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The identification of the ret oncogene by Masahide Takahashi and Geoffrey Cooper in 1985
was both serendipitous and paradigmatic (Takahashi et al. 1985). By transfecting total DNA
from a human lymphoma into mouse NIH3T3 cells, they obtained one clone, which in
secondary transformants yielded more than 100-fold improvement in transformation effi-
ciency. Subsequent investigations revealed that the ret oncogene was not present as such in
the primary lymphoma, but was derived by DNA rearrangement during transfection from
normal human sequences of the ret locus. At the time, activation by DNA rearrangement had
not been previously described for a transforming gene with the NIH3T3 transfection assay.
The discoveryof ret opened a field of study that has had a profound impact in cancer research,
developmental biology, and neuroscience, and that continues to yield surprises and impor-
tant insights to this day.

AN UNUSUAL RECEPTOR TYROSINE KINASE
WITH CADHERIN REPEATS

Isolation of ret cDNA clones revealed a car-
boxy-terminal domain with high homology

with members of the tyrosine kinase gene fam-
ily preceded by a hydrophobic sequence charac-
teristic of a transmembrane domain, suggesting
that the ret oncogene encoded a cell-surface re-
ceptor (Takahashi and Cooper 1987). The char-
acterization of the human (Takahashi et al.
1988) and mouse (Iwamoto et al. 1993; Pachnis
et al. 1993) ret proto-oncogenes revealed the full
primary structure of the RET protein and the
unusual presence in its extracellular region of a
sequence with similarity to cadherins, trans-
membrane proteins that mediate Ca2þ-depen-
dent homophilic cell adhesion (Nollet et al.

2000). A molecular modeling study of the ex-
tracellular domain of RET later revealed four
cadherin repeats—termed cadherin-like do-
mains or CLDs 1–4—each of about 110 resi-
dues, and one Ca2þ-binding site between CLD2
and CLD3 (Anders et al. 2001). Ca2þ binding is
required for the functional integrity of the RET
protein and for its ability to interact with ligand.
Following the four CLDs, the extracellular do-
main of RET contains a Cys-rich region of 120
residues connected to the transmembrane do-
main. The intracellular region of RET begins
with a juxtamembrane portion of 50 residues,
a tyrosine kinase domain split by a 14-residue
linker, and a 100-residue-long carboxy-termi-
nal tail, which comes in two flavors as a result
of alternative splicing. After position 1063,
the “short” RET isoform contains nine unique
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carboxy-terminal residues (RET9), whereas the
“long” contains 51 (RET51).

ONE GENE, MANY DISEASES

Mutations in the RET gene have been found in
a number of human diseases, including sever-
al different cancers of neuroendocrine origin
and a gut syndrome characterized by intestinal
obstruction known as Hirschsprung’s disease.
Four different human cancers carry mutations
in the RET gene, including papillary thyroid
carcinoma (PTC) (Grieco et al. 1990), medul-
lary thyroid carcinoma (familial and sporadic)
(Donis-Keller et al. 1993; Hofstra et al. 1994),
and the multiple endocrine neoplasias type 2A
(MEN2A) (Donis-Keller et al. 1993; Mulligan
et al. 1993) and 2B (MEN2B) (Hofstra et al.
1994). Dozens of different substitutions and re-
arrangements in the RET gene underlie these
syndromes, a complexity that has profound im-
plications for our understating of genotype/
phenotype relationships and the molecular
mechanisms of signal transduction (for an in-
depth review of the cancer biology of RET, see
the article by Santoro and Carlomagno 2013).
Although RETmutations that lead to tumor for-
mation have in most cases been described as gain
of function, mutations that result in Hirsch-
sprung’s disease—of which more than 50 are
known so far—invariably result in loss of RET
function by targeting its kinase activity (Iwa-
shita et al. 1996; Pelet et al. 1998), docking sites
for intracellular signaling effectors (Geneste
et al. 1999), or residues in the RETextracellular
domain that affect RET processing in the endo-
plasmic reticulum and prevent RET expression
at the cell surface (Iwashita et al. 1996; Cosma
et al. 1998; Kjaer and Ibanez 2003b).

