emphasizing recent work engineering photoreceptor
proteins for allosteric control and to control protein-protein interactions, and describing
future engineering challenges faced by developers and adopters of these new technologies.

Biological photoreceptors: basic modules for optogenetic engineering
Photoreceptors proteins are used by organisms to sense and respond to optical cues in their
environment. Generally, photoreceptors are stimulated to their photoexcited states via
changes in a small molecule cofactor, termed a chromophore, that is bound tightly to the
protein and is responsible for initial photon absorption. Photon capture causes a structural
change in the chromophore, leading to a conformational change in the tightly associated
photoreceptor protein. In the absence of additional photon stimuli, the stimulated
photoreceptor relaxes over time to its original unexcited conformation, or ground state, in a
process known as dark reversion. The rate at which the protein reverts from the photoexcited
to ground state can vary on a time scale of seconds, minutes, or hours depending on the
protein. As shown in Figure 1 with plant phytochrome B (phyB), the conformational
switching of a photoreceptor protein between the photoexcited and ground states functions
as a biological switch to alter signaling states in the protein.

Based on the associated chromophore, biological photoreceptors can be grouped in six
different families: rhodopsins, xanthopsins, phytochromes, cryptochromes, LOV domain-
containing and BLUF domain-containing (van der Horst and Hellingwerf, 2004; Moglich et
al., 2010). In the first three families, photoswitching occurs via a cis-trans isomerization
around a carbon double bond in the chromophore that takes place upon photon absorption.
The latter three families contain flavin-based chromophores that engage in electron transfer
or adduct formation upon photostimulation (Purcell and Crosson, 2008; Moglich et al.,
2010). In addition to these families, at least one photoreceptor protein, the UV-B sensitive
plant UVR8, does not bind an auxiliary chromophore but appears to perceive light by
switching from a dimer to monomer state upon excitation of tryptophan residues contained
within the protein (Christie et al., 2012a; Wu et al., 2012). In this review, we will provide an
overview of photosignaling states of phytochromes, cryptochromes, and LOV domains, as
these photoreceptors have been used most extensively for optical control.

Phytochromes
Classically, phytochromes are red/far-red light-sensing photoreceptor proteins found in
higher plants, cyanobacteria, non-photosynthetic eubacteria, and some fungi (Davis et al.,
1999; Rockwell et al., 2006). This superfamily also includes a class of related
cyanobacteriochromes from cyanobacteria with diverse photocycles that respond to a
broader range of light wavelengths (Ikeuchi and Ishizuka, 2008; Rockwell et al., 2012b).
Structurally, phytochromes contain a C-terminal transmitter region and an N-terminal
sensory module consisting of three domains: PAS (Per/ARNT/Sim), GAF (cGMP
phosphodiesterase/adenylate cyclase/FhlA), and PHY (phytochrome-specific).
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Phytochromes covalently bind a linear tetrapyrrole (bilin) ligand as a chromophore in the N-
terminal sensory region. Plant and cyanobacterial phytochromes (Phys and Cphs) bind the
chromophores phytochromobilin and phycocyanobilin (PCB), respectively, while bacterial
and fungal phytochromes (Bphs and Fphs) bind the chromophore biliverdin (Bhoo et al.,
2001; Lamparter et al., 2004; Rockwell et al., 2006). In plants, phytochromes are responsible
for regulation of seedling de-etiolation, flowering, and shade avoidance (Franklin and Quail,
2010; Chen and Chory, 2011).

Phytochromes convert between two relatively stable states: a red-light absorbing Pr state
that predominantly exists in the dark or far-red light, and a far-red absorbing Pfr state that
predominates in red light (Rockwell et al., 2006). As shown in Figure 1, conversion between
these two states involves a cis-trans isomerization around a carbon double bond of the bilin
chromophore, resulting in a conformational change in the associated phytochrome protein.
This conformational change in phytochrome results in light-dependent binding or
dissociation with downstream interacting proteins.

Cryptochromes
Cryptochrome photoreceptors are blue/UV-A light-responsive proteins (Lin and Shalitin,
2003). These proteins were first characterized in plants (Ahmad and Cashmore, 1993), and
have subsequently been found in all kingdoms of life. Structurally, cryptochromes contain
an N-terminal DNA photolyase homology region (PHR) that binds flavin adenine
dinucleotide (FAD), and a C-terminal (CCT) domain essential for signal transduction in
plants (Yang et al., 2000; Sancar, 2004). Despite substantial sequence homology with DNA
photolyases within the PHR domain, cryptochromes do not retain DNA repair activity
(Sancar, 2008). Functionally, cryptochromes have diverse roles in plants and animals. In
plants, cryptochromes are essential in light-dependent regulation of growth and
development, including de-etoliation and flowering, and are also involved in regulating the
circadian clock; in animals, cryptochromes are central components of the circadian clock
(Sancar, 2003; Lin and Todo, 2005; Chaves et al., 2011; Liu et al., 2011).

