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The link between perturbations in translational control and cancer etiology is becoming a
primary focus in cancer research. It has now been established that genetic alterations in
several components of the translational apparatus underlie spontaneous cancers as well as
an entire class of inherited syndromes known as “ribosomopathies” associated with in-
creased cancer susceptibility. These discoveries have illuminated the importance of dereg-
ulations in translational control to very specific cellular processes that contribute to cancer
etiology. In addition, a growing body of evidence supports the view that deregulation of
translational control is a common mechanism by which diverse oncogenic pathways
promote cellular transformation and tumor development. Indeed, activation of these key
oncogenic pathways induces rapid and dramatic translational reprogramming both by in-
creasing overall protein synthesis and by modulating specific mRNA networks. These trans-
lational changes promote cellular transformation, impacting almost every phase of tumor
development. This paradigm represents a new frontier in the multihit model of cancer for-
mation and offers significant promise for innovative cancer therapies. Current research, in
conjunction with cutting edge technologies, will further enable us to explore novel mech-
anisms of translational control, functionally identify translationally controlled mRNA
groups, and unravel their impact on cellular transformation and tumorigenesis.

Given the fact that translation is the ultimate
step for producing a functional protein, it

is surprising how much the cancer biology com-
munity has historically overlooked the impor-
tance of its deregulation toward cancer devel-
opment. Indeed, decades of research into the
molecular programs that govern cellular trans-
formation have mainly focused on the cancer
transcriptome (van ’t Veer et al. 2002; Hawkins
and Ren 2006). The microarray era enabled the
research community to catalog genome-wide
variations in the repertoire of transcriptional
outputs downstream of specific oncogenic sig-
naling pathways. Perhaps the reluctance in hy-

pothesizing that changes in translational con-
trol may coordinate major events underlying
cancer formation is because of the misconcep-
tion that specificity in gene expression is pri-
marily due to transcription regulation. An ex-
citing body of research now shows that changes
in mRNA translation control distinct cellular
processes including metabolism, cell migration,
cell adhesion, cell growth, cell-cycle control, and
tumorigenesis (Silvera et al. 2010). These stud-
ies have been important in revealing not only
novel general mechanisms of translational con-
trol, but also new paradigms for cellular trans-
formation and cancer development (Fig. 1). For
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Figure 1. Deregulations in translational control contribute to each step of cellular transformation and tumor progression.
(A) Upon receiving an oncogenic insult (lightning bolt) such as Myc overexpression or PI3K hyperactivation, ribosome
biogenesis and global protein synthesis are augmented resulting in increased cell size coupled to cell division. Upon this
oncogenic stress, cells initiate a tumor-suppressive response associated with increased internal ribosome entry site (IRES)-
mediated translation, leading to cell-cycle arrest and senescence. To overcome the barrier of oncogene-induced senescence
(OIS), cells acquire additional mutations known as secondary hits (lightning bolt). (Legend continues on facing page.)
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example, key oncogenic pathways such as Myc
and PI3K monopolize the levels and activity
of specific components of the translational
machinery (e.g., initiation factors, ribosomal
proteins) to direct specific posttranscriptional
changes in gene expression directly at the level
of protein production (Hannan et al. 2011). In
addition, an entire class of inherited syndromes
collectively referred to as “ribosomopathies”
harbor mutations in distinct ribosome com-
ponents and is characterized by increased can-
cer susceptibility (Ganapathi and Shimamura
2008). The realization that there are posttran-
scriptional control mechanisms in cancer devel-
opment has provided a strong rationale in the
design of new cancer therapies that may ulti-
matelyeradicate the abnormal translational pro-
gram of cancer cells. I provide here an analysis
and perspective on how the regulation of protein
synthesis plays a critical and pivotal role in the
etiology of cancer.

THE CANCEROUS TRANSLATION
MACHINERY

Initiation Factors (eIFs)

Genetic studies of human cancers have made a
compelling case for the role of deregulations in
translational control within the multihit model
of cancer etiology. Genes encoding initiation
factors are aberrantly expressed during cancer
progression (Table 1). Most importantly, clini-

cal research reveals that these genes are gained or
lost in human tumors, consistent with a possible
causal role in cancer etiology (Table 1). Howev-
er, it will be critical to determine to what extent
these genetic changes in eIFs directly contribute
to cancer development.

Initiation is one of the most regulated steps
in translation (Sonenberg and Hinnebusch
2009). During initiation, many checkpoints are
coordinated by several initiation factors to con-
trol not only whether a specific mRNA is trans-
lated but also the rate at which mRNA transla-
tion occurs. This process ultimately contributes
to the overall abundance of the specific protein
in the cell. Genes encoding initiation factors
(e.g., eIF3, eIF4G, eIF4E, eIF5A2) are amplified
in a variety of human cancers and regulate spe-
cific steps of translation initiation including
the ribosome–mRNA interaction and initiator
Met-tRNAi binding (Table 1). For example, the
eIF3 subunit eIF3h is amplified along with the
Myc oncogene in breast cancer (Nupponen et al.
1999). Importantly, high-level amplification of
eIF3h is found in advanced stage, androgen-
independent, and poor-prognosis prostate can-
cer, but no copy number changes are found in
nonmalignant (benign prostatic hyperplasia) or
premalignant (prostatic intraepithelial neopla-
sia) prostates (Saramaki et al. 2001). Intriguing-
ly, loss of heterozygosity and gene copy number
analyses showed that loss of the gene encod-
ing eIF3f, another subunit of the eIF3 initiation
complex, occurs in pancreatic cancer as well as

Figure 1. (Continued) One such mechanism to overcome tumor-suppressive checkpoints such as OIS is the
promotion of genome instability by decreasing IRES-dependent translation of the CDK11/p58 tumor suppres-
sor. (B) Once established, a primary tumor will undergo unrestrained growth, which triggers a stress response
including depletion of oxygen and essential nutrients from the core of the tumor. Lack of key nutrients such as
growth factors often leads to increased apoptosis (skulls). Tumor cells up-regulate cap-independent translation
of antiapoptotic factors (e.g., Bcl-2 and XIAP) as a mechanism to promote survival (blocked skulls). To bypass
stress caused by low levels of oxygen in the tumor, cells induce cap-independent translation of neoangiogenesis
promoting factors such as vascular endothelial growth factor (VEGF). Primary tumors metastasize to secondary
organs. Epithelial-to-mesenchymal transition (EMT) facilitates metastatic dissemination; specifically, cancer
cells lose their epithelial characteristics (yellow cells) and acquire mesenchymal traits (blue cells) including
enhanced mobility and invasiveness. Multiple stages of metastatic cell dissemination include degradation of the
basement membrane, intravasation into the circulatory system, and extravasation at the distal site. eIF4E
regulates the translation of an invasive messenger RNA (mRNA) signature (i.e., YB-1, MTA1, vimentin, and
CD44) that promotes metastasis formation. Increased translation of prometastatic factors localized at the
leading edge of the tumor’s invasive front may facilitate metastasis colonization.
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Table 1. Genetic alterations in translational components are associated with increased cancer susceptibility

Gene Genetic lesion

Expression/

activity Cancer association Reference(s)

Ribosomopathies
X-linked

dyskeratosis
congenita

DKC1 Mutation/
deletion

Decrease Increased incidence
of hematological
and solid tumors

Heiss et al. 1998

Diamond-
Blackfan
anemia

RPS 7, 10,
15, 17,
19, 24,
26, 27A
RPL 5,
11, 35A,
36

Mutation/
deletion

Decrease Increased incidence
of hematological
and solid tumors

Draptchinskaia et al. 1999;
Gazda et al. 2006, 2008;
Cmejla et al. 2007, 2009;
Farrar et al. 2008; Doherty
et al. 2010

5q deletion
syndrome

RPS14 Deletion Decrease Increased incidence
of hematological
tumors

Ebert et al. 2008

Shwachman-
Diamond
syndrome

SDBS Mutation Decrease Increased incidence
of hematological
tumors

Boocock et al. 2003; Austin
et al. 2005

Cartilage-hair
hypoplasia

RMRP Mutation Decrease Increased incidence
of hematological
and solid tumors

Ridanpaa et al. 2001

Translation initiation factors
eIF2a ND Increase In hematological

and solid tumors
Wang et al. 1999; Rosenwald

et al. 2001
eIF3a ND Increase In solid tumors Bachmann et al. 1997; Dellas

et al. 1998
eIF3c ND Increase In solid tumors Rothe et al. 2000
eIF3e ND Increase In solid tumors Marchetti et al. 2001
eIF3f LOH Decrease In solid tumors Shi et al. 2006; Doldan et al.