A WEALTH OF RET LIGANDS AND
CORECEPTORS

The RET ligand has been identified as glial cell
line-derived neurotrophic factor (GDNF) (Dur-
bec et al. 1996; Trupp et al. 1996), a dimeric
growth factor-like protein distantly related to
members of the transforming growth factor-b
(TGF-b) superfamily. Three additional proteins

highly related in sequence to GDNF, known re-
spectively as Neurturin (Kotzbauer et al. 1996),
Persephin (Milbrandt et al. 1998), and Artemin
(Baloh et al. 1998b), were subsequently also
identified as ligands of RET. However, this li-
gand–receptor relationship proved to be a little
more unusual than initially expected. Neither
ligand is able to bind RETon its own, but require
a ligand-binding subunit acting as coreceptor,
known as the GDNF family receptor a (GFRa)
component. Four different GFRas have been
described (GFRa1–4), each with selectivity—
although not absolute specificity—for each of
the four distinct members of the GDNF ligand
family (Jing et al. 1996; Baloh et al. 1997, 1998a;
Buj-Bello et al. 1997; Klein et al. 1997; Sanicola
et al. 1997; Naveilhan et al. 1998; Trupp et al.
1998; Worby et al. 1998; Masure et al. 2000).
GDNF can be chemically cross-linked to RET
(Trupp et al. 1996), indicating that it does
make direct contact with the receptor, although
its binding affinity is too low to stabilize a com-
plex. On the other hand, GDNF has high affinity
for GFRa1 independently of RET. A model ini-
tially proposed had GDNF forming first a com-
plex with GFRa1 and subsequently recruiting
RET to the complex (Massagué 1996). An alter-
native model, in which GFRa1 and RETare pre-
associated to some extent before ligand binding,
was later proposed based on binding and site-
directed mutagenesis studies (Eketjäll et al.
1999; Cik et al. 2000). It should be noted that
two additional receptors for GDNF have also
been described, namely, the neural cell adhesion
molecule NCAM (Paratcha et al. 2003) and syn-
decan-3 (Bespalov et al. 2011), which are able to
transmit GDNF signals independently of RET.

EVOLUTIONARY RELATIONSHIPS

Only one ret gene is known to exist in higher
organisms. RET, GDNF family ligands, and
GFRa proteins have been found in all vertebrate
species investigated so far. A ret orthologue has
also been found in the genome of the cephalo-
chordate Amphioxus, along with sequences cor-
responding to one GDNF-like and one GFRa-
like encoded protein product. RET is also found
in Drosophila melanogaster. Intriguingly, its ex-
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pression pattern in the fly is to some extent
reminiscent of the one found in vertebrates
(Hahn and Bishop 2001). However, no GDNF
or GFRaproteins appear to be encoded in the fly
genome. Drosophila RET is unable to interact
with GDNF or GFRa1 of mammalian origin,
nor is it capable of mediating cell adhesion
(Abrescia et al. 2005). A chimeric approach
was used to show that Drosophila RET contains
an active tyrosine kinase that is competent to
induce neuronal differentiation on activation
in PC12 cells (Abrescia et al. 2005). The physio-
logical function of RET in Drosophila remains
unknown.

STRUCTURE–FUNCTION STUDIES OF RET
EXTRACELLULAR AND KINASE DOMAINS

Loss-of-function mutations in RET cause ab-
normal development of the enteric nervous sys-
tem, leading to Hirschsprung’s disease. Hirsch-
sprung mutations in the extracellular domain of
RET (RETECD) affect processing in the endo-
plasmic reticulum (ER) and prevent RETexpres-
sion at the cell surface. Most Hirschsprung mu-
tations examined prevent the maturation of
RETECD in the ER, indicating defects in protein
folding (Kjaer and Ibanez 2003b). Maturation of
RETECD mutants can be rescued by allowing
protein expression to proceed at 308C, a condi-
tion known to facilitate protein folding, regain-
ing their ability to bind to the GDNF/GFRa1.
Analysis of autonomous folding subunits in the
RETECD has indicated an intrinsic propensity to
misfolding in the amino-terminal CLDs 1–3
(Kjaer and Ibanez 2003b), which also concen-
trate the majority of Hirschsprung mutations
affecting the RETECD. A recent crystal structure
of the two amino-terminal CLD1–2 domains of
the RETECD has revealed these two CLDs folded
onto each other in a compact clam-shell ar-
rangement distinct from that of classical cadher-
ins (Kjaer et al. 2010). CLD1 structural elements
and disulfide composition are unique to mam-
mals, indicating an unexpected structural diver-
sity within higher and lower vertebrate RET
CLD regions. The same study identified two un-
paired cysteines that predispose human RET to
maturation impediments in the ER. The intrin-

sic susceptibility to misfolding of mammalian
RETECD may be the result of a trade-off that
helps to avoid an increased incidence of tu-
mors, at the expense of a greater vulnerability
to Hirschsprung’s disease.