The precise photosensory mechanism by which cryptochromes convert between signaling
states remains unclear (Liu et al., 2010; Losi and Gärtner, 2011). In vitro studies in large
part with Arabidopsis cryptochrome 1 (AtCRY1) have led to the proposal of a trp-triad-
dependent photoreduction that switches the signaling state of this protein. In this hypothesis,
cryptochrome is proposed to bind oxidized FAD in the ground state, and light stimulation
results in formation of the neutral radical semiquinone (FADH•), thought to be the signaling
state, via intra-protein electron transfer between aromatic residues and the FAD cofactor
(Giovani et al., 2003; Kottke et al., 2006; Banerjee et al., 2007; Bouly et al., 2007). Further
studies have shown that conversion from the cofactor ground state (oxidized FAD) to the
photoexcited state (FADH•) causes a conformational change in full length AtCRY1 (Chaves
et al., 2011; Kondoh et al., 2011). Alternate hypotheses also have been proposed as
mechanisms for photoactivation (Liu et al., 2010).

LOV (Light, Oxygen, or Voltage) domains
Similar to cryptochromes, proteins of the light-oxygen-voltage (LOV) domain family, which
falls in the larger class of PAS (PER-ARNT-SIM) sensory domains, also bind a flavin
chromophore. The LOV domain can be found as a single domain or associated with a wide
range of effector domains, resulting in diverse roles for LOV-containing proteins (Losi and
Gärtner, 2008). In plants, LOV domain proteins have functional roles in phototropism,
stomatal translocation, and chloroplast movements (Liscum and Briggs, 1995; Christie et al.,
2002; Cho et al., 2007). In bacteria, they are involved in regulation of stress responses, cell
attachment, development, and virulence (Gaidenko et al., 2006; Purcell et al., 2007; Swartz
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et al., 2007). Consistent with such a variety of domain structures and roles, the changes that
occur in LOV domain proteins during signal transduction are also quite diverse, such as
unwinding of a C-terminal α–helix (Harper et al., 2003) or light dependent dimerization
(Möglich and Moffat, 2007).

Despite this functional diversity, studies of different LOV domains suggest a conserved
photoactivation mechanism. The photoactivation mechanism of the LOV2 domain of Avena
sativa (oat) phototropin 1 (AsLOV2) has been one of the most extensively studied. Upon
photoexcitation, a covalent thioether bond is formed between the FMN isoalloxazine ring
and a highly conserved cysteine residue of the LOV domain (Salomon et al., 2000; Christie
et al., 2012b). Adduct formation triggers undocking and unwinding of a C-terminal α-helix
(Jα) that is docked to the monomeric protein in the dark state (Harper et al., 2003; Halavaty
and Moffat, 2007).

LOV domains from diverse photoreceptors appear to undergo similar changes in the LOV
core as AsLOV2, with light stimulation triggering formation of a covalent bond between the
flavin cofactor and a conserved cysteine of LOV, resulting in altered interactions between
the LOV core and other domains (Zoltowski and Gardner, 2011). Photoactivation of
Neurospora crassa VVD, which leads to protein dimerization, alters interactions between the
LOV core and an N-terminal extension (Zoltowski et al., 2007; Vaidya et al., 2011), while
photoactivation of EL222, a LOV-containing DNA binding protein from Erythrobacter
litoralis HTCC2594, results in dissociation from the LOV core of a C-terminal helix-turn-
helix domain that mediates DNA binding (Nash et al., 2011). Photoactivation of the LOV
domain of Bacillus subtilis YtvA, which exists as a dimer, causes small changes throughout
the LOV domain and Jα helix, resulting in a subtle shift in the orientation of two LOV
domain subunits relative to each other (Moglich and Moffat, 2007). In structural studies of
the Vaucheria frigida Aureochrome 1 LOV domain, both N and C-terminal extensions were
found associated with the LOV core, raising the possiblity that effector domains could be
fused to either end of LOV for photoregulation (Mitra et al., 2012). Many of these studies
examined photosensory domains alone or with small N- or C-terminal extensions, rather
than in the context of the full-length proteins. Structural studies of full-length LOV proteins
with diverse effector domains, as has been carried out with EL222 (Nash et al., 2011), can
provide valuable mechanistic insights into ways to engineer LOV-containing proteins for
optogenetic applications.