2008a,b
eIF3h Amplification Increase In solid tumors Saramaki et al. 2001
eIF3i ND Increase In solid tumors Rauch et al. 2004; Ahlemann

et al. 2006
eIF4A ND Increase In solid tumors Eberle et al. 1997; Shuda

et al. 2000
eIF4E Amplification Increase In hematological

and solid tumors
De Benedetti and Graff 2004

eIF4G Amplification Increase In solid tumors Brass et al. 1997; Bauer et al.
2002

eIF5A ND Increase In hematological
tumors

Balabanov et al. 2007

eIF5A2 Amplification Increase In solid tumors Guan et al. 2001
eIF6 ND Increase In hematological

and solid tumors
Sanvito et al. 2000; Harris

et al. 2004

Translation elongation factors
eEF2 ND Increase In solid tumors Nakamura et al. 2009
eEF1A2 Amplification Increase In solid tumors Anand et al. 2002; Lee 2003

IRES trans-acting factors
hnRNP A1 ND Increase In solid tumors Ma et al. 2009

Continued
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in melanoma (Doldan et al. 2008a,b). These data
suggest that discrete subunits of the same initi-
ation complex (eIF3) could differentially mod-
ulate protein synthesis (see below), acting either
as oncogenes or tumor suppressors. The genetic
loci of eIF4E and eIF4G, two key initiation fac-
tors involved in cap-dependent translation, were
originally found amplified in breast cancer and
squamous cell lung carcinoma (Sorrells et al.
1998; Bauer et al. 2001) (see section below). Fur-
thermore, gene amplification and overexpres-
sion of eIF5A2, which enhances the formation
of the first peptide bond, has been reported in
ovarian cancer as well as in other solid tumors
including breast cancer, hepatocellular carcino-
ma, and nonsmall cell lung cancer (Guan et al.
2004; Clement et al. 2006; Tang et al. 2010; He
et al. 2011). The genetic lesions of the initiation
factors described above have been shown to af-
fect the overall expression levels of their mRNA
and/or protein. In addition, many other com-
ponents of the translation machinery involved
in the initiation step are also misexpressed in a
variety of hematological malignancies and solid
tumors (see Table 1), although the genetic bases
for some of these abnormalities are unknown.

What is the evidence that these changes ex-
ert direct and causal effects in cancer? Proving
causality is challenging. One approach is to de-
fine the mechanism by which alterations in

these initiation factors modulate gene expres-
sion at the translational level, ultimately contrib-
uting to cellular transformation and cancer de-
velopment. The challenge in unraveling this
mechanism resides in the fact that overexpres-
sion of some of these initiation factors modu-
lates both global protein synthesis and trans-
lation efficiency of specific mRNAs. For ex-
ample, in NIH 3T3 cells, overexpression of five
of the 12 individual subunits that comprise the
eIF3 initiation complex (eIF3a, eIF3b, eIF3c,
eIF3h, and eIF3i) results in a modest increase
in general protein synthesis rate (Zhang et al.
2007). In the same studies, the investigators re-
ported that overexpression of eIF3c or eIF3h re-
sults in a shift of cyclin D1, Myc, ODC, and FGF2
mRNAs into larger polysomes, suggesting that
overexpression of a transforming eIF3 subunit
can also affect the translational efficiency of spe-
cific oncogenic mRNAs. Furthermore, in in-
flammatory breast cancer (IBC), a rare but lethal
form of the disease, overexpression of eIF4G has
also been shown to specifically control the inter-
nal ribosome entrysite (IRES)-dependent trans-
lation (see below) of two oncogenic mRNAs
(VEGF and p120 catenin) important for IBC
tumor survival and dissemination (Silvera et
al. 2009).

Overall, it remains uncertain whether mis-
expression of eIFs causes changes in overall

Table 1. Continued

Gene Genetic lesion

Expression/

activity Cancer association Reference(s)

hnRNP E1 ND Decrease In solid tumors Wang et al. 2010; Zhang
et al. 2010

hnRNP E2 ND Decrease In solid tumors Roychoudhury et al. 2007
La ND Increase In solid tumors Trotta et al. 2003
PTB ND Increase In solid tumors Jin et al. 2000
YB-1 ND Increase Correlates with

higher grade
tumors

Stratford et al. 2007

Ribosome biogenesis factors
Ubf1 ND Increase In solid tumors Huang et al. 2002
Bop1 Amplification Increase In solid tumors Killian et al. 2006
Npm Mutation Decrease In hematological

tumors
Yun et al. 2007

Abbreviations: RPS, ribosomal protein small subunit; RPL, ribosomal protein large subunit; ND, not determined; PTB,

polypyrimidine tract-binding protein; IRES, internal ribosome entry site; LOH, loss of heterozygosity.
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protein synthesis (quantitative), or alters the
expression of specific mRNAs (qualitative)—
distinct outcomes that could both contribute
to key steps in cancer formation. Based on the
role attributed to these general initiation fac-
tors, it stands to reason that increases in their
activity would in turn augment global protein
synthesis. I will discuss below how this quanti-
tative increase might impact cell growth during
cellular transformation, representing the first
“hit” for cancer formation. On the other hand,
up-regulating the rate of translation initiation
through overexpression of these eIFs may also
qualitatively enhance the translation efficiency
of the poorly translated mRNAs described
above. Importantly, many of these mRNAs en-
code key proteins that critically impact tumori-
genesis by modulating the cell cycle and survival.
However, the causal contribution of quantitative
and qualitative changes in translational control
toward cancer development still needs to be
shown in a more physiological context. To this
end, future studies should use inducible tissue-
specific mouse models that harbor the gain or
loss of function mutation for these specific ini-
tiation factors. These in vivo approaches would
be invaluable for discriminating whether the ge-
nomic alterations of these translation factors
found in human cancers represent driver muta-
tions in tumor initiation or rather contribute to
progression and/or metastatic stages of the dis-
ease. It is also very important to determine
whether the putative target mRNAs of eIF3,
eIF4E, eIF4G, and/or eIF5A2 play a functional
role during tumor development.

Although many questions still need to be
addressed, it is nevertheless an exciting moment
in the field of translation and cancer. It is clear
that even initiation factors widely assumed to
play only a housekeeping function likely show
activity that would impinge on specific gene
expression programs underlying distinct stages
of cancer initiation and/or progression. There
are now new technologies such as ribosome
profiling (see below) that may shed light on
important questions currently pursued in the
field and facilitate the examination of the trans-
lational landscape of the cancer genome in a
tissue- and cell-specific manner.

Do Mutations in the Ribosome
Cause Cancer?

One of the most surprising recent discoveries in
cancer biology has been the realization that mu-
tations in ribosomal components are directly
linked to tumorigenesis. Elucidating the mech-
anistic basis of this novel relationship has prov-
en to be a conceptual challenge. Even a decade
ago, it would have been inconceivable that im-
paired ribosomal activity would alter specific
cellular processes, as it was a commonly held
belief that perturbations in the ribosome inev-
itably would trigger cell death. Human genetic
research has now identified ribosomopathies,
which are characterized by increased cancer sus-
ceptibility. These syndromes harbor mutations
in distinct ribosomal components (Table 1).
One of the most interesting aspects of these ri-
bosomopathies is the high degree of cell and
tissue specificity in the presentation of their
pathological features. These findings challenge
the dogma that the activity and composition of
ribosomes are identical in each cell and tissue in
an organism—in other words, that the ribo-
some is just a static factory to produce proteins
and not a regulatory element of the translational
apparatus. The discovery of ribosomopathies as
well as recent findings in the developmental bi-
ology field (see below) strongly suggests that we
should reevaluate our perspective on the ribo-
some and its role in translational control.