Sequence and functional divergences be-
tween the ectodomains of mammalian and
amphibian RET molecules have been exploited
to map binding determinants in the human
RETECD responsible for its interaction with
the GDNF-GFRa1 complex through homolog-
scanning mutagenesis. It was found that Xe-
nopus RETECD was unable to bind to GDNF-
GFRa1 complexes of mammalian origin. How-
ever, a chimeric molecule containing CLD1,
2, and 3 from human RETECD, but neither do-
main alone, had similar binding activity than
full-length human RETECD (Kjaer and Ibanez
2003a). This suggested the existence of an ex-
tended ligand-binding surface within the three
amino-terminal cadherin-like domains of hu-
man RETECD. Subsequently, a study using chem-
ical cross-linking of a reconstituted GDNF/
GFRa1/RET complex followed by matrix-assis-
ted laser desorption/ionization (MALDI) mass
spectrometry analysis, indicated that CLD4
and the carboxy-terminal cysteine-rich domain
(CRD) of the RETECD are in direct contact with
GFRa1 in complex with GDNF (Amoresano
et al. 2005). This study failed to identify any
direct contacts between RET and GDNF, al-
though, as mentioned earlier, those were known
to exist from previous cross-linking experiments
(Trupp et al. 1996). These discrepant sets of re-
sults could be reconciled if the role of the amino-
terminal CLD1–3 in ligand binding was indi-
rect, rather than in establishing physical contact
with the GDNF/GFRa1 complex. In this sce-
nario, CLD1–3 would be necessary for RET to
adopt a conformation that is competent for
binding and complex assembly but not directly
involved in contacting the RET ligands (Amor-
esano et al. 2005). At the time of this writing,
efforts to solve the three-dimensional structure
of the tripartite GDNF/GFRa1/RET complex
are still ongoing, but preliminary results would
seem to offer support for this latter model.

The crystal structures of the nonphosphory-
lated (inactive) and phosphorylated (active) RET
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kinase have been determined and shown to
adopt the same active kinase conformation
competent to bind ATP and substrate (Knowles
et al. 2006). Both structures show a preorgan-
ized activation loop conformation that is inde-
pendent of phosphorylation status. In agree-
ment with the structural data, enzyme kinetic
data showed that autophosphorylation pro-
duces only a modest increase in activity (Know-
les et al. 2006). Longer forms of the RET intra-
cellular domain containing the juxtamembrane
domain and carboxy-terminal tail showed sim-
ilar kinetic behavior as the isolated kinase, indi-
cating the absence of a cis-inhibitory mech-
anism within the RET intracellular domain
(Knowles et al. 2006). Unlike the situation of
most other receptor tyrosine kinases, these re-
sults suggest the existence of alternative inhibi-
tory mechanisms, possibly in trans, for the au-
toregulation of RET kinase activity.

RET SIGNALING MECHANISMS

Dimerization of receptor tyrosine kinases is
known to be required, although most likely not
sufficient, for ligand-induced kinase transphos-
phorylation and activation. Several receptor
tyrosine kinases are found as preformed homo-
dimers at the plasma membrane independently
of ligand binding. Using atransmembrane (TM)
domain self-association assay, Kjaer et al. ob-
served strong self-association of the RET-TM
in a biological membrane (Kjaer et al. 2006).
These investigators found that mutagenesis of
specific residues in the RET-TM domain re-
duced receptor homodimerization and abol-
ished the transforming activity of MEN2A
RET, one of the strongest oncogenic variants of
the RET protein, suggesting that self-association
of RET TM domains contributes to the mecha-
nism of activation of RET (Kjaer et al. 2006).