Engineered systems for controlling cell function
Genetically-encoded light-responsive tools have been utilized in a number of innovative
ways to control biological function, allowing regulation of transcription, enzymatic activity,
and protein subcellular localization in a light-dependent manner. Generally, there are two
strategies for controlling biological processes with light using photoreceptor proteins:
allosteric regulation (Fig. 2a), in which a photosensory domain is engineered to control
enzyme activity or access to a binding site, or dimerization (Fig. 2b), in which modular
protein interactions are used to control interactions of tethered target proteins. These
different strategies can also be combined, as several recently developed technologies have
used allosteric regulation to engineer proteins that can be used as modular dimerizers.

Allosteric regulation
Light sensing domains have been used to allosterically control protein function. AsLOV2
has been used most prominently for this purpose, as this domain is small, modular, well
characterized, and undergoes a large structural change upon photoexcitation. Generally,
there have been two strategies for photoregulation using AsLOV2: (1) AsLOV2-Jα is
attached to a target protein such that conformational changes in LOV2 induce
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conformational changes in the target, and (2) steric occlusion—a domain is attached to
AsLOV2-Jα in such a way that binding to an effector is blocked in the dark but permitted in
the light upon dissociation of Jα from the LOV core. Taking the former approach, the
AsLOV2-Jα domain was inserted at different sites within the enzyme dihydrofolate
reductase, resulting in light-regulated dihydrofolate reductase activity (Lee et al., 2008).
AsLOV2-Jα has also been used to control activity of Lipase A (Krauss et al., 2010). In
another study, AsLOV2-Jα was attached to an N-terminal helix of the bacterial trp
repressor, TrpR (Strickland et al., 2008). The fusion protein, ‘LovTAP’, was found to bind
DNA preferentially in light, demonstrating that changes arising in the Jα-helix upon
photoexcitation were transferred to induce a conformational change in TrpR.

Prior studies of the interaction of AsLOV2 and the C-terminal Jα-helix have demonstrated
that the Jα-helix is not simply bound to the LOV core in the dark and released in light, but
populates both states in light and dark, though at different ratios (Yao et al., 2008).
Mutations that destabilize docking to the LOV core were identified and found to lead to
light-independent constitutive activity (Harper et al., 2004). In a followup to the LovTAP
study (Strickland et al., 2008), the authors identified mutations in LOV-Jα that stabilized
LOV docking, increasing the dynamic range of the DNA-binding photoswitch from a 5-fold
to 70-fold difference in DNA binding affinity between lit and dark states (Strickland et al.,
2010).

While these initial studies demonstrated light-regulated enzyme activity and binding, they
did not demonstrate fine spatial control of biological activity. In a breakthrough study,
AsLOV2 was used in mammalian cells to control the activity of Rac1, a GTPase that
regulates actin cytoskeletal dynamics (Wu et al., 2009). Rac1 was fused at the C-terminus of
LOV-Jα, sterically blocking its binding to effector proteins in the dark. Blue light irradiation
resulted in unfolding of the Jα-helix, relieving the steric inhibition and facilitating the
interaction of Rac1 with effectors. Using focused laser excitation directed to subcellular
regions, the authors demonstrated conditional formation of lamellipodia only at illuminated
sites. This work provided an exciting demonstration that cellular behavior can be controlled
with light with high spatial and temporal resolution.

Although AsLOV2-Jα has been most extensively used, other domains have also been
explored for optogenetic applications. Rotational movement upon photoactivation of a
dimeric B. subtilis YtvA LOV domain was used to engineer a photocontrollable histidine
kinase, in which a PAS domain from the oxygen sensor FixL of Bradyrhizobium japonicum
was replaced by YtvA-LOV (Moglich et al., 2009). This fusion protein was further exploited
for control of gene expression in bacteria, with the engineering of plasmids allowing
induction (pDawn) or repression (pDusk) of gene expression with light (Ohlendorf et al.,
2012). Other light-controlled transcriptional systems have also been engineered. A fusion
between the cyanobacterial phytochrome, Cph1, and the E. coli ENVZ histidine kinase
resulted in a red-light-regulated system to control transcription in E. coli (Levskaya et al.,
2005). This work was followed by development of a green/red switchable system, using the
cyanobacteriochrome CcaS and its response regulator CcaR (Tabor et al., 2011). The light-
dimerizing Neurospora crassa VVD protein was fused to a DNA binding domain and
activation domain and used to control transcription in mammalian cells (Wang et al., 2012).
A recent paper also extends light-inducible transcriptional tools for use in Neurospora, using
the endogenous light-regulated vvd promoter (Hurley et al., 2012).