One clear example of how defects in the
ribosome may alter the translational landscape
and contribute to specific disease pathologies
and cancer susceptibility is the ribosomopathy
X-linked dyskeratosis congenita (X-DC). X-DC
is the most common and severe form of dys-
keratosis congenita (DC), and is invariably
associated with mutations of the DKC1 gene,
encoding dyskerin (Table 1) (Heiss et al. 1998;
Ruggero et al. 2003). Although prominent
features of X-DC pathogenesis include bone
marrow failure and skin abnormalities, a wide
variety of tumor types including carcinomas
and hematopoietic malignancies are also man-
ifest. Dyskerin is an evolutionarily conserved
enzyme responsible for the modification of
approximately 100 specific uridine residues in

D. Ruggero
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ribosomal RNA (rRNA) into pseudouridine (Ni
et al. 1997; Lafontaine et al. 1998). The role of
these rRNA modifications in translational con-
trol has historically been poorly understood.
The unexpected human genetic mutations as-
sociated with this key enzyme responsible for
site-specific rRNA modifications were enigmat-
ic, especially with respect to the tissue-specific
phenotypes present in X-DC. The specific fea-
tures of X-DC pathogenesis, including cancer
susceptibility, can be explained, at least in part,
by the finding that a distinct subset of mRNAs
is not efficiently translated in an X-DC mouse
model, X-DC patient cells, or dyskerin-knock-
down cancer cells (Yoon et al. 2006; Bellodi et al.
2010a,b; Montanaro et al. 2010). On the other
hand, general protein synthesis appears to be
unperturbed (Yoon et al. 2006; Montanaro
et al. 2010). Surprisingly, these studies have un-
covered an unexpected requirement for rRNA
modifications in translational control. Specifi-
cally, this subset of mRNAs shares a common
regulatory motif in their 50 untranslated region
(50 UTR): an IRES element that acts to initiate
translation in a cap-independent manner. It
has been proposed that IRES elements may
exist in �10% of mRNAs, including many tu-
mor suppressor genes and antiapoptotic factors
(Fig. 2) (Graber and Holcik 2007; Komar and
Hatzoglou 2011). Several studies have high-
lighted the importance of RNA-binding pro-
teins known as IRES trans-acting factors
(ITAFs) in modulating IRES-mediated transla-
tion of several cellular mRNAs (Spriggs et al.
2005; Lewis and Holcik 2008; Komar and
Hatzoglou 2011). IRES-dependent translation
acts to fine-tune gene expression at the post-
transcriptional level (Holcik and Sonenberg
2005; Spriggs et al. 2010; Komar and Hatzoglou
2011). In this context, it has been shown that
defects in the IRES-mediated translation of a
subset of mRNAs, including important tumor
suppressors such as p53 and p27, in DKC1 mu-
tant cells contribute to cellular transformation
and tumor development (Bellodi et al. 2010a,b;
Montanaro et al. 2010). Recent findings also
show an evolutionarily conserved role for rRNA
pseudouridylation in faithfully maintaining
the translational reading frame. Specifically, im-

paired pseudouridylation of rRNA promotes
increased programmed ribosomal frameshift-
ing (PRF) of both viral and cellular mRNAs
containing a PRF signal (Jack et al. 2011). It
would be interesting to assess whether rRNA
pseudouridylation regulates, at the translational
level, the expression of mRNAs containing a
PRF signal, perhaps in a cell- and/or tissue-spe-
cific manner. An emerging role for rRNA mod-
ifications in regulating specific modes of trans-
lation has recently been highlighted by findings
that methylation of rRNA is also implicated
in IRES-dependent translation of specific cellu-
lar mRNAs (Chaudhuri et al. 2007; Belin et al.
2009; Basu et al. 2011). Furthermore, loss of
rRNA methylation at specific sites in zebrafish
leads to severe developmental defects (Higa-
Nakamine et al. 2012).

Taken as a whole, these studies raise several
important questionsthat remain to be addressed.
In particular, what regulates ribosomal RNA
(rRNA) modifications? Can rRNA modifica-
tions modulate the recruitment of specific fac-
tors to the ribosome that would enhance trans-
lation specificity? What specific mRNAs are
sensitive to ribosome modifications? For exam-
ple, in addition to IRES elements, do rRNA mod-
ifications affect the translation of mRNAs pos-
sessing distinct cis-acting regulatory elements?

Diamond-Blackfan anemia (DBA) is anoth-
er ribosomopathy in which mutations in several
different ribosomal proteins (RPs) lead to bone
marrow failure and an increased risk of leuke-
mia and solid tumors (Table 1) (Flygare and
Karlsson 2007; Lipton and Ellis 2010; Narla
et al. 2011). This is consistent with studies in
zebrafish showing that mutations in RPs can
cause cancer (Amsterdam et al. 2004). In DBA,
alterations in rRNA processing have been de-
scribed and proposed to trigger a stress response
marked by p53 activation, which would lead to
cell-cycle arrest or programmed cell death (Da-
nilova et al. 2008; McGowan et al. 2008; Dutt
et al. 2011). Although the induction of p53
may explain certain pathological features of
DBA, it does not provide a molecular basis for
the increased cancer susceptibility associated
with the disease, the cause of which remains
almost completely unknown. One possibility is

Translational Control in Cancer Etiology
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that RPs may exert more specialized functions
in translational control, either on or off the ri-
bosome, altering gene expression to contribute
to the cancer susceptibility associated with DBA
(Mazumder et al. 2003; Landry et al. 2009). Loss
of function of RPS25 does not affect general
protein synthesis but rather impairs IRES-de-

pendent translation (Landry et al. 2009). Very
recent research has shown that a single ribosom-
al protein, RPL38, regulates transcript-spe-
cific translational control of an important class
of Hox mRNAs. In this study, the authors
showed that RPL38þ/2 mice harbor homeotic
transformations due to loss of function of Hox

Oncogenes

Tumor suppressors

AAAAA

ITAFs
3′ UTR

RBPs
(HuR)

Tumor suppressor
ORF

4A 4G

4E 5′ cap
5′ UTR

5′ cap
5′ UTR

3′ UTR

RBPs
(AUF1)

Oncogene
ORF

uORF 3′ UTR binding
proteins regulate

protein expression:
Bcl-2, Myc, tPA

3′ UTR binding
proteins regulate

protein expression:
p53

Base-pairing between
5′ and 3′ UTR elements:

p53

IRES translation:
p53, p27, RUNX1

uORF
repression:

Her-2, Mdm2

IRES translation:
Myc, Bcl-2,

Bcl-XL, XIAP

eIF4A unwinds
structured elements:

Mcl-1

ITAFs

AAAAA

3′ UTR-mediated
uORF derepression:

Her-2

miRNA binding sites
in 3′ UTRs

regulate translation:
Myc, CCND1, Her-2

miRNA binding sites in
3′ UTRs regulate translation:

p53, PTEN, VEGF

Figure 2. Oncogenes and tumor suppressors are exquisitely regulated at the translational level through specific
regulatory elements in their mRNAs. Depictions of cis-regulatory elements present in oncogene (top) and tumor
suppressor (bottom) mRNAs including key cell-cycle and survival factors. Examples of regulated mRNAs are
given (boxes). The cap-binding protein eIF4E binds the 50 cap of mRNAs. Increased eIF4E activity recruits eIF4G
and the eIF4A helicase to unwind (red arrow) structured elements in the 50 UTR of poorly translated mRNAs,
increasing the expression of many growth promoting and prosurvival genes such as Mcl-1. IRES elements are
structures that also direct translational regulation by promoting cap-independent protein synthesis of both
tumor suppressors (p53) and prosurvival factors (XIAP) during different stages of tumor development (see Fig.
1). IRES trans-acting factors (ITAFs) modulate translational regulation directed by specific IRES elements.
Upstream open reading frames (uORF) are present in select mRNAs (including growth promoting factors
such as Mdm2 and Her-2) and inhibit translation initiation by preventing the ribosome from scanning to
the start codon. Additionally, a region in the 30 UTR of the Her-2 mRNA can inhibit uORF-mediated repression
of translation. 30 UTRs contain many distinct elements that interact with RNA-binding proteins (RBPs) and
microRNAs (miRNAs) to promote or inhibit translation. One interesting example is the regulation of p53
translation mediated by base-pairing interactions between elements in the 50 and 30 UTRs of p53.
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mRNA translational control (Kondrashov et al.
2011).Moreover, it appearsthat ribosomalprotein
expression may be dynamically regulated in a tis-
sue-specific manner, suggesting that the protein
composition of the ribosomal subunits may differ
from cell to cell, even within the same organ (Kon-
drashov et al. 2011). As such, it is tempting to
speculate that mutations in ribosomal proteins
may have more specific roles in translational con-
trol that underlie the increased cancer susceptibil-
ity observed in DBA (Xue and Barna 2012).

It is becoming increasingly apparent that
the role of ribosomal proteins in cancer devel-
opment is more complex than originally envi-
sioned, as overexpression of many RPs has been
associated with cancer (Ruggero and Pandolfi
2003; Lai and Xu 2007). It is still unknown
whether increases in ribosomal protein levels
augment the translational capacity of a cell
and whether RP overexpression is a cause or
just a consequence of cellular transformation.
In addition, research data suggest that extrari-
bosomal functions exerted by a few RPs may
also play a tumor-suppressive role in cancer de-
velopment. For example, it has been shown that
RPL11 negatively modulated c-Myc levels and
activity in cultured cells (Dai et al. 2007; Chal-
lagundla et al. 2011). Other studies suggest that
the L11-Mdm2-p53 pathway may act as a tu-
mor-suppressive barrier against c-Myc-induced
tumorigenesis (Macias et al. 2010).