Like the majority of receptor tyrosine ki-
nases studied, signaling pathways initiated by
the RET receptor include the Ras/MAP kinase,
PI3 kinase/AKT, and phospholipase C-g
(PLCg) pathways. On activation, RETundergoes
autophosphorylation of intracellular tyrosine
residues, which then serve as docking sites for
downstream signaling effectors carrying Src ho-

mology 2 (SH2) or phosphotyrosine-binding
(PTB) domains. Previous studies have indicat-
ed that at least 14 of the 18 tyrosine residues
present in the intracellular region of RET can
become phosphorylated (Liu et al. 1996; Kawa-
moto et al. 2004; Knowles et al. 2006). Among
those, Tyr900 and Tyr905 are present in the ki-
nase activation loop and are known to contrib-
ute to full kinase activation (Knowles et al.
2006). Autophosphorylation of the key residue
Tyr1062 is required for activation of Ras/MAP
kinase and PI3 kinase/AKT (Besset et al. 2000;
Hayashi et al. 2000; Segouffin-Cariou and Bil-
laud 2000; Coulpier et al. 2002). This residue
appears to be critical for RET function, and
mice with a point mutation in Tyr1062 show a
severe loss-of-function phenotype (Jijiwa et al.
2004; Wong et al. 2005; Jain et al. 2006a). Phos-
phorylation of Tyr1096, present only in the long
RET51 isoform, also contributes to these path-
ways. On ligand stimulation, at least two distinct
protein complexes assemble on phosphorylated
Tyr1062 of RET via Shc, one leading to activa-
tion of the Ras/MAP kinase pathway through
recruitment of Grb2 and Sos, and another to the
PI3K/AKT pathway through recruitment of
adaptors Grb2 and Gab2 followed by p85PI3K

and the SHP2 tyrosine phosphatase (Besset et
al. 2000).

The adaptor protein FRS2 can also bind to
phosphorylated Tyr1062 in the activated RET
receptor (Kurokawa et al. 2001; Melillo et al.
2001). FRS2 competes with Shc for binding to
Tyr1062, and it has been shown that Shc but not
FRS2 is responsible for cell survival effects of
RET in neuroblastoma cells (Lundgren et al.
2006). This differential signaling may be medi-
ated from different compartments in the plasma
membrane, as RET has been shown to interact
with FRS2 in lipid rafts, but with Shc outside
lipid rafts (Paratcha et al. 2001). A series of
adaptor molecules from the p62dok family
have also been shown to interact with the acti-
vated RET receptor. Dok-1, -2, -4, -5, and -6 all
interact with phosphorylated Tyr1062 via their
PTB domains (Grimm et al. 2001; Crowder
et al. 2004; Kurotsuchi et al. 2010) and are
thought to contribute to neuronal differentia-
tion (Grimm et al. 2001; Crowder et al. 2004).
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The Grb2/Gab2 complex can also assem-
ble directly onto phosphorylated Tyr1096, offer-
ing an alternative route to PI3K activation by
GDNF. Regarding the remaining autophosphor-
ylation sites, it has been found that phosphory-
lation of Tyr1015 leads to activation of PLCg
(Borrello et al. 1996), and phospho-Tyr981 binds
the Src cytoplasmic tyrosine kinase (Encinas
et al. 2004). Recently, a yeast-two-hybrid screen
led to the identification of the GTPase-activat-
ing protein (GAP) for Rap1, Rap1GAP, as a nov-
el RET-binding protein (Jiao et al. 2011). Like
Src, Rap1GAP was also found to require phos-
phorylation of Tyr981 for RET binding and sup-
pressed GDNF-induced activation of ERK and
neurite outgrowth. A recent study has estab-
lished a biochemical function and a physiolog-
ical role for the phosphorylation of Tyr687 in the
juxtamembrane region of the RET intracellular
domain (Perrinjaquet et al. 2010). Using a phage
display strategy, Perrinjaquet et al. found that
the phosphotyrosine phosphatase SHP2 binds
to phospho-Tyr687 on ligand-induced RET ac-
tivation. SHP2 is recruited to activated RET in
a cooperative fashion, such that both interaction
with Tyr687 and association with components of
the Tyr1062 signaling complex are required for
stable recruitment of SHP2 to the receptor.
SHP2 recruitment was found to contribute to
the ability of RET to activate the PI3K/AKT
pathway and promote survival and neurite
outgrowth in primary neurons (Perrinjaquet
et al. 2010).