Optical Dimerization Systems
Another strategy for controlling cell function is through the use of modular domains that
mediate protein dimerization, allowing inducible recruitment or sequestering of proteins to
or from their sites of action (Spencer et al., 1993). Optical dimerizers utilize natural or
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engineered light-dependent interacting domains and can be controlled by different
wavelengths of light. In general, these types of tools require less engineering, as the
interacting domains are more modular and thus can be more easily appended to different
target proteins for specific applications.

As shown in Figure 3, a variety of strategies exist for using optical dimerizers. These
strategies rely on use of the modular domains to bring targets together to elicit a functional
activity (recruitment), or alternatively, the domains may be used to keep a molecule in a
nonfunctional state until release (sequestering). For example, dimerizers can be employed to
unite a non-functional split protein into a functional whole (Fig. 3a), a strategy that has been
utilized for light-regulated control of gene transcription or DNA recombination (Shimizu-
Sato et al., 2002; Yazawa et al., 2009; Kennedy et al., 2010; Hughes et al., 2012a; Wang et
al., 2012). Similarly, dimerizers can be recruited to a specific subcellular location such as
the plasma membrane, initiating enzymatic activity or a signaling cascade (Fig 3b). Such
strategies are used extensively in nature, where proteins are often kept in subcellular locales
where they are unable to function, before recruitment to their sites of action (e.g. nucleus,
plasma membrane). Alternatively, proteins may be sequestered from their usual sites of
action, resulting in loss of protein activity (Fig. 3c). Optimally, a dimerization pair that
interacts in the dark, such as CRY1 and phyB (Hughes et al., 2012b), could be used to
sequester proteins in an inactive state until light stimulation. In the following sections we
describe several of the existing optical dimerization systems.

PhyB/PIF
An interaction between phyB and a transcription factor, PIF3, was the first system described
for optical control of protein-protein interactions in cells (Shimizu-Sato et al., 2002). As
depicted in Figure 1, PIF3 interacts with phyB in the Pfr state, but not in the Pr state. This
natural light-dependent interaction was used to regulate gene expression in yeast by linking
phyB (residues 1-621) and PIF3 to separable activation and binding domains of the
transcription factor Gal4. In the absence of red light illumination, phyB and PIF3 did not
interact and thus the transcription factor was split in two separate non-functional parts.
However, red light illumination promoted the binding of phyB to PIF3, reconstituting a
functional Gal4 transcription factor and promoting transcription, which could be reversibly
disassociated with far-red light illumination.

Additional studies used the same phyB/PIF3 interaction to control activity of other proteins.
In one study, the interaction was used to induce actin assembly in vitro (Leung et al., 2008).
Light-induced dimerization of phyB and PIF3 promoted interaction of GDP-bound Cdc42
and WASP, resulting in red light inducible actin assembly, through Arp2/3 activation, that
could be reversed with application of far-red light. In another study, phyB and PIF3 were
used to reconstitute a split S. cerevisiae VMA intein with light, allowing light-mediated
control of protein splicing (Tyszkiewicz and Muir, 2008).

A key advantage of optogenetics is the ability to control processes with subcellular spatial
precision. A prime demonstration of this was provided using a different Arabidopsis phyB
protein interaction, phyB/PIF6, where authors demonstrated rapid and reversible
translocation of proteins to the plasma membrane of mammalian cells using light (Levskaya
et al., 2009). Using the N-terminal region of PIF6 (residues 1-100) and phyB (residues
1-908), the authors were able to rapidly recruit target proteins to the plasma membrane (τ =
1.3 s). Most importantly, as phyB can be reversibly photoswitched with two different light
wavelengths (Fig. 1), application of farred light resulted in rapid reversal of binding (τ = 4
s). Using an approach pioneered with chemical dimerizers to activate small GTPases (Inoue
et al., 2005), the study also demonstrated light dependent recruitment of catalytic domains
(DH-PH domains) of guanine nucleotide exchange factors (GEFs) to the plasma membrane.
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Upon membrane recruitment of the catalytic domain of the Rac GEF Tiam (Tiam-DH-PH),
the authors demonstrated activation of Rac and formation of cellular protrusions extending
in the direction of the light (Fig. 4a). These breakthrough experiments demonstrated the
power of optical dimerizers to alter cell function, not only with high temporal resolution, but
with subcellular spatial precision as well.

