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One of the most remarkable characteristics of stem cells is their ability to perpetuate them-
selves through self-renewal while concomitantly generating differentiated cells. In the he-
matopoietic system, stem cells balance these mechanisms to maintain steady-state hemato-
poiesis for the lifetime of the organism, and to effectively regenerate the system following
injury. Defects in the proper control of self-renewal and differentiation can be potentially
devastating and contribute to the development of malignancies. In this review, we trace the
emerging role of Wnt signaling as a critical regulator of distinct aspects of self-renewal and
differentiation, its contribution to the maintenance of homeostasis and regeneration, and
how the pathway can be hijacked to promote leukemia development. A better understanding
of these processes could pave the way to enhancing recovery after injury and to developing
better therapeutic approaches for hematologic malignancies.

Hematopoietic stem cells (HSCs) give rise to
all the cells of the blood. The ability of

HSCs to successfully balance self-renewal to
permit regeneration with differentiation to pro-
duce mature blood cells is critical to survival.
Regulation of this balance recapitulates events
that occur during embryonic development, and
thus often uses many of the key signaling path-
ways found in ontogeny. In this context the Wnt
pathway, which is a key player in pattern forma-
tion and other aspects of early development, has

emerged as an important new regulator of many
aspects of hematopoiesis, including stem cell
establishment, homeostatic maintenance, and
regeneration. Furthermore, Wnt signaling can
also influence many differentiated cells of the
blood. Given the close connections between
the self-renewal that occurs during normal de-
velopment and the uncontrolled self-renewal
that can occur in cancers, Wnt signaling has
also been studied in the context of cancers of
the blood and has been shown to contribute to
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the aberrant renewal that drives leukemia for-
mation. As with all pleiotropic factors, the Wnt
pathway has a multifaceted influence on hema-
topoiesis. The diversity of effects comes in part
from the complex nature of the signal itself:
the family represents 19 different ligands and
up to ten different receptors, and the nature of
the ligand and receptor combination can acti-
vate either canonical or noncanonical cascades.
Further, distinct cellular contexts provided by
the multitude of developing and mature blood
lineage cells can lead to differential outcomes
following activation or inhibition of the path-
way. Despite this complexity, experiments from
many different angles are leading to consensus
views of the nature of Wnt signaling in the he-
matopoietic system and how it can contribute
to hematopoietic stem cell and progenitor cell
function in specific contexts, raising the pos-
sibility that if correctly modulated it could be
used to enhance hematopoietic regeneration.
Perhaps even more exciting is the emerging
role of Wnt signaling in driving the growth of
numerous leukemias and lymphomas, suggest-
ing that its effective blockade could have a pro-
found impact on the treatment of hematologic
malignancies in the clinic.

HSCs

Activation of Wnt Signaling
during Hematopoiesis

During development, hematopoiesis occurs at
distinct anatomical sites. Murine hematopoietic
development begins in the extraembryonic yolk
sac at E7.5, continues in the chorioallantoic pla-
centa, para-aortic splanchnopleura, and aorta–
gonad–mesonephros (AGM) at E9 and the fetal
liver at E10, and culminates in the colonization
of the bone marrow at E15 (Fig. 1) (Medvinsky
et al. 2011). In adult life all hematopoiesis stably
occurs in the bone marrow.

At each of these sites in fetal and adult life
the maturation of blood cells from the hemato-
poietic stem cell follows a series of commitment
steps (Fig. 2). Long-term HSCs lie at the apex of
the hierarchy and display an extensive capacity
for self-renewal, allowing them to reconstitute
the hematopoietic system in a recipient for the
long term. These cells give rise to the “short-
term” HSCs, which have more limited self-re-
newal capacity and are only able to support re-
constitution for a few weeks following trans-
plantation. These short-term HSCs give rise to
multipotent progenitor cells, which have no self-
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Figure 1. Murine embryonic hematopoiesis occurs simultaneously in several organs during development. The
mouse embryo generates de novo hematopoietic stem cells (HSCs) in the placenta, yolk sac, and aorta–gonad–
mesonephros (AGM) beginning at E7.5. These HSCs then migrate into and seed various organs at the start of
definitive hematopoiesis around E11. Normal adult hematopoiesis only occurs in the bone marrow. (Figure
created from data in Medvinsky et al. 2011.)

W. Lento et al.

2 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a008011



renewal capacity but which can differentiate to
the full complement of hematopoietic cells, in
part by stepping through semicommitted states
such as the common myeloid progenitor, a pre-
cursor of cells like macrophages and granulo-
cytes, and the common lymphoid progenitor, a
precursor of B, T, and NK cells.