Additional notable examples of “riboso-
mopathies” include cartilage–hair hypoplasia
(CHH) syndrome, Shwachman-Diamond syn-
drome (SDS), and 5q deletion syndrome (25q),
which also show increased risk of developing
certain cancers of the skin (basal cell carcino-
ma) as well as blood (leukemia and lymphoma)
(Barlow et al. 2010; Shimamura and Alter
2010). In all of these syndromes, mutations in
regulatory factors important for ribosome bio-
genesis and translational control have been
identified (Table 1). In certain cases, these fac-
tors may also show extraribosomal functions
that might contribute to disease pathogenesis
(Austin et al. 2008; Dutt et al. 2011). These are
intriguing lines of research that go beyond the
scope of this article and are further reviewed in
(Ganapathi and Shimamura 2008; Burwick

et al. 2011; Fumagalli and Thomas 2011). Re-
cent findings have uncovered a role for SBDS
(the gene mutated in SDS syndrome) in ribo-
somal subunit joining and translational control
(Finch et al. 2011; Sen et al. 2011; Wong et al.
2011). In hematopoietic stem cells from 25q
patients in which RPS14 is found mutated, al-
terations in expression of key components of the
translational machinery have been reported
(Pellagatti et al. 2008). Therefore, it is likely
that defects in translational control can contrib-
ute to features of these ribosomopathies includ-
ing increased incidences of cancer.

Collectively, inherited ribosomopathies re-
veal that mutations in regulatory factors impor-
tant for ribosome activity may produce mutant
ribosomes lacking important constituents such
as ribosomal proteins or rRNA modifications
(Table 1). Can such mutant forms of the transla-
tional machinery be referred to as “cancer ribo-
somes”? If so, an outstanding question is the
mechanism by which the “cancer ribosome”
could promote cancer development via aberrant
translational control. This is an important ques-
tion to resolve, as at first glance it may appear
counterintuitive that alterations in ribosome
function could cause cancer, especially given the
important connection between increased protein
synthesis and cell growth (see below and Fig. 1).
However, recent findings show surprising specif-
icity in the classes of mRNAs that are specifically
deregulated and underlie cancer susceptibility as
a consequence of perturbations in ribosome
function, as illustrated by X-DC. These advances
also reflect an emerging appreciation for and in-
creased knowledge of more specialized and dy-
namic regulation of translational control in vivo
at an organismal level (Xue and Barna 2012).

CANCER CELLS EXPLOIT TRANSLATIONAL
CONTROL FOR THEIR ONCOGENIC
PROGRAM

Oncogenic Signaling Pathways Perturb
Specific Translational Components

There is a growing body of evidence supporting
the idea that deregulation of translational con-
trol serves as a common mechanism by which
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diverse oncogenic pathways (e.g., PI3K, Myc, and
Ras) promote cellular transformation and tu-
mor development (Silvera et al. 2010; van Rig-
gelen et al. 2010; Hannan et al. 2011). In a nor-
mal cell, these pathways act as sensors of energy,
stress, and nutrient availability, as well as growth
factor signals, and integrate these inputs to di-
rect control of ribosome production and gene
expression at the translational level. One of the
primary reasons for this cross talk is to couple
these external stimuli with the execution of cell
growth, division, and survival, which are di-
rectly coupled to protein synthesis (see below).
Importantly, all these signals become oncogenic
when hyperactivated. How do these signaling
pathways alter translational control when mu-
tated in cancer? This question has been an-
swered, at least in part, by the discovery that
the oncogenic signals directly modulate the ac-
tivity and expression of specific translational
components (Fig. 3). Notable examples include
the PI3K-AKT-mTOR and Ras-MAPK signal
transduction pathways, as well as transcription-
al programs regulated by oncogenic Myc (Fred-
erickson et al. 1992; Waskiewicz et al. 1999;
Schuhmacher et al. 2001; Zeller et al. 2006; Furic
et al. 2010; Silvera et al. 2010; van Riggelen et al.
2010; Hannan et al. 2011). I discuss the role of
Myc in protein synthesis and cell growth in the
next section.

One of the best-studied examples of onco-
genic signaling impinging on translational con-
trol is the PI3K-AKT-mTOR pathway, which
directly modulates translation initiation largely
through activation of the kinase mammalian
target of rapamycin complex 1 (mTORC1)
(Zoncu et al. 2011). The PI3K-AKT-mTOR
pathway is one of the most commonly mutated
pathways in cancer (Vogt et al. 2011). mTORC1
phosphorylates ribosomal protein S6 kinase 1/
2 (S6K1/2) and the eIF4E-binding proteins
(4E-BPs), which negatively regulate the major
cap-binding protein eIF4E (Dennis et al. 1996;
Hara et al. 1997; Gingras et al. 1999). Phosphor-
ylation of 4E-BPs leads to a conformational
change that frees eIF4E, which, with the help
of other eIFs, ultimately recruits the 40S ribo-
somal subunit to the 50 cap of mRNAs during
translation initiation (Gingras et al. 1999; Rug-

gero and Sonenberg 2005). Initiation is thought
to be the rate-limiting step of cap-dependent
translation and eIF4E is considered the key fac-
tor in controlling this step (Duncan et al. 1987).
This deduction is in part based on the fact that
eIF4E activity is highly regulated at both the
mRNA and protein level. Indeed, eIF4E is up-
regulated at the mRNA level by a number of
transcription factors including the oncogene
Myc (Jones et al. 1996; De Benedetti and Graff
2004; Ruggero and Sonenberg 2005). At the pro-
tein level, eIF4E activity is also controlled
through phosphorylation at serine 209 by the
MAP kinase targets MNK1/2, in addition to
inhibitory interactions with 4E-BPs (see above
and Fig. 3) (Lachance et al. 2002; Ueda et al.
2004, 2010; Wendel et al. 2007; Furic et al.
2010). This tight regulation of eIF4E activity
provides a rapid mechanism for cells to modu-
late translation initiation in response to numer-
ous stimuli, including growth factor and onco-
genic signaling.

The 4E-BPs/eIF4E axis is among the most
well-characterized nodes in translation control
and cancer. For example, eIF4E gene amplifica-
tion has been reported in human breast, head,
and neck cancer specimens, and eIF4E is also
found overexpressed in a variety of tumors (Sor-
rells et al. 1998, 1999; Crew et al. 2000; Berkel
et al. 2001; Rosenwald et al. 2001; Salehi and
Mashayekhi 2006; Wang et al. 2009a; Yoshizawa
et al. 2010). The oncogenic potential of eIF4E
hyperactivity has been faithfully recapitulated
both in vitro and in vivo. Overexpression of
eIF4E is sufficient to induce transformation of
immortalized murine fibroblasts and human
epithelial cells (Lazaris-Karatzas et al. 1990; Av-
dulov et al. 2004). Constitutive overexpression
of eIF4E in a mouse model that mimics the hu-
man oncogenic lesion leads to increased cancer
susceptibility; eIF4E transgenic mice develop
lymphomas, angiosarcomas, lung carcinomas,
and hepatomas (Ruggero et al. 2004). Further-
more, in vivo overexpression of eIF4E cooper-
ates with c-Myc to drive lymphomagenesis in
part via a mechanism by which eIF4E over-
comes Myc-induced apoptosis, a cellular barrier
to tumor formation (Ruggero et al. 2004; Wen-
del et al. 2004). Phosphorylation of eIF4E also
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plays an important role in cancer formation. In
fact, by using an adoptive transfer method in
vivo, it has been shown that phosphorylated
eIF4E contributes to Myc-induced tumorigen-
esis mainly by suppressing apoptosis (Wendel