It should be noted that in the above studies, use of phyB in yeast and mammalian cells
required the addition of an exogenously supplied bilin cofactor. In plants, assembly of the
light-sensitive holo form of phyB requires binding to phytochromobilin, a compound that is
made in plants but is not present in other higher eukaryotes or yeast. A similar bilin
compound, phycocyanobilin (PCB), can be extracted from Spirulina and supplied
exogenously in the yeast media (Li and Lagarias, 1994; Shimazu-Sato et al., 2002), allowing
formation of holo phyB. Mammals also do not make the bilin chromophore required for
assembly of holo-phyB, and the Levskaya et al. (2009) work established that PCB can also
be externally applied to mammalian cells. Alternatively, researchers have co-expressed
biosynthetic enzymes that allow generation of the bilin cofactor within cells, though this
approach has so far only extended to bacteria (Gambetta and Lagarias, 2001; Levskaya et
al., 2005). The ability to produce the bilin cofactor in mammalian cells will certainly extend
use of this system to more complex organism studies, rather than just cell culture.

GIGANTEA/FKF1
A blue light-dependent interaction between the LOV-domain-containing protein FKF1 and
GIGANTEA, proteins that control flowering in Arabidopsis, was used to induce protein
dimerization (Yazawa et al., 2009). The group used the interaction for light-induced
recruitment of a constitutively active Rac1 protein, resulting in lamellipodia formation, and
to bring together a split transcription factor in mammalian cells, resulting in blue light
induction of transcription. A recent paper further explored use of the FKF1/GIGANTEA
interaction to induce transcription in mammalian cells, bringing together an engineered zinc
finger protein and a VP-16 transcriptional activation domain (Polstein and Gersbach, 2012).
The FKF1/GIGANTEA interaction is long lived, making this system potentially useful for
applications where reversibility is not desired.

CRY2/CIB1
A cryptochrome-based dimerization system was demonstrated using Arabidopsis
cryptochrome 2 (CRY2) and its interaction partner CIB1 (Kennedy et al., 2010). The CRY2/
CIB interaction was used to recruit target proteins to the plasma membrane in mammalian
cells, where they responded to light within seconds of blue light illumination and the
interaction naturally reversed within several minutes (t1/2 ~ 5.5 min). In two demonstrations,
the authors used the system to bring together split protein fragments to reconstitute
functional activity. In the first case, the CRY2/CIBN dimerizers were used to bring together
split fragments of Cre DNA recombinase. While no recombinase activity was observed in
the dark, blue light stimulation resulted in dose-dependent induction of DNA recombination.
In the second demonstration, the authors used CRY/CIB to bring together a split Gal4
transcriptional activator, using a similar approach as that of Quail and colleagues with phyB/
PIF3 (Shimizu-Sato et al., 2002). In follow up studies examining light-induced control of
DNA transcription in yeast, the authors used the CRY/CIB dimerizers to bring together a
split LexA-VP16 transcription factor, which showed robust activation in light (~50-fold
activation of a reporter over dark levels after several hours) with low background (Hughes et
al., 2012a). These experiments demonstrated the advantages of optogenetic tools for user-
controlled, dose-dependent regulation of enzyme activity.
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While the above studies demonstrated regulation of localization by global illumination of
cells, as well as temporal and dose dependent control of enzyme activity using light, they did
not demonstrate use of the CRY/CIB dimerizers for subcellular control of protein
localization. However, a recent publication demonstrates use of CRY2/CIB for local
recruitment of phosphatidylinositol 5′-phosphatase to the plasma membrane in COS-7 cells
(Idevall-Hagren et al., 2012). Once recruited, the enzyme dephosphorylated
phosphoinositide (PI(4,5)P2) in a spatially restricted manner only in the localized region
where it had been recruited (Fig. 4b). In these studies, the phosphatase was fused to CRY2
and expressed in the cytosol, where it was recruited to the membrane by binding to a
prenylated CIBN. In this configuration, with the photoreceptor module expressed in the
cytosol, it might have been expected that stimulated CRY2 would diffuse rapidly throughout
the cell. Surprisingly, local recruitment could be achieved: when illuminated, CRY2 was
preferentially recruited only to plasma membrane-bound CIB in the nearby vicinity. With
the phosphatidylinositol 5′-phosphatase recruitment studies, Idevall-Hagren and colleagues
also demonstrated similar reversibility of the system as seen previously (Kennedy et al.,
2010), with the phosphatase returning to the cytosol within minutes (t1/2 = 6.8 ± 1 min),
followed by recovery of inositol phosphate (PI(4,5)P2) after a short lag due to resynthesis.
Comparison of the optical dimerizers with chemical dimerizers demonstrated that the optical
system performed at over an order of a magnitude faster (t1/2 = 3.1 ± 0.2 s) than a previously
used rapamycin-based system (Idevall-Hagren et al., 2012).