Early evidence that Wnt signaling may be
involved in orchestrating hematopoietic ontog-
eny came from studies showing that Wnt li-
gands, including Wnt-5a and Wnt-10b, are ex-
pressed by the murine fetal liver (Austin et al.
1997). Subsequent studies, including observa-
tions in both mouse and Xenopus embryos that
Wnt signaling is found in sites of primitive
erythropoiesis (Cheng et al. 2008; Tran et al.
2010), as well as the demonstration that Wnt
ligands and frizzled receptors are expressed in

the murine yolk sac, aorta–gonad–mesoneph-
ros, and fetal liver, support a role for Wnt sig-
naling in developmental hematopoiesis (Corri-
gan et al. 2009). More recently, studies using
zebrafish have shown that early embryonic ex-
pression of the noncanonical ligand Wnt-16
in the somites is required to initiate definitive
hematopoiesis in the prehematopoietic meso-
derm and dorsal aorta (Clements et al. 2011).

In the adult bone marrow, Wnts are ex-
pressed in the microenvironment surrounding
the HSCs (Table 1). For example, studies per-
formed on human bone marrow indicate that
Wnt-2b, Wnt-5a, and Wnt-10b are expressed
in unfractionated bone marrow cells, and that
Wnt-5a is expressed in populations enriched for
HSCs and progenitors (Van den Berg et al.
1998). In the mouse bone marrow, Wnt-5a is

LT-HSC
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Figure 2. The hematopoietic stem cell hierarchy in adult bone marrow. All differentiated blood cells are generated
from a small pool of self-renewing long-term hematopoietic stem cells (LT-HSCs) (dark green area). LT-HSCs
are capable of both self-renewal and differentiation. When LT-HSCs differentiate, they create short-term HSCs
(ST-HSCs) with limited self-renewal potential (light green area). The ST-HSCs produce progenitors that give
rise to multipotent non-self-renewing common myeloid progenitors (CMP) and common lymphoid progen-
itors (CLP). These progenitor populations generate mature hematopoietic cells such as macrophages, B and T
cells, and red blood cells (erythrocytes). The dashed lines indicate partial lineage connections.
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expressed by mature B cells (Liang et al. 2003),
whereas Wnt-10b is produced by myeloid cells,
erythrocytes, and immature B cells (Congdon
et al. 2008). Moreover, the precise expression of
Wnt ligand seems to be regulated dynamically
during hematopoietic regeneration; whereas
Wnt-3a, Wnt-5a, and Wnt-10b are all expressed
in the homeostatic murine bone marrow micro-
environment (Reya et al. 2000), Wnt-10b is spe-
cifically up-regulated in the injured murine bone
marrow microenvironment (Congdon et al.
2008), suggesting that specific Wnts may be par-
ticularly adept at or used during regeneration.
The receptors for these ligands are also exten-
sively expressed (Table 1), with long-term hu-
man HSCs expressing Frizzled 6 (Wagner et al.
2004). These studies collectively indicate that
Wnt signaling components are found in both
fetal and adult sites of hematopoiesis. Further,
the possibility that ligand and receptor expres-
sion is indicative of physiologic utilization is
supported by reporter expression in HSCs
(Nemeth et al. 2007).

Gain-of-Function Studies

In an effort to understand whether the observed
expression of Wnt/Fz is functionally important,
numerous gain-of-function and loss-of-func-
tion experiments have been performed in model

organisms as well as in human cells. Gain-of-
function experiments to assess Wnt signaling
in hematopoiesis have been approached in sev-
eral ways, including exposure to soluble Wnt
proteins, inhibition of GSK-3b, and activation
of b-catenin.

Independent studies have shown that the
addition of Wnt-3a can increase hematopoietic
output in murine embryonic stem cell cultures
and that canonical Wnt signaling can promote
proliferation of committed hematopoietic pro-
genitors in human embryonic stem cell cultures
(Corrigan et al. 2009; Goessling et al. 2009).
These studies are consistent with reports of
Wnt-10b-induced proliferation of cultured
murine fetal liver hematopoietic progenitor
cells (Austin et al. 1997). Signaling via Wnt-11
can also increase the number of hematopoietic
progenitors, possibly implicating noncanonical
Wnts in hematopoietic lineage specification
(Vijayaragavan et al. 2009).