In addition to tyrosine autophosphoryla-
tion, RET has been found to undergo serine
phosphorylation at Ser696 by protein kinase A
(PKA) (Fukuda et al. 2002). Mutation of Ser696

affected the ability of RET to activate the small
GTPase Rac1 and stimulate formation of cell
lamellipodia (Fukuda et al. 2002). Homozygous
knock-in mice carrying this mutation lacked
neuronal elements of the enteric nervous system
in the distal colon, resulting from a migration
defect of enteric neural crest cells (Asai et al.
2006), indicating a physiological role for PKA-
dependent modification of RET function. In-
terestingly, the signaling deficits of the Ser696

RET mutant could be alleviated—at least in vi-
tro—by simultaneous mutation of the nearby

residue Tyr687 (Fukuda et al. 2002). In line with
this, activation of PKA by forskolin was found to
impair the recruitment of SHP2 to RET and
negatively affected ligand-mediated neurite out-
growth (Perrinjaquet et al. 2010). Moreover,
mutation of Ser696 enhanced SHP2 binding to
the receptor and eliminated the effect of forsko-
lin on ligand-induced neurite outgrowth. To-
gether, these findings established Tyr687 as a crit-
ical platform for integration of RET and PKA
signals.

Among the interactions not mediated by
phosphorylation, the PDZ domain-containing
Shank3 protein was found to interact with a
PDZ-binding motif present in the RET9 but
not in the RET51 isoform (Schuetz et al.
2004). Shank3 was shown to mediate sustained
MAP kinase and PI3 kinase signaling, and the
formation of branched tubular structures in
three-dimensional cultures of epithelial cells.

RET FUNCTION IN KIDNEY DEVELOPMENT

Knockout studies have shown that RET inacti-
vation results in renal agenesis or severe hypo-
dysplasia, owing to failure of the ureteric bud to
evaginate from the Wolffian duct and branch
normally (Schuchardt et al. 1994, 1996). RET
expression defines a population of ureteric
bud tip cells that proliferate under GDNF stim-
ulation from the metanephric mesenchyme. In
the absence of RET, tip cells change fate and
instead contribute to the ureteric bud trunk
(Shakya et al. 2005). Studies in knock-in mice
have provided evidence for differential and iso-
form-specific roles of RET phospho-Tyr dock-
ing sites in kidney development. One earlier
study initially reported that mice expressing
only RET9 were normal, whereas those express-
ing only RET51 showed kidney hypodysplasia
(de Graaff et al. 2001). In contrast, a later study
reported that mice monoisomorphic for either
RET9 or RET51 were viable and showed normal
kidneys, indicating redundant roles of RET iso-
forms in kidney development (Jain et al. 2006a).
As discussed elsewhere, a possible reason for this
discrepancy may lie in the use of chimeric
mouse–human knock-in cDNAs in the first
study. It has also been reported that wild-type
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human RET51 and RET9 are both able to
promote branching morphogenesis to a simi-
lar extent, but mutation of Tyr1062 abrogates
this activity only in RET9 and not in RET51,
presumably because of redundancy through
Tyr1096 (Jain et al. 2006a). In contrast, mutation
of Tyr1015 produced clear defects in ureteric bud
outgrowth in the context of either isoform, pro-
viding evidence for the importance of PLCg
signaling downstream from RET in renal de-
velopment. Despite the prominent role of RET
signaling in kidney development, no human
RET mutations have yet been uncovered in chil-
dren suffering from renal tract malformations.

RET FUNCTIONS IN NERVOUS SYSTEM
DEVELOPMENT

Enteric Nervous System

Hirschsprung’s disease is a genetic disorder of
neural crest development characterized by the
absence of enteric parasympathetic neurons in
the lower regions of the gut. In agreement with a
role in neural crest development, RET is ex-
pressed in several neuronal subpopulations de-
rived from this structure, including cells in the
enteric, sensory, and sympathetic nervous sys-
tems (Pachnis et al. 1993). Mice that are homo-
zygotes for a targeted mutation in the RET gene
lack enteric neurons throughout the digestive
tract (Schuchardt et al. 1994). A subpopulation
of enteric neural crest was found to undergo
apoptotic cell death specifically in the foregut
of embryos lacking the RET receptor (Taraviras
et al. 1999). Together with defects in kidney
organogenesis, this leads to the death of RET
null animals at birth. It has more recently
been found that conditional ablation of RET,
or the GFRa1 coreceptor, in postmigratory en-
teric neurons causes widespread neuronal death
in the colon, leading to colonic aganglionosis
that resembles Hirschsprung’s disease (Uesaka
et al. 2007, 2008).