Engineered optical dimerizers using AsLOV2
Recently, two groups used AsLOV2 to control binding of a peptide epitope, generating
engineered LOV-domain-based optical dimerizers (Lungu et al., 2012; Strickland et al.,
2012). In both cases, a peptide epitope was fused to the C-terminus of AsLOV2-Jα. In one
system, designated TULIPs (Tunable, Light-controlled Interacting Proteins), the caged
peptide (LOVpep) interacts with an engineered PDZ domain (Strickland et al., 2012). In the
dark, the peptide is sterically hindered from PDZ domain binding, whereas light stimulation
results in release of the steric interference and permits interaction. Mutants that alter
photocycle duration and Jα helix docking to the LOV core were examined to determine their
effects on TULIP caging and kinetics. As measured by plasma membrane recruitment
experiments, mutant variants showed a range of dimerization affinities, dark-state
recoveries, and altered dissociation kinetics, demonstrating the ability to ‘tune’ this system
for specific applications using mutagenesis. The group established functionality in
mammalian cells and in yeast, where the system was used to inducibly control the yeast
mating pathway. In this demonstration, light-dependent mating pathway activation was
achieved by triggering recruitment of Ste5, a scaffold protein involved in the mating MAP
kinase cascade, to the plasma membrane. In a separate experiment, polarity of yeast mating
projections could be controlled at precise subcellular locations via membrane recruitment of
Cdc24 (Fig. 4c).

Employing a similar strategy as with TULIPs, Kuhlman and colleagues designed an optical
dimerizer that cages a vinculin binding peptide, ipaA (Lungu et al., 2012). Initial constructs
showed significant (49-fold) differences in binding affinity in lit versus dark states when
tested in vitro, but the caged ipaA retained substantial binding to vinculin in the dark. When
these constructs were tested in yeast for control of transcription (via reconstitution of a split
Gal4 transcription factor controlling cell growth), the yeast showed no phenotypic
differences in light vs dark, likely due to the high dark binding. Addition of a mutation in
vinculin that reduces affinity to ipaA substantially reduced dark state binding affinity while
maintaining lit state affinity, resulting in a phenotypic difference in transcriptional activation
when tested in yeast. These results suggest that engineered optical dimerizers may require
significant tuning of binding affinities for optimal function within cells.
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The Road Ahead: Discovery, Optimization, and Challenges
Adapting the new set of optogenetic tools for cellular control presents a number of
challenges. Here we describe the road ahead for optogenetics research, discussing strategies
for optimizing existing tools, the need to identify new photoreceptor modules for the
optogenetic toolkit, and future engineering challenges.

Optimization of photoreceptors for optogenetic applications
While existing optogenetic tools can be successfully adopted as is for new applications (e.g.
adoption of the CRY2/CIB system for phosphoinositide studies in mammalian cells (Idevall-
Hagren et al., 2012)), further engineering and optimization of these proteins will greatly
improve their broad adoption and general utility. Identification of mutant photoreceptor
variants with altered dark reversion rates and spectral sensitivities, for example, will
improve versatility and allow tuning for specific applications. For example, to control some
processes, such as activation of DNA recombination or transcription, a dark reversion rate of
minutes or hours may be more useful than a dark reversion rate of seconds. Alternatively, in
the absence of systems that can be inducibly shut off such as Phy/PIF, localized activation
will be enhanced by a fast dark reversion rate, such that proteins that diffuse away from a
site of illumination will rapidly revert to the dark state. Several prior studies have
demonstrated that photocycle kinetics of photoreceptors can be tuned by mutagenesis
(Christie et al., 2007; Zoltowski et al., 2009; Raffelberg et al., 2011). For example, single
amino acid changes were found to yield an 85-fold increase in YtvA dark recovery rate
(Raffelberg et al., 2011), or a 10-fold increase in AsLOV2 dark recovery rate (Christie et al.,
2007). While mutant variants can be identified by random selection or using structural
guidance, natural photoreceptor variants also possess diverse photokinetics and spectral
tuning (Man et al., 2003; Jentzsch et al., 2009; Pathak et al., 2009; Narikawa et al., 2011;
Rockwell et al., 2012a; Rockwell et al., 2012b) and may provide starting points for protein
engineering.