Wnt signaling has also been triggered in mu-
rine and human HSCs using inhibitors of GSK-
3b, a strategy that leads to activation of b-cat-
enin. In vivo administration of GSK-3b inhibi-
tors has been shown to promote the engraftment
of HSCs in bone marrow transplantation mod-
els (Trowbridge et al. 2006), and short-term
pretreatment of human HSC with a GSK-3b in-
hibitor can enhance the engraftment of human

Table 1. Expression of Wnt pathway elements in the bone marrow microenvironment

Cell source Wnt ligands FZD/LRP

sFRP/Dkk/

WIF Transcription factors References

Osteoblasts Wnt2, Wnt2B2,
Wnt3A, Wnt4,
Wnt5AQ,
Wnt10A, Wnt11

FZD2, FZD3,
FZD4,
FZD5,
FZD6

sFRP1,
sFRP2,
sFRP3,
sFRP4

TCF1, TCF2, TCF3,
TCF4, TLE1,
CTBP1, b-catenin

Spencer et al. 2006

Mesenchymal
stem cell

Wnt2B, Wnt5A,
Wnt2B, Wnt11

FZD1, FZD2,
FZD3,
FZD4,
FZD5,
FZD6

sFRP2,
sFRP2,
Dkk2

b-catenin, TCF1 Dufourcq et al.
2008; Li et al.
2010; Qui et al.
2011

Endothelial
cells

Wnt2, Wnt2b,
Wnt3, Wnt5A,
Wnt7A, Wnt 11,
Wnt14

FZD3, FZD4,
FZD6,
LRP5,
LRP6

sFRP1,
sFRP3,
Dkk1,
Dkk2,
Dkk3

b-catenin, TCF1,
Lef1

Li et al. 2010;
Planutiene et al.
2011
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hematopoietic progenitor cells in xenograft
models (Ko et al. 2011). In wild-type bone mar-
row, GSK-3b inhibition resulted in transient
expansion of phenotypic hematopoietic stem
cells, but concurrently resulted in progressive
depletion of the long-term repopulation ability
of these HSCs (Huang et al. 2009).

Studies based on the more direct activation of
b-catenin have also provided important insight
into the role of Wnt signaling in hematopoiesis.
Transduction of the constitutively active form of
b-catenin into HSCs of transgenic mice express-
ing the prosurvival protein Bcl-2 increased the
number of hematopoietic stem cells during cul-
ture in vitro and enhanced reconstitution in vivo
(Reya et al. 2003). Activated b-catenin can also
reprogramCLPsto display more characteristics of
undifferentiated multipotent cells (Baba et al.
2005) and its expression in murine bone marrow
cells dramatically enhanced the ability of these
cells to expand in culture. The cells maintained
many primitive characteristics and responsive-
ness to normal signals, although they appeared
arrested in an undifferentiated state (Baba et al.
2006). Interestingly, using a genetic approach,
mice expressing stabilized b-catenin in the
hematopoietic system were generated; these
mice showed expansion of HSCs, arrested differ-
entiation, and subsequent defects in hematopoi-
etic reconstitution (Kirstetter et al. 2006; Scheller
et al. 2006). By combining b-catenin activation
with inhibition of apoptosis through PTEN dele-
tion, recent studies have also shown that induc-
tion of prosurvival pathways in combinationwith
Wnt activation drives the self-renewal and long-
term reconstitution ability of HSCs (Perry et al.
2011). This study together with previous work
(Reya et al. 2003) suggests that the cellular con-
text of b-catenin activation and whether it is
coexpressed with a survival factor may dictate
its ultimate effect on expansion or exhaustion.
Additionally, the levels at whichb-catenin is over-
expressed may also dictate the outcome. This was
most effectively shown in recent studies in which
a genetic series of adenomatous polyposis coli
(APC) alleles was used to activate b-catenin at
different levels, resulting in either expansion of
HSCs at low doses or in their exhaustion at high
doses (Luis et al. 2011).

Work from model organisms such as zebra-
fish is consistent with a role for Wnt signaling in
the induction of long-term HSCs (Goessling
et al. 2009). Prostaglandin E2 regulates hemato-
poietic stem cell specification in zebrafish as
well (North et al. 2007) and promotes increased
proliferation, survival, homing, and engraft-
ment of murine HSC (Hoggatt et al. 2009; Du-
rand and Zon 2010). Importantly, PGE2 can
activate b-catenin-responsive Wnt reporter ac-
tivity in the zebrafish AGM, the site of long-
term hematopoietic stem cell potential. Studies
in mice further showed that PGE2-dependent
Wnt signaling enhanced hematopoietic progen-
itor cell generation from differentiating embry-
onic stem cells. Cumulatively, the work over the
last decade indicates that the Wnt pathway is
active in HSCs and that triggering it either at
low levels or at high levels in the context of
survival cues can lead to expansion of the
stem cell pool.