et al. 2007). In addition, whole body expression
of a knockin mutant of eIF4E, which can no
longer be phosphorylated at the serine 209 res-
idue, was found to decrease the incidence and
grade of prostatic intraepithelial neoplasia in a
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Figure 3. Oncogenic signals regulate each stage of translation. Oncogenic stimuli (red) such as PI3K-AKT-mTOR,
Myc, and Ras promote protein synthesis by coordinating the regulation of ribosome biogenesis, translation
initiation, and translation elongation. The PI3K-AKT-mTOR signaling pathway promotes ribosome biogenesis
through both enhanced rRNA synthesis and enhanced ribosomal protein production (Hannan et al. 2003; Martin
et al. 2004; Mayer et al. 2004). This signaling pathway stimulates translation initiation predominantly through
mTORC1-dependent hyperactivation of eIF4E. In the absence of signaling, hypophosphorylated 4E-BPs bind to
and inhibit eIF4E, blocking its ability to interact with eIF4G. PI3K-AKTsignaling activates mTORC1, initiating a
series of phosphorylations that release 4E-BPs from eIF4E. This allows for eIF4G binding to eIF4E and the
subsequent recruitment of the 40S ribosomal subunit. Furthermore, S6K1/2 downstream mammalian target
of rapamycin (mTOR) affects the efficiency of translation initiation and elongation (Ma and Blenis 2009). In
addition, Ras-MAP kinase signaling up-regulates eIF4E activation via phosphorylation at serine 209. Myc pro-
motes protein synthesis by increasing the transcription of multiple translational components including eIF4E
mRNA. Together, these oncogenic stimuli regulate the multiple stages of translation to drive both global changes
in protein synthesis as well as selective changes in the translation of specific mRNAs. Multiple approaches (blue)
are used to therapeutically target the translational apparatus including rapamycin, ATP-active site inhibitors of
mTOR, MNK1/2 kinase inhibitors, 4EGI-1, and eIF4E antisense oligonucleotides (ASO).
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mouse prostate cancer model driven by PTEN
loss (Furic et al. 2010).

Although these findings support the notion
that eIF4E is a bona fide oncogene, they do not
address the extent to which specific oncogenic
signaling (i.e., PI3K-AKT-mTOR pathway) re-
lies on eIF4E translational activity for tumor
development. Some of the first evidence for
such a connection came from a study showing
that pharmacological inhibition of oncogenic
Ras and AKT in glioblastoma cells caused a rap-
id and profound change in mRNA translation
that far outweighed transcriptional changes.
These translational changes were associated
with loss of mTORC1-dependent phosphoryla-
tion of 4E-BPs (Rajasekhar et al. 2003). In ad-
dition, transfection of a 4E-BP1 phosphoryla-
tion site mutant into breast carcinoma cells
suppressed their tumorigenicity by inducing
apoptosis (Avdulov et al. 2004). It has recently
been shown in vitro and in vivo that the
4E-BPs/eIF4E axis exerts significant control
over cap-dependent translation, cell growth,
cancer initiation, and progression downstream
of mTOR hyperactivation (Dowling et al. 2010;
Hsieh et al. 2010). Most importantly, restor-
ing eIF4E oncogenic activity to normal levels
downstream of AKT-mTOR hyperactivation re-
sults in blockage of tumor progression in a
mouse model for lymphomagenesis associated
with a drastic increase in overall survival (Hsieh
et al. 2010).

Do these findings indicate that cells trans-
formed by mTOR hyperactivation become “ad-
dicted” to oncogenic eIF4E-mediated transla-
tion control? Oncogenic addiction describes a
tumor’s dependence on specific oncogenic le-
sions for its survival and growth. This represents
a potential “Achilles heel” in tumor formation
by which inactivation of a specific oncogene can
lead to apoptosis, senescence, and tumor regres-
sion (Weinstein 2000, 2002; Weinstein and Joe
2006). The importance of this concept resides in
the fact that although cancer cells harbor many
oncogenic lesions, targeting the mediators of
oncogenic addiction would herald a landmark
improvement in cancer therapy. Although the
mechanisms underlying this “Achilles heel” are
poorly understood, it is tempting to speculate

that the 4E-BPs/eIF4E axis may represent a
novel node of oncogenic addiction to target
for therapeutic intervention (see below). At
the mechanistic level, targeting eIF4E activity
in cancer cells can be a key to initiate a cell
death program resulting in tumor regression.
In support of this hypothesis, it has been shown
that eIF4E hyperactivation is able to enhance
the translation of select mRNAs (De Benedetti
and Graff 2004), including some encoding anti-
apoptotic factors (Mamane et al. 2007). The 50

UTR of these mRNAs are believed to harbor
regulatory elements, such as complex secondary
structures, that impart this selectivity (Fig. 2).
One important example is Mcl-1, an antiapop-
totic factor containing a complex 50 UTR that
is translationally up-regulated specifically upon
eIF4E hyperactivation, leading to enhanced sur-
vival of cancer-initiating cells (Mills et al. 2008;
Hsieh et al. 2010). Therefore, cancer cells may be
addicted to eIF4E-promoted survival, which
would serve as a promising target for therapeu-
tic intervention.

Regulation of eIF4E is not the only node in
which information from signaling pathways is
received by the translational machinery. It is
now clear that an entire repertoire of transla-
tional components may be co-opted to promote
cancer initiation. For example, AKT hyperacti-
vation also modulates translation elongation
(Fig. 3; Table 1) (Wang et al. 2001). Additional
regulated translational components include
eIF2a, which is part of the ternary complex
required to chaperone the initiator transfer
RNA (tRNA) to the ribosome. Phosphorylation
of eIF2a by several kinases including the dou-
ble-stranded RNA-dependent protein kinase
(PKR) and the endoplasmic reticulum kinase
PERK leads to consequent inhibition of protein
synthesis and this is a major cell growth check-
point (Ron and Harding 2007). Disruption of
the eIF2a checkpoint can lead to the transfor-
mation of immortalized rodent and human
cells (Koromilas et al. 1992b; Meurs et al.
1993; Barber et al. 1995; Donze et al. 1995).
However, prevention of eIF2a phosphorylation
is not tumorigenic in vivo (Yang et al. 1995;
Abraham et al. 1999; Scheuner et al. 2001). In
addition, it has been shown that the PERK-
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eIF2a axis represents a survival pathway for
cancer cells that need to adapt and overcome
hypoxic stress during tumor progression (Fels
and Koumenis 2006). Transformed cells with
inactivating PERK or eIF2a mutations form
smaller tumors that grow more slowly in nude
mice that grow more slowly, and show higher
levels of apoptosis in hypoxic areas compared to
control cells with intact eIF2a phosphorylation
(Bi et al. 2005). eIF2a is also commonly overex-
pressed in cancers and may thereby provide an
uncontrolled stimulus leading to increased rates
of protein synthesis (Wang et al. 1999). Interest-
ingly, overexpression of the initiator tRNA itself is
able to drive cellular transformation (Marshall
et al. 2008). Another translation factor that pro-
motes cellular transformation is eIF6, which reg-
ulates the joining of the 60S ribosomal subunit to
the 48S preinitiation complex to begin translation
(Gandin et al. 2008). Importantly, eIF6 has been
shown to be rate limiting for translation, cell
growth, and transformation (Gandin et al.
2008). This initiation factor also interacts with
RACK1, a ribosome-associated scaffolding pro-
tein that coordinates signaling by PKC and src
kinases (Ceci et al. 2003). Therefore, signaling
through RACK1 to eIF6 may be another key
node of oncogenic regulation.

Although a wealth of research (described
above), including elegant genetic studies, has
shown that eIF4E hyperactivation and other
nodes of translational control play a key role in
cancer development, the repertoire of mRNAs
that are specifically sensitive to translational
perturbations is not completely understood.
There are now emerging technologies that may
facilitate their identification. In particular, the
ability to deep-sequence ribosome-protected
mRNAs will enable codon-by-codon resolution
of ribosome occupancy on specific mRNAs (In-
golia et al. 2009). Furthermore, through deep
sequencing, it is now possible to determine
the secondary structures of mRNAs by using a
novel strategy termed parallel analysis of RNA
structures (PARS) (Kertesz et al. 2010). The
combination of these two technologies may
provide a very accurate portrait of how mRNA
secondary structures control the translation of
the cancer genome. Furthermore, techniques

such as high-throughput sequencing of RNA iso-
lated by crosslinking immunoprecipitation
(HITS-CLIP) and affinity RNA purification fol-
lowed by mass spectrometry have successfully
identified cis-regulatory elements and specific
regulatory factors associated with RNAs (Ji
et al. 2004; Darnell et al. 2011; Tsai et al. 2011;
Darnell and Richter 2012). Such technologies
could be used to characterize the mRNAs and
the translational complex directly bound to eIFs
such as eIF3, eIF4G, eIF5B, and eIF4A. Under-
taking these approaches in a time course man-
ner during the different steps in tumorigenesis
would be valuable in identifying novel transla-
tional regulatory networks and might help to
reveal the interplay between these networks
during the stages of tumor development. Fluo-
rescence-based living cell approaches such as
fluorescence resonance energy transfer (FRET)
could also enable the analysis of molecular in-
teractions of a specific translational complex in
real time during cellular transformation (Hura-
nova et al. 2009; Lorenz 2009). Simply analyz-
ing a static complex paints an incomplete pic-
ture. By studying the dynamic assembly and
disassembly of these regulatory nodes, we could
gain crucial insight into their ability to promote
distinct translation initiation modes, ultimately
contributing to cancer development.