In addition to identifying mutations that affect photocycle kinetics, expanding the range of
wavelengths available for optogenetic control is another engineering goal. A critical
challenge for integrating optogenetic actuators and light-based reporters involves the
significant spectral overlap between different systems, which can blur the distinction
between excitation response and output fluorescence. For example, the excitation
wavelengths of common fluorescent proteins (eGFP, CFP, and YFP) overlap with the
wavelengths used to stimulate flavin-based actuators (i.e. LOV, cryptochrome, BLUF), thus
these fluorescent probes cannot be visualized without actuating the process under
investigation. Identification of variants with shifted absorption spectra would permit better
integration of multiple fluorescent reporters and/or multiple optogenetic modules in a single
system (Fig. 5), enabling more complex optical control over biological phenomena. Prior
studies have indicated that mutation of residues situated near the chromophore can modulate
spectral tuning in a variety of proteins (Chan et al., 1992; Lin et al., 1998; Takahashi and
Ebrey, 2003; Nash et al., 2008; Arents et al., 2011). In this effort, natural photoreceptor
variants can provide guidance. For example, natural variants of proteorhodopsins were
found to show depth stratified spectral tuning that was determined by a single amino acid
residue change, converting the protein’s absorption maxima from about 525 to 490 nm (Man
et al., 2003). The success of site-directed mutagenesis and directed evolution for spectral
tuning and further optimization of fluorescent proteins (Heim et al., 1994; Heim and Tsien,
1996; Shaner et al., 2004; Auldridge et al., 2012) suggests these approaches hold promise
for engineering optogenetic actuators as well.
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Discovery and exploration of new photoresponsive modules
While LOV, cryptochrome, and phytochrome domain-containing proteins from plants have
dominated optogenetic tool development, numerous photosensory proteins exist throughout
the biological kingdoms that are ripe for exploration. Identification of novel biological
photoreceptors and characterization of their modes of action and biochemical properties will
provide us with a vast choice of design modules for engineering. For example, 578 different
LOV domain sequences, showing diverse domain architecture, were recently identified from
metagenomic analysis of soil, marine, air, symbiotic and extreme environments (Pathak et
al., 2012). As has been found with bacteriorhodopsin-based ion channels (Yizhar et al.,
2011; Chow et al., 2012), natural variants often have quite different properties, such as
different dark reversion rates or spectral sensitivities. LOV domains with novel features
have been reported from organisms inhabiting extreme environments, such as thermophilic,
acidic or saline environments (Pathak et al., 2009; Pathak et al., 2012). In nature, these
sensory domains couple to effector or output domains in quite different ways (Losi and
Gartner, 2008). Coupling novel sensory proteins to different or mutagenized effector
domains will provide promising avenues for future engineering efforts. For example, a
BLUF domain with a light-responsive adenylate cyclase effector domain was engineered to
regulate synthesis of cyclic GMP in response to light (Ryu et al., 2010). As cyclic
nucleotides are important secondary messengers in eukaryotic cells, optical control of these
systems could allow regulation of a wide range of cellular activities.

Engineering challenges
A substantial challenge for optogenetics is the significant engineering required to develop
robust, tightly-controlled systems. Allosteric designs, joining effector domains to
photosensory domains for tight light control, require significant design, testing, and
optimization. For example, the development of a photoactivatable Rac1 required sampling
of numerous fusion junctions between the LOV2 domain and Rac1 to ensure adequate
allosteric caging (Wu et al., 2009). While optical dimerizers are more modular than
engineered allosteric systems, even these exhibit context-dependent behavior when fused to
different proteins. For instance, while phyB/PIF3 dimerizers were found to work well in
yeast (Shimizu-Sato et al., 2002; Tyszkiewicz and Muir, 2008; Hughes et al., 2012a), these
domains did not work for a membrane recruitment assay in NIH3T3 mammalian cells
(Levskaya et al., 2009). As another example, CRY2 only tolerated mCherry fused to its C-
terminus, but not its N-terminus, in a CIB membrane recruitment assay in HEK293 cells,
even though Gal4BD fused to the N-terminus of CRY2 showed light-dependent binding to
CIB (Kennedy et al., 2010). In addition to engineering challenges with modular domains,
each application also presents its own unique challenges. The creation of robust split-protein
systems, for example, is difficult as it is not always clear how a protein should be divided for
functional reconstitution or whether the protein can be successfully reconstituted to restore
function at all. Thus, in particular when designing new allosteric control strategies, but also
when using modular domains with new applications, testing of a variety of design strategies,
including different domain orders or linker sizes, is critical.