Motoneurons

RET is expressed in all spinal cord motoneurons
from the earliest stages of their development

(Pachnis et al. 1993; Trupp et al. 1997; Garcès
et al. 2000). GDNF has potent survival activities
in spinal motoneurons (Henderson et al. 1994)
and is required for their in vivo survival during
late embryogenesis (Oppenheim et al. 2000). At
early stages of development, RET is required for
the topographic projection of hind limb-inner-
vating axons, functioning as an instructive
guidance signal for motor axons (Kramer et al.
2006). In this case, RETwas shown to cooperate
with the EphA4 receptor tyrosine kinase to en-
force the precision of this binary choice in mo-
tor axon guidance. More recent studies using
conditional alleles have shown that the effect
of RET on motoneuron survival during pro-
grammed cell death is restricted to the early
neonatal development of the subpopulation of
g-motoneurons that innervates muscle spindles
(Gould et al. 2008). RET signaling would thus
appear to have multiple effects on motoneuron
survival and connectivity.

Ventral Midbrain Dopaminergic Neurons

GDNF was identified on the basis of its survival-
promoting effects on ventral midbrain dopami-
nergic neurons, which are important in the
pathogenesis of Parkinson’s disease (Lin et al.
1993). RET is expressed at high levels in adult
ventral midbrain dopaminergic neurons of the
substantia nigra, and exogenous application of
GDNF was shown to protect RET-expressing
neurons in this structure from cell death induced
by 6-hydroxydopamine, an animal model of
Parkinson’s disease (Trupp et al. 1996). The ro-
bust effects of GDNF/RET signaling on do-
paminergic neuron survival in several lesion
paradigms naturally raised expectations of an
important physiological function for RET in
dopaminergic neurons, where it is expressed
from very early stages of development. In agree-
ment with this, knock-in of a constitutive allele
of RET resulted in increased numbers of do-
paminergic neurons and profound elevation of
brain dopamine concentration, suggesting that
RET signaling can have a direct biological effect
in the brain dopaminergic system (Mijatovic
et al. 2007). Despite the successes of gain-of-
function approaches, the results from loss-of-
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function studies have been less clear-cut with
regard to the importance of RET activity in
dopaminergic neurons. Conditional ablation of
RET in dopaminergic neurons has failed to re-
veal a prominent role for RET signaling in dop-
aminergic neuron development or mainte-
nance, at least during the average life span of
the mouse (Jain et al. 2006b; Kramer et al.
2007). One of these two studies, however, exam-
ined aging mutant mice and found that RET
ablation caused progressive, but moderate,
adult-onset loss of dopaminergic neurons in
the substantia nigra and reduced dopaminergic
nerve terminals in striatum, reaching 38% re-
duction by 2 years of age (Kramer et al. 2007).
In contrast to those mild effects, another study
induced adult deletion of a conditional allele of
Gdnf and found widespread deficits in dopami-
nergic and noradrenergic neurons (Pascual et al.
2008). As discussed elsewhere (Ibanez 2008), the
striking discrepancy between these studies could
be explained by the presence of alternative re-
ceptors for GDNF in dopaminergic neurons,
compensatory effects in developing RET-defi-
cient neurons, or the possibility that RET func-
tions as a “dependence receptor” in dopaminer-
gic neurons. Dependence receptors make cells
that express them dependent on their ligands,
and evidence from transformed cell lines has
been provided suggesting that RETmight indeed
function in this way (Bordeaux et al. 2000). At
the time of this writing, independent efforts are
underway to replicate several of the above-men-
tioned studies and so it is likely that the contro-
versy over the physiological role of RETsignaling
in dopaminergic neuron survival and mainte-
nance will become clarified before long.

CONCLUDING REMARKS

Nearly three decades after its discovery, unique
aspects of RET function and physiology contin-
ue to fascinate biologists and biochemists. Un-
like other receptor tyrosine kinases, autophos-
phorylation has only a modest effect on kinase
activity, and so the mechanism of activation
of the RET kinase remains elusive. The possi-
bility of autoinhibition in trans is tantalizing
and would mechanistically set RET apart from

the bulk of other receptor tyrosine kinases. Its
ligand system, with the GFRa coreceptors, is
also rather unique, and upcoming crystal struc-
tures of the full ternary complex promise to re-
veal the mechanism of complex formation, and
perhaps explain how a distant TGF-b superfam-
ily member ended up binding a receptor tyro-
sine kinase. These insights may also find appli-
cations in drug discovery. Indeed, although its
physiological significance in dopaminergic neu-
rons remains unclear, the robust effects of RET
gain-of-function on the survival and function of
these neurons has encouraged efforts to identify
agonists for treatment of Parkinson’s disease
(Aron and Klein 2011). Such compounds may
circumvent the intrinsic problems of protein
delivery of current GDNF-based approaches.
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