Loss-of-Function Studies

To define whether Wnt signaling may be re-
quired for HSC specification, growth, and func-
tion, many studies targeting deletion of b-cate-
nin and other components of the Wnt signaling
pathway have been undertaken. Germline de-
letion of Wnt-3a leads to a dramatic reduction
in the numbers of hematopoietic stem and pro-
genitor cells in the fetal liver and results in
embryonic lethality at E12.5 (Luis et al. 2009).
Interestingly, the impaired self-renewal capacity
of Wnt-3a null cells is not reversed by a nor-
mal microenvironment after transplantation,
suggesting that the developmental absence of
Wnt-3a may affect multiple aspects of stem cell
function. Subsequent studies using a Vav-Cre
transgene to conditionally delete b-catenin in
the hematopoietic system of developing mice
supported these findings. Although HSCs were
established in these mice, they were deficient in
their long-term maintenance and reconstitution
capacity in transplantation studies (Zhao et al.
2007). Interestingly, mice in which an IFN-
inducible Mx-Cre transgene was used to delete
b-catenin in bone marrow progenitor cells did
not display defects in the ability of HSC to self-
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renew or reconstitute hematopoietic lineages.
The different consequences of b-catenin dele-
tion in vivo are very likely attributable to the
different contexts in which the deletions were
initiated. The impact of deleting b-catenin in
embryonic versus adult life could lead to the
differences observed; alternatively, interferon
(IFN) exposure, which can activate HSCs (Bal-
dridge et al. 2010) in the Mx-Cre mice, could
change the transcriptional context within the
HSCs in which b-catenin is deleted and mask
the effects of b-catenin loss.

Wnt Signaling in Lymphocyte Development

As stem cells differentiate to generate functional
cells of the blood, they give rise to committed
cells of both myeloid and lymphoid lineages.
Components of the Wnt pathway, such as the
downstream transcription factors Lef and
Tcf, are expressed in developing lymphocytes
(Oosterwegel et al. 1991; Travis et al. 1991; van
Genderen et al. 1994). Gain- and loss-of-func-
tion approaches indicate that Wnt/b-catenin
signaling is a key regulator of T-cell develop-
ment during thymocyte differentiation (Mole-
naar et al. 1996; Schilham et al. 1998; Nusse
1999; Ioannidis et al. 2001; Staal et al. 2001;
Mulroy et al. 2002, 2003; Weerkamp et al.
2006). Overexpression of Dkk1, a Wnt antago-
nist that prevents interactions between Wnt and
Frizzled, blocks T-cell development at the
double-negative (CD42/CD82) stage in fetal
thymic organ cultures (Weerkamp et al. 2006).
Furthermore, in vivo genetic deletion of b-cat-
enin in T cells using Lck-Cre causes a matura-
tion defect in double-positive T cells at the
b-selection checkpoint and significantly reduc-
es the peripheral splenic T-cell population (Xu
et al. 2003). The Wnt/b-catenin signaling path-
ways also continue to influence T cells post dif-
ferentiation (Gattinoni and Restifo 2010). In
cytotoxic T cells, Wnt signaling promotes the
formation of CD8þ memory T cells by inhib-
iting effector cell differentiation. In the helper
T-cell lineage, Wnt signaling enhances the sur-
vival of regulatory CD4þ T cells and influences
CD4þ Th-cell polarization, favoring the forma-
tion of Th2 over Th1 cells (Yu et al. 2009; Notani

et al. 2010). In the B-cell lineage, genetic studies
using Lef-1-deficient mice show that loss of
Lef-1 leads to defects in pro-B-cell proliferation
and survival in vitro and in vivo and that puri-
fied Wnt3a can induce proliferation of imma-
ture B cells (Reya et al. 2000). Consistent with
this, B-cell defects were reported in the absence
of Wnt receptors in Frizzled 9-deficient mice
(Ranheim et al. 2005). The fact that activated
b-catenin can lead to B-cell leukemia in trans-
plant assays in the long term is consistent with
the possibility that activation of this pathway
promotes the growth and survival of B cells.

A few studies have also examined the role
of the noncanonical Wnt signaling pathway
in lymphocyte development. Wnt-5a-deficient
mice display abnormal B-cell development; in
this setting, Wnt-5a was found to signal at least
in part through the noncanonical Wnt/Ca2þ

pathway to interfere with pro-B-cell responses
to IL-7 (Liang et al. 2003). The possibility that
Wnt-5a may oppose canonical signaling was
also suggested by the increased canonical sig-
naling observed in thymocytes and distal limb
buds from Wnt-5a2/2 mice (Topol et al. 2003;
Liang et al. 2007). In addition, whereas canon-
ical Wnt signaling mediated by Wnt-3a overex-
pression in stromal cells from osteopetrotic mice
inhibited B-cell and plasmacytoid dendritic cell
development, Wnt-5a increased B-cell lympho-
poiesis (Malhotra et al. 2008). Interestingly, in
this setting the addition of Wnt-3a triggered
increased expression of stem cell markers, sug-
gesting the possibility that these culture condi-
tions can induce an undifferentiated state.