Concluding Remarks
The light-regulated systems described in this review provide ways to non-invasively control
cellular function with unprecedented spatiotemporal precision. Despite exciting new
developments, the field of optogenetics is still in its infancy. The number of characterized
tools is still somewhat limited, awaiting the discovery of new photosensory domains and
photoexcitation mechanisms that will greatly expand the optogenetic toolkit. Further
engineering and quantitative characterization of existing tools will provide users with the
capacity to tune absorbance wavelengths, dark reversion rates, activation kinetics, and
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binding affinities for specific applications. The field will also be advanced by innovation in
other engineering areas, such as the further development of hardware or software to enhance
or regulate light delivery (Leifer et al., 2011; Milias-Argeitis et al., 2011; Toettcher et al.,
2011; Dugue et al., 2012). With further development of optogenetic tools, optogenetics will
likely extend well beyond neurobiology to become a transformative force in nearly any field
requiring fast, conditional control of cellular biochemistry. The precise and non-invasive
character of these tools will likely encourage a shift in experimental paradigm, emboldening
researchers to explore novelty in their experimental designs to address previously intractable
questions.
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Figure 1. Mechanism of phytochrome B photoactivation
In dark or far-red light, phyB exists predominantly in a red light responsive ‘Pr’ form. Upon
red light stimulation, the covalently bound chromophore phytochromobilin (top) undergoes
a reversible Z-E isomerization, resulting in a conformational change in phyB to the Pfr
signaling state. This state can be switched back to the Pr state by far-red light illumination.
Light dependent effector proteins, such as PIF3 or PIF6, bind the photoreceptor
preferentially in one conformational state.
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Figure 2. Strategies for engineered optogenetic regulation
a) Allosteric regulation. Photoreceptors or domains such as AsLOV2-Jα that undergo a large
structural change upon light binding can be attached to or inserted within other proteins to
control enzyme activity or binding interactions. b) Optical dimerizers. Modular light-
interacting domains are used to control interactions and localization of fused target proteins
(e.g. phyB and PIF3).
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Figure 3. Basic schemes for control of cell function by optical dimerizers
a) Split protein reconstitution. Two non-functional parts of a protein (blue and purple half-
circles) are brought together by optical dimerizers to restore protein activity in a light-
dependent manner. b) Subcellular recruitment. A protein is recruited via dimerizers to a
region of the cell where it is active. In the absence of recruitment the protein is
nonfunctional. c) Sequestration. A protein is sequestered in an inactive state by a dimerizer,
then released to sites of action with light.

Pathak et al. Page 19

Biol Cell. Author manuscript; available in PMC 2014 February 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 4. Use of optogenetic systems for fine spatial control of cell function
a) Focal activation of Rac-mediated cell protrusion with the phyB/PIF6 system. The
catalytic domain of the Rac GEF Tiam (Tiam-DH-PH) is recruited to the plasma membrane
via the phyB/PIF6 interaction, where it acts through Rac1 to form lamellipodia. Localized
lamellipodia formation in NIH3T3 cells was induced by globally irradiating the cell with
infrared (750 nm) light and spot illumination with a red (650 nm) laser. Scale bar 20 μm.
Figure adapted with permission from Macmillan Publishers Ltd.: Nature (Levskaya et al.,
2009), copyright 2009. b) Local recruitment of phosphatidylinositol 5′-phosphatase (5-
ptase) to the plasma membrane using the CRY2/CIBN system. Upon focal light stimulation
within COS-7 cells, cytosolic mCh-CRY2-5-ptase is recruited to a nearby region of the
plasma membrane via interaction with CIBN. At the plasma memrane, the phosphatase
depletes PI(4,5)P2 locally, visualized using the PI(4,5)P2 biosensor iRFP-PHPLCδ1. Images
at right were taken of COS-7 cells expressing the constructs before and 10s after delivery of
a 100-ms blue-light pulse (location marked by blue square). Scale bar: 5 μm. Figure
reprinted with permission from The National Academy of Sciences, Proceedings of the
National Academy of Sciences, USA (Idevall-Hagren et al., 2012), copyright 2012. c) Light-
directed polarized yeast growth. Yeast cells expressing Cdc24-ePDZb1 and membrane
localized Mid2-GFP-LOVpep were exposed to mating pheromone to induce cell cycle
arrest. After 30 min, Cdc24-ePDZb1 was spot recruited using a blue laser and cells were
imaged after two hours. Figure adapted with permission from Macmillan Publishers Ltd.,
Nature Methods (Strickland et al., 2012), copyright 2012.
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Figure 5. Integrating multiple optical tools for complex control
In this hypothetical scheme, the phyB/PIF optical dimerizer system is combined with a
CRY1/phyB system that is light-dissociated. Thus, in blue light, none of the proteins
interact. In dark or far-red light, phyB interacts with CRY1, while in red light phyB interacts
with PIF. Thus, a protein of interest tethered to phyB can be shuttled from one location to
the other (for example, plasma membrane vs. nuclear membrane) via changes in light
wavelength.
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