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Abstract
An unexpected dichotomy was observed in the Ru-catalyzed asymmetric transfer hydrogenation of
acyl phosphonates: reduction proceeded from the opposite face relative to that observed in the
analogous reduction of α-keto esters. The first highly selective catalytic hydrogenation of acyl
phosphonates was utilized in the dynamic kinetic resolution of α-aryl acyl phosphonates providing
β-stereogenic α-hydroxy phosphonic acid derivatives.

The asymmetric synthesis of small molecules has profited from the development of well-
defined homogenous catalysts.1 Asymmetric catalysis relies on the fundamental paradigm
that privileged catalysts generate well-defined chiral spaces that provide an environment
capable of effectively directing similarly structured small molecules for enantiofacial
discrimination.2 This characteristic is practically useful insofar as a seminal advance can
pave the way for useful extensions based on structurally-related congeners. Deviations from
this principle are rare and important in understanding substrate/catalyst interactions.3

Herein, we disclose an unusual diametric reversal in diastereofacial selection in the
asymmetric transfer hydrogenation of acyl phosphonates compared to the related α-keto
esters. The reactions described provide access to new β-stereogenic-α-hydroxy phosphonic
acid derivatives that have previously been inaccessible in stereoisomerically pure form.

Background/Rationale
α-Keto esters and acyl phosphonates A behave analogously in the bis(oxazoline)Cu(II)-
catalyzed asymmetric hetero Diels-Alder reaction with vinyl ethers to provide
dihydropyrans C and D, respectively (Figure 1, paths a and b).4 Activation of the dicarbonyl
moiety via chelation is crucial in providing high levels of facial selectivity. We were
interested in testing the notion that the α-keto ester/acyl phosphonate relationship could be
exploited in the context of our laboratory’s ongoing work involving dynamic kinetic
resolution5 by asymmetric transfer hydrogenation (DKR-ATH). We recently documented a
new Ru(II)-catalyzed DKR-ATH of β-aryl-α-keto esters B providing hydride delivery from
the Si-face to afford α-hydroxy esters E with high levels of diastereo- and enantioselectivity
(path c).6 Extrapolating from precedent, the dynamic reduction of racemic α-aryl acyl
phosphonate B was proposed to occur with analogous facial preference; however, in the
event, the reduction occurred from the opposite diastereotopic face providing the
quasidiastereomeric product F with excellent levels of selectivity (path d).7
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Context
The leading methodology in the literature for the enantioselective preparation of α-hydroxy
phosphonates is the addition of dialkyl phosphites to aldehydes (Pudovik reaction).8 Despite
its synthetic utility as a C–P bondforming reaction, the absence of a diastereoselective
variant hinders its incorporation in complex molecule synthesis. In principle, a
complementary approach to the enantioselective Pudovik reaction is the asymmetric
reduction of acyl phosphonates. Recently, Goulioukina and Beletskaya reported the first
catalytic, asymmetric hydrogenation of acyl phosphonates, albeit with modest selectivity (up
to 77.5:22.5 er).9 Despite the wealth of methodologies developed to access this important
structural motif, methodologies designed to efficiently access β-stereogenic-α-hydroxy
phosphonates are scarce.10 The development of the title reaction would provide a flexible
entry point into new α-hydroxy phosphonic acid derivatives; this subunit appears in
compounds exhibiting antibacterial, antiviral, antibiotic, pesticidal, and anticancer
properties.11

Results
Employing α-aryl acyl phosphonate 1b as a test substrate, Noyori’s RuCl[(S,S)-TsDPEN]
(p-cymene) complex12 was found to provide hydroxy phosphonate 2b with modest anti/syn
selectivity, but excellent levels of enantiocontrol for both diastereomers (Table 1, entry 1).
Based on our group’s recent success in tuning the diastereoselectivity of the DKR-ATH of
β-chloro-α-keto esters through the application of a bulky m-terphenylsulfonamide ligand,6b

aminosulfonamide L2 was employed in the reduction of 1b in DMF and delivered a marked
increase in diastereoselectivity (entry 2). Changing the solvent to DMSO resulted in a boost
in diastereoselection up to 20:1 (entry 3). α-Naphthyl ethylenediamine-derived L3 was
tested and found to engender even higher levels of diastereocontrol (entries 4 and 5). Both
dimethyl and diethyl phosphonates were found to provide comparable levels of reactivity
and selectivity (entries 5 and 6); however, the bulkier diisopropyl phosphonate 1c suffered
from reduced reactivity presumably due to its increased steric requirements (entry 7).