Why Has the Translational Control of
Specific mRNAs Been Selected for
Cancer Development?

To consider this question, it is perhaps impor-
tant to consider mechanisms that drive cancer
evolution, whereby altering specific cellular
processes may lead to uncontrolled growth. In
this respect, perturbing translational control
could provide a rapid change in gene expression
upon environmental cues that allows the cancer
cell to adapt and survive even under unfavorable
conditions.

But how does the cancer program control
specific mRNAs to support the growth of cancer
cells? A central principle emerging from de-
tailed molecular studies is that important regu-
latory elements (e.g., IRES, complex 50 and 30

UTRs, RNA-binding proteins, and microRNA
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sites) may render mRNAs encoding key tu-
mor suppressors and protooncogenes (includ-
ing cell-cycle and survival factors) exquisitely
vulnerable to any perturbations in translational
control (Fig. 2). Many of these mRNAs possess
long 50 UTRs that contain upstream ORFs and/
or stable secondary structures (Stoneley and
Willis 2003; Pickering and Willis 2005; Sonen-
berg and Hinnebusch 2009). These specific cis
features act as inhibitory elements that interfere
with the activity of the eIF4F initiation complex
and ribosome scanning, thereby maintaining
the translational efficiency of these mRNAs
at a level that does not exceed a threshold nec-
essary for cellular homeostasis. Importantly,
these mRNAs are aberrantly translated as a con-
sequence of overexpressed eIF4E or the other
components of the eIF4F complex, which over-
come the translational inhibitory effects im-
posed by their 50UTR cis elements (Fig. 2) (Kor-
omilas et al. 1992a; Stoneley and Willis 2003;
Pickering and Willis 2005; Ruggero and Sonen-
berg 2005; Mills et al. 2008; Hsieh et al. 2010). In
addition, overexpression of RNA-binding pro-
teins such as CPEB4 has been shown to increase
the translation of specific oncogenic mRNAs by
binding to cis elements present in their 30 UTRs
(Ortiz-Zapater et al. 2011; for further review,
please see van Kouwenhove et al. 2011). Fur-
thermore, the sequence and structural integrity
of the 50 and 30 UTRs in the p53 tumor suppres-
sor mRNA are required for its translation (Fig.
2) (Chen and Kastan 2010).

Do genetic perturbations in mRNA regula-
tory elements directly lead to cancer formation?
This is an intriguing line of research that re-
mains to be fully explored. Alterations in the
50 UTR of MDM2, d-catenin, or Myc oncogenes
increase the translational level of their mRNAs
in multiple myeloma, Burkitt’s lymphoma,
and prostate cancer (Paulin et al. 1996; Landers
et al. 1997; Capoulade et al. 1998; Stoneley et al.
1998; Brown et al. 1999; Jin et al. 2003; Wang
et al. 2009b). A mutation in the 50 UTR of the
CDKN2a tumor suppressor (also known as
p16INK4A) is associated with increased suscept-
ibility to melanoma. This mutation creates an
aberrant upstream translation initiation codon
impairing translation initiation efficiency from

the wild-type AUG (Liu et al. 1999). Addition-
ally, cancer-derived mutations in the p53 gene
may alter an IRES element present in the 50 UTR
of its mRNA decreasing p53 protein expression
(Grover et al. 2011).

Altogether, the remarkable repertoire of de-
regulated translational components, whose ac-
tivity is directly controlled downstream of spe-
cific oncogenic signals, strongly supports their
critical and causal role in cancer initiation and
progression. What also emerges from these
studies is that perturbations in translational
control provide highly specific outcomes for
gene expression that impinge on distinct steps
along the pathway toward cancer development.

EXAMINING THE MECHANISMS BY WHICH
THE TRANSLATIONAL MACHINERY
PROMOTES THE MULTISTEP PROCESSES
OF CELLULAR TRANSFORMATION
AND TUMOR DEVELOPMENT

Cellular Transformation and Tumor Initiation

Increases in cell mass (cell growth), which occur
mainly in the G1 phase of the cell cycle, is a
prerequisite for accurate cell division (Fig 1)
(Hall et al. 2004). Ribosome biogenesis and
global protein synthesis are tightly and dynam-
ically regulated to accommodate the growth de-
mands of a cell (Hall et al. 2004). Therefore, an
important relationship exists between the cell
cycle, ribosome production, and translational
control. This balance is maintained in the cell
through key checkpoints. For example, down-
regulation of ribosome formation and activity is
required during M phase to ensure proper cy-
tokinesis (Pyronnet et al. 2001; Boisvert et al.
2007; Barna et al. 2008; Marash et al. 2008; Sivan
et al. 2011). As such, it appears that a transla-
tional program that interfaces with the cell-cy-
cle machinery should ensure the translation of
specific mRNAs at appropriate levels during
each window of cell growth and division. How-
ever, we have yet to determine which portion of
the genome is translationally regulated during
each phase of the cell cycle.

In cancer cells the balance between growth
and division is broken, leading to unrestrained

D. Ruggero

14 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a012336



increases in protein synthesis and cell size (Fig.
1). Studies on the oncogenic activity of Myc
provide an excellent window for understanding
this mechanism of cellular transformation and
tumor initiation. The Myc transcription fac-
tor, which is commonly deregulated in human
cancers, is an exquisite regulator of ribosome
biogenesis, protein synthesis, and cell growth
(Ruggero 2009; van Riggelen et al. 2010). Myc
directly increases protein synthesis rates by con-
trolling the expression of multiple components
of the protein synthetic machinery, including
ribosomal proteins, initiation factors, Pol III,
and recombinant DNA (rDNA) (Fernandez
et al. 2003; Gomez-Roman et al. 2003; Grandori
et al. 2005; Zeller et al. 2006). Through its tran-
scriptional regulation of the translational appa-
ratus, Myc activity leads to increased cell size
often associated with changes in nucleolar archi-
tecture (Fig. 1) (Kim et al. 2000; Arabi et al. 2003;
Grandori et al. 2005; Grewal et al. 2005; Shiue
et al. 2010). Interestingly, one of the initial mark-
ers for cancer cells, discovered more than 100
years ago, is an increase in the size and number
of nucleoli (Pianese 1896). However, whether
the increases in ribosome biogenesis and cell
growth are a direct cause of cellular transforma-
tion or, as many researchers have long assumed,
a consequence of the need to sustain elevated
rates of proliferation in tumor development, re-
mains a critical and challenging question. This
query has been in part addressed with novel ge-
netic strategies that restore aberrant protein syn-
thesis to normal levels before tumor formation
in Myc transgenic mice. These studies showed
that the ability of Myc to increase protein syn-
thesis directly augments cell growth (Ruggero
2009). Is it possible that, on its own, increased
cell growth represents one of the oncogenic
“hits” that leads to cellular transformation? For
example, cell growth may provide a significant
competitive advantage to a preneoplastic cell in
a specific tissue type. In this situation, a larger
cell may outcompete neighboring normal cells
in uptake of nutrients and growth factors. Con-
sequently, a somatic clone harboring such a can-
cerous lesion may possess an early competitive
advantage. This advantage may result in cell
death or starvation of normal cells and the de-

struction of the organ boundary concomitantly
with the expansion of the neoplastic clone.

Aberrant cell growth due to oncogene-de-
pendent increases in protein synthesis rates
may directly accelerate cell-cycle progression.
As mentioned above, the two processes are in-
timately linked. In this case, the oversized cells
may be more susceptible to entering unsched-
uled cell division, as an aberrant increase in cell
growth may mimic the normal G1 phase of the
cell cycle (Fig. 1). This hypothesis may explain
why restricting protein synthesis downstream
of Myc results in restoration of normal cell
growth as well as cell division (Barna et al.
2008). Importantly, Myc’s oncogenic potential
is dependent on its ability to up-regulate pro-
tein synthesis (Barna et al. 2008). Other recent
genetic studies have provided compelling evi-
dence that the manipulation of the translational
machinery by Myc is integral to its oncogenic
activity. Inactivation of one copy of eIF6 limits
Myc-driven lymphomagenesis (Miluzio et al.
2011). Furthermore, Myc also synergizes with
AKT to regulate Pol I activity, another impor-
tant determinant of cell growth and cancer de-
velopment (Chan et al. 2011). The significance
of Pol I for cancer therapy is underscored by the
fact that Cylene Pharmaceuticals has developed
two potent and specific inhibitors of this RNA
polymerase, which show antitumor activity in
xenograft models (Drygin et al. 2009, 2011).