These studies cumulatively indicate that
Wnt signaling is important not only in HSCs
but also in more committed lymphoid progen-
itor cells, including pro-B cells and pre-B cells in
the bone marrow, as well as in the most im-
mature subsets of thymocytes and in mature T
cells (Staal and Clevers 2005). Emerging studies
also indicate that Wnt signaling can influence
nonlymphoid lineages. For example, GSK-3b
negatively regulates megakaryocyte differen-
tiation and platelet production from primary
human bone marrow cells in vitro. In addi-
tion, numerous Wnt canonical effectors have
been detected in human platelets, and Wnt-3a
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negatively regulates platelet function, including
adhesion, activation, granule secretion, and ag-
gregation (Steele et al. 2009).

LEUKEMIA

Wnt Signaling in Myeloid Leukemia

In addition to its role in normal hematopoietic
function, activation of Wnt signaling is intri-
cately involved in cancer formation in blood
cells. Several studies in a variety of leukemic
cell lines and patient samples support this pos-
sibility. For example, pre-B-cell leukemia lines
carrying the E2A-PbX translocation overex-
press Wnt proteins (McWhirter et al. 1999),
and survival of these cells in vitro can be inhib-
ited by blocking Wnt signaling (Mazieres et al.
2005). Similarly, studies of acute myelogenous
leukemia show that associated fusion proteins
enhance replating efficiency of HSCs and that
this is abrogated on inhibition of the Wnt path-
way (Muller-Tidow et al. 2004; Zheng et al.
2004). Most importantly, primary cells from
patients with chronic myelogenous leukemia
(CML) display activated Wnt signaling and a
dependence on this pathway for their growth
in vitro (Jamieson et al. 2004). An investigation
into the molecular basis of Wnt activation in
CML patient samples identified a novel mis-
splicing of GSK-3b RNA that deletes exons 8
and 9 (Abrahamsson et al. 2009). The resulting
truncated GSK-3b protein lacks a critical axin
binding domain and is therefore unable to
phosphorylate b-catenin to initiate its degrada-
tion. These experiments were complement-
ed with genetic experiments showing that the
Wnt pathway was required for CML initiation
and maintenance in vivo. Specifically, whether
b-catenin activity was essential for initiation
and maintenance of leukemia stem cells was
tested by transducing b-catenin null stem cells
with BCR-ABL translocation and transferring
them into recipient mice (Zhao et al. 2007).
Overall, the loss of b-catenin led to a significant
reduction in leukemia incidence and increase in
leukemia latency in vivo (Zhao et al. 2007).
Interestingly, BCR-ABL-induced B-ALL still
occurred, suggesting that the dependence of

leukemia on b-catenin may differ with cellular
context and the cell of origin for the leukemia.
The possibility that Wnt is an independent reg-
ulator of CML is particularly important because
current evidence indicates that although Glee-
vec blocks BCR-ABL in CML cancer stem cells,
these cells are no longer dependent on BCR-
ABL and continue to propagate the tumor.
Thus, Wnt signaling could represent an effective
ABL-independent target for pharmacological
intervention in CML.

Following the work performed in CML, the
dependence of acute myelogenous leukemia on
b-catenin in vivo was also tested. Importantly,
the genetic deletion of b-catenin led to reduced
leukemia incidence and a blockade of leukemia
stem cell self-renewal (Wang et al. 2010) in
mouse models of acute myelogenous leukemia
driven either with a combination of the onco-
genes Hoxa9 and Meis1 or by viral deliveryof the
translocation MLL-AF9. Interestingly, activa-
tion of b-catenin directly imparted self-renewal
capacity to otherwise nonrenewing granulo-
cyte-macrophage progenitors when expressed
in conjunction with HoxA9/Meis1a (Wang
et al. 2010).

The loss of b-catenin can also affect AML
driven by other oncogenes. b-catenin deletion
in preleukemia stem cells showed thatb-catenin
is required for initiation of mixed lineage leu-
kemia-eleven nineteen leukemia (MLL-ENL)-
driven AML (Yeung et al. 2010). Viral knock-
down of b-catenin in patient samples decreases
colony formation and reduces the frequency of
long-term initiating cells in vitro. Additionally,
b-catenin activation is required for drug resis-
tance to GSK3 inhibitors