With optimized reaction conditions in hand, the reaction scope was examined (Table 2). A
variety of electron-releasing and electron-withdrawing aryl groups were tolerated providing
products in uniformly high yield and selectivity. Heteroaromatic substituents were also
amenable to the reaction providing the N-Ts indoyl product 2k in 94% yield with excellent
levels of diastereo- and enantiocontrol. Ortho-substitutents resulted in reduced reactivity
necessitating elevated temperatures (45 °C) and longer reaction times to provide 2j in 6:1 dr
and 98.5:1.5 er.13

The identity of the α-aliphatic substituent was also investigated to probe the steric
sensitivity of the system (Table 3). Linear aliphatic substituents were tolerated, providing
products in equally high yield and selectivity and allowing for the incorporation of alkene
and alkyne functional handles. The sterically demanding cyclopropyl acyl phosphonate
reacted slower under the reactions conditions, requiring 36 h to provide 2p in 5:1 dr and
excellent enantiocontrol.

To further probe the utility of this reaction, the bicyclic substrate 1q was subjected to the
reduction conditions affording 2q in high yield and comparable levels of selectivity as the
acyclic examples (Scheme 1). In contrast to ortho-substituted 2j, hydroxy phosphonate 2q
was obtained with excellent levels of diastereoselectivity suggesting that the ortho-
substituent occupies a sterically encumbering conformation when unconstrained causing
nonideal substrate-catalyst interactions. The absolute stereochemistry of the products was
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established as (1R,2R) via x-ray crystallographic analysis of 2e and 2q confirming the anti
orientation of the alcohol and aryl groups.14

The presence of a β-substituent was found to be unnecessary for high levels of
enantioselectivity (Scheme 2). Despite the development of excellent catalysts for highly
asymmetric Pudovik reactions into aromatic aldehydes, simple aliphatic aldehydes typically
provide lower levels of selectivity. Although the reduction of aryl acyl phosphonate 3a
under optimized reaction conditions provided (R)-4a15 with an er of only 92:8 er, the
reduction of aliphatic acyl phosphonates proceeded to provide enantiopure products 4b–d in
high yield.16 The excellent levels of enantiocontrol observed for 4b–d are a marked
improvement over Pudovik-based methodologies, highlighting the potential utility and
complementarity of this transfer hydrogenation in the preparation of enantiopure α-hydroxy
phosphonic acids bearing one stereocenter.

The turnover in stereoselectivity will require further investigation to fully understand, but
some initial observations can be offered that are relevant to the unusual effects we have
uncovered (Figure 2). Despite being electronic congeners of α-keto esters, acyl
phosphonates are tetrahedral rather than trigonal at the α-carbon, a circumstance that alters
the steric environment at the ketone undergoing reduction. The impact of this geometric
change is probably compounded by the fact that the carbonyl activation mode in the
(amido)Ru(II) complex is dramatically different (outer sphere/bifunctional) than the
bis(oxazoline)Cu(II) systems (inner sphere chelation control) where acyl phosphonates and
α-keto esters experience identical influence from the chiral catalyst.

In summary, an unexpected reversal in facial selectivity was observed in the Ru-mediated
asymmetric transfer hydrogenation of acyl phosphonates from their structural mimics, α-
keto esters. This dichotomy in reactivity was exploited in the development of an extremely
selective dynamic kinetic resolution of α-aryl acyl phosphonates providing β-stereogenic α-
hydroxy phosphonic acid derivatives. The first highly selective catalytic reduction of acyl
phosphonates also provides complementary access to challenging Pudovik adducts. The
precise identification of key catalyst/substrate interactions, reactant orientations and
activation modes will be important for understanding the divergence between α-keto esters
and acyl phosphonates and for exploiting this finding in future applications.
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Figure 1.
Reversal in enantiofacial selectivity.
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Figure 2.
Variables that potentially account for stereoselectivity inversion.
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Scheme 1.
DKR-ATH of cyclic substrate 1q.
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Scheme 2.
ATH of acyl phosphonates.
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Table 2

Aromatic Substrate Scope.a

a
Reactions were performed on 0.155 mmol scale employing 5 equiv. HCO2H:NEt3 (5:2). Isolated yields of analytically pure material are reported.

Diastereomer ratios were determined by 31P NMR analysis of the crude reaction mixture; enantiomer ratios were determined by chiral HPLC
analysis.
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b
Reaction performed at 45 °C for 20 h.
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Table 3

Alkyl Substrate Scope.a

a
As in Table 2.

b
36 h.
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