However, we have yet to understand the ex-
act molecular mechanisms by which oncogenic
signaling, affecting ribosome biogenesis and
translational control, couples cell growth with
cell division during cellular transformation. For
example, we do not know whether an increase
in ribosome number and/or nucleolar size, as
a consequence of Myc overexpression, sends
a “signal” to the cell division machinery to fa-
cilitate cell-cycle progression, or whether the
translational program downstream of oncogen-
ic activation directly changes the expression of
key components of cell growth and division. In
this latter scenario, it stands to reason that spe-
cific mRNAs (e.g., cyclins or replication en-
zymes) would be more sensitive to translational
perturbation, representing key translational
nodes for controlling cell growth and division.
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Increased cell division as a consequence of
increased cell growth is not sufficient to induce
cellular transformation. Indeed, even upon ab-
errant cell-cycle progression, a critical cellular
response can counteract cellular transforma-
tion. This response is known as oncogene-in-
duced senescence (OIS) (Fig. 1). OIS is charac-
terized by cell-cycle arrest and induction of cell-
cycle inhibitors such as p15, p16, and p53,
which restrain the proliferative potential of pre-
neoplastic clones (Serrano et al. 1997; Gil and
Peters 2006). Importantly, during OIS, a switch
between cap- and IRES-dependent translation
occurs (Bellodi et al. 2010a). During this switch,
an IRES element positioned in the 50 UTR of
p53 is engaged to promote p53 translation (Bel-
lodi et al. 2010a). Therefore specialized transla-
tional control of mRNAs such as p53 provides a
molecular barrier for cellular transformation
(Takagi et al. 2005; Ray et al. 2006; Bellodi
et al. 2010a; Montanaro et al. 2010). Interest-
ingly, defects in rRNA modifications specifically
perturb p53 IRES-dependent translation, re-
sulting in defective OIS and expansion of pre-
neoplastic clones (Bellodi et al. 2010a). This
may be a critical mechanism that underlies
cancer susceptibility in X-DC, discussed above
(Bellodi et al. 2010a; Montanaro et al. 2010).
Most recently, another translational control
mechanism that modulates p53 expression in
the senescence phenotype has been discovered.
In this case, p53 mRNA polyadenylation/trans-
lation is hierarchically regulated by the interplay
between noncanonical poly(A) polymerases,
cytoplasmic polyadenylation element-binding
protein (CPEB), and miR-122 (Burns and Rich-
ter 2008; Burns et al. 2011). Ultimately, alter-
ations in translational control of p53 mRNAs
would appear to be an essential step leading to
transformation.

A subsequent step to overcoming tumor-
suppressive barriers such as OIS, which is im-
portant to achieve full cellular transformation,
is the acquisition of additional genetic lesions.
These lesions are commonly referred to as sec-
ondary hits (Fig. 1). However, the mechanisms
by which alterations in translational control re-
sults in the accumulation of such hits remain
poorly understood. We have recently learned

that deregulations in mitotic translational con-
trol play an important role at this step by pro-
moting genomic instability (Wilker et al. 2007;
Barna et al. 2008). During mitosis, only a small
fraction of mRNA is translated in a cap-inde-
pendent manner (Pyronnet et al. 2000; Qin and
Sarnow 2004; Komar and Hatzoglou 2011).
CDK11/p58 is a well-characterized endogenous
mRNA that is only translated during mitosis by
an IRES element (Cornelis et al. 2000; Wilker
et al. 2007). Distinct ITAFs, including PTB (pol-
ypyrimidine tract-binding protein) and UNR
(upstream of N-RAS), have been shown to
regulate CDK11/p58 expression (Tinton et al.
2005; Ohno et al. 2011). In the context of an
oncogenic lesion such as Myc hyperactivation,
an aberrant increase in cap-dependent transla-
tion specifically impairs the mitotic translation-
al switch from cap- to IRES-dependent transla-
tion (Fig. 1). This results in reduced expression
of CDK11/p58, which leads to cytokinesis de-
fects associated with increased centrosome
numbers and genome instability (Barna et al.
2008). Given that deregulations in mitotic
translational control directly promote genome
instability, further studies will be important to
illuminate the precise relationship between spe-
cific genetic lesions such as Myc and the altered
“oncogenic” translational machinery.

Progression and Metastasis

Once a tumor has been established it will pro-
gress through a number of stages and may
ultimately become metastatic (Fig. 1). The
functional role of translational control during
these stages of tumorigenesis is only now begin-
ning to be explored. Indeed, much of the data to
date are derived primarily from expression anal-
ysis of translation factors in fixed human sam-
ples. For example, the incidences of eIF5A2
overexpression increase in human colorectal tu-
mor specimens from benign tumors to primary
carcinomas to metastatic lesions (Xie et al.
2008). The expression and activity of eIF4E
has also been associated with malignant pro-
gression in many human cancers including
prostate, head and neck, bladder, colon, breast,
lung, and lymphoma (De Benedetti and Graff
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2004; Graff et al. 2009). In addition, hyperacti-
vation of specific signal transduction path-
ways (see above) appears to directly increase
translation factor activity during tumor pro-
gression. Nevertheless, we still have an incom-
plete understanding of the precise impact of
translational control in the development of
metastatic features in cancer cells. Unraveling
the mechanistic basis of this process will shed
light on new aspects of translational control and
help identify novel targets for cancer therapy. In
this respect, it appears that tumor cells have co-
opted specific modes of translational regulation
to express key survival factors for their contin-
ued development. For example, during cancer
progression, tumor cells may survive stress con-
ditions such as nutrient and oxygen deprivation
through their ability to promote cap-indepen-
dent translation of specific antiapoptotic factors
such as Bcl-2 and XIAP (Fig. 1). In addition,
IRES-dependent translation of the neoangio-
genic factor VEGF promotes tumor size by en-
hancing blood flow to the tumor (Holcik and
Korneluk 2000; Sherrill et al. 2004; Silvera et al.
2009; Silvera and Schneider 2009). Overexpres-
sion of eIF4G and 4E-BP1 is functionally linked
to the promotion of IRES-dependent mRNA
translation during cancer progression (Silvera
et al. 2009).

Why is translational control of specific
mRNAs important for the coordination of cell
invasion and metastasis? To address this ques-
tion, it is useful to consider the common
features underlying these tumorigenic steps.
For instance, cancer cells need to maintain a
high capacity for migration and invasion to by-
pass tissue barriers, intravasate into the blood
stream, and extravasate at distal secondary sites
(Valastyan and Weinberg 2011). This multistep
process requires rapid and specific modulation
of gene expression; in this context, it is conceiv-
able that translational control plays an impor-
tant role. In support of this hypothesis, recent
studies have shown that eIF4E and eIF4GI were
associated with the Golgi apparatus and mem-
brane microdomains such as the perinuclear
region and lamellipodia, which are essential
for cell motility. Most importantly, a fraction
of these initiation factors localizes at sites of

active translation near the leading edge of mi-
grating cells (Willett et al. 2011). It is tempting
to speculate that this phenomenon may repre-
sent a rapid mechanism to achieve a critical
threshold of migratory proteins surrounding
the leading edge of the cell. This localized trans-
lation may also facilitate the secretion of key
proteins such as metalloproteases, which are
necessary to degrade the basement membrane,
an obligatory step before the cancer cells enter
the bloodstream. Therefore, this spatial increase
in translational control at the leading edge could
aid the invasion of cancer cells from the primary
tumor to secondary sites.

Another cellular process associated with
increased metastatic potential is known as epi-
thelial-to-mesenchymal transition (EMT), in
which epithelial cancer cells decrease their epi-
thelial properties and acquire mesenchymal fea-
tures (Fig. 1B) (Floor et al. 2011; Valastyan and
Weinberg 2011). This process is associated with
increases in cell motility and changes in cell–
cell or cell–matrix adhesion. Importantly, very
recent studies using ribosome profiling have de-
lineated at a codon-by-codon resolution that
oncogenic mTOR signaling has a striking effect
on the translational landscape of the cancer ge-
nome of metastatic cells (Hsieh et al. 2012). This
work has functionally characterized a novel
mRNA signature associated with cancer cell in-
vasion and metastasis in vivo. This signature is
comprised of vimentin, an intermediate fila-
ment protein highly up-regulated during EMT
(Lahat et al. 2010); MTA1 (metastasis associated
1), a putative chromatin-remodeling protein
that has been shown to drive cancer metasta-
sis by promoting neoangiogenesis (Yoo et al.
2006); CD44, commonly overexpressed in tu-
mor-initiating cells and is implicated in cancer
metastasis (Liu et al. 2011); and YB-1 (Y-box
binding protein), also called YBX1. Interesting-
ly, it has been recently shown that the YB-1
protein promotes the cap-independent trans-
lation of specific subsets of mRNAs encoding
key proteins underlying EMT (Evdokimova
et al. 2009). Mechanistically, eIF4E regulates
the translation of these mRNAs encoding key
players in cancer metastasis at least in part
through a novel regulatory element present in
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their 50 UTR known as pyrimidine-rich trans-
lation element (PRTE) (Hsieh et al. 2012). Sig-
nificantly, a novel clinical ATP-site inhibitor of
mTOR (INK128, see below) exquisitely targets
this translational signature with therapeutic
benefit at all stages of prostate cancer progres-
sion, including metastasis (Hsieh et al. 2012).
However, the identity and number of the key
components of the translational apparatus
that may regulate metastatic potential demand
further investigation. Furthermore, both the
repertoire of translationally regulated mRNAs
that contributes to tumor invasion and meta-
static dissemination, and the mechanisms that
regulate their expression, remain an exciting
frontier that merits further exploration.

FROM THE BENCH TO THE PATIENT:
CLINICAL-“TRANSLATIONAL” ADVANCES

After key findings establishing the causal role of
the deregulated translational machinery within
the multihit model of cancer etiology, we are
arriving at an exciting crossroad between discov-
ery and clinical application. I will briefly sum-
marize some of the main preclinical and clinical
strategies that directly or indirectly target the
protein synthesis apparatus (Hsieh and Ruggero
2010; see also Malina et al. 2012). The eIF4E
oncogene, which is frequently hyperactivated
in human cancer, represents an attractive target
for rational drug design (Fig. 3). There are cur-
rently several approaches being pursued to ther-
apeutically inhibit eIF4E, but perhaps the most
direct of these approaches is the use of specific
antisense oligonucleotides (ASOs) that bind to
eIF4E mRNAand mediate its destruction by RN-
aseH.The eIF4E-ASOiscurrently being tested in
combination with chemotherapy in new phase
I/II clinical trials of metastatic lung cancer and
prostate cancer (Graff et al. 2007). Additional
attempts to target eIF4E have focused on block-
ing its ability to interact with eIF4G. The inter-
action between eIF4E and eIF4G is dependent on
an eIF4G Y(X)4LF motif, in which X is variable
and F is hydrophobic (Marcotrigiano et al.
1999). High-throughput screens for inhibitors
that could prevent eIF4E from binding to the
Y(X)4LF motif identified 4EGI-1 as a candidate

compound. 4EGI-1 is both a cytotoxic and cy-
tostatic agent acting across multiple cell lines.
Importantly, 4EGI-1 inhibits proliferation and
clonogenic growth of transformed cells more ef-
fectively than untransformed cells (Moerke et al.
2007; Tamburini et al. 2009). 4EGI-1 is licensed
to Eugenix, which is working toward an investi-
gational new drug application for this com-
pound (G Wagner, pers. comm.). Concurrently,
indirect approaches to target oncogenic eIF4E
activity are proving particularly effective (Hsieh
et al. 2011). For example, inhibiting the mTOR
kinase holds tremendous promise for the clinic.
In vitro and in vivo characterizations of recent-
ly developed mTOR ATP-site inhibitors have
shown greater efficacy than allosteric mTOR in-
hibitors (rapalogs) (see also Malina et al. 2012;
Roux and Topisirovic 2012). Unlike rapalogs,
mTOR ATP-site inhibitors target 4E-BP phos-
phorylation as well as the mTORC2 complex
(Benjamin et al. 2011). PP242, the first of a
series of reported ATP-site mTOR inhibitors
(Feldman et al. 2009), has been used in a pre-
clinical trial for AKT-driven lymphomagenesis
(Hsieh et al. 2010). In this study, PP242 (but not
rapamycin) suppressed tumor growth by inhib-
iting 4E-BP1 phosphorylation. In line with
these studies, the antiproliferative effect of
both PP242 and Torin (another ATP-site inhib-
itor) was attenuated in cultured 4E-BP null cells
(Thoreen et al. 2009; Dowling et al. 2010). Al-
together, these findings strongly suggest that the
therapeutic efficacy of ATP-site inhibitors may
be in large part associated with their ability to
block mTORC1-dependent 4E-BP phosphory-
lation and eIF4E oncogenic activity (Hsieh et al.
2010). Perhaps most notably, INK128, a more
potent derivative of PP242, as well as several
other ATP-site inhibitors, are currently in phase
I/II clinical trials in patients with advanced sol-
id tumors and hematological malignancies
(Benjamin et al. 2011; Hsieh et al. 2012).

Equally significant for the development of
future cancer treatments, recent studies have
shown that amplification of the eIF4E gene
leads to drug resistance in immortalized human
mammary epithelial cells (HMECs) that were
treated with the dual PI3K/mTOR inhibitor,
BEZ235 (Ilic et al. 2011). Specifically, BEZ235
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elicited a cytostatic effect only in HMECs that
do not display eIF4E amplification and the
associated increases in cap-dependent transla-
tion (Ilic et al. 2011). Therefore, deregulation in
translational control may also represent a mech-
anism for drug resistance. Forexample, increases
in expression and activity of distinct transla-
tional components might evade the inhibitory
activity of compounds that target key upstream
regulators of the translational machinery.

It remains to be seen how the deregulation of
other translation components, in addition to
eIF4E, may act either as therapeutic targets or
mechanisms of resistance to mTOR inhibitors.
Ultimately, to understand these contributions,
we need to characterize the translationally dereg-
ulated mRNAs downstream of these events.

CONCLUDING REMARKS

It is clear that the study of deregulations in the
translational machinery has moved into the
center stage of cancer research. Indeed, even
if many questions remain to be addressed, we
are now closer than ever to understanding the
causal relationship between alterations in trans-
lational control and the etiology of cancer
development. The critical function of transla-
tional control in cancer is underscored by the
discovery of mutations in translational compo-
nents underlying genetic syndromes associated
with cancer susceptibility. In addition, several
studies have described gene amplification of dis-
tinct key regulators of protein synthesis in so-
matic cancers (Table 1). Furthermore, there is
a growing appreciation for the exquisite specif-
icity in translational regulation mediated by
the core components of the translational appa-
ratus. For example, the unexpected discovery
that only specific mRNAs harboring IRES ele-
ments are translationally affected by impair-
ments in rRNA modifications has changed our
perception of how the translation machinery
regulates gene expression. Additionally, mutant
ribosomes lacking important constituents such
as ribosomal proteins may be largely function-
ally active, but preferentially defective in specific
aspects of translational control, contributing to
cancer development.

Altering the translational landscape of the
cancer genome appears to be a key driver in
tumor formation associated with hyperactiva-
tion of signal transduction pathways. Indeed,
distinct oncogenic signals appear to monopo-
lize translational control at almost every stage
of cancer initiation and development, result-
ing in specific and distinct cellular outcomes
(Fig. 1). Important studies have also uncovered
a surprising level of specificity for controlling
gene expression at the posttranscriptional
level downstream of the activation of these
oncogenic signals. This translational specificity
is also dictated by distinct regulatory elements
within key mRNAs, such as IRES elements
or structured 50 UTRs, which control the ex-
pression of these mRNAs during specific steps
of cellular transformation and tumor devel-
opment (Fig. 2). These translational control
mechanisms would provide cancer cells ample
opportunity to grow, survive, and expand in-
definitely even under unfavorable conditions.
Future research can build on these recent sig-
nificant findings to elucidate the dynamic rela-
tionship between the regulatory components
of the translational machinery and oncogenic
signaling. Taken as a whole, alterations in trans-
lational control may represent an “oncogenic
addiction” node. Such a node could serve as a
potential “Achilles heel” for tumor suppression
(Fig. 3). Ultimately, the significance of this re-
search is further reflected by a number of novel
and promising therapeutic approaches to target
specific translational components in cancer that
are presently in clinical trials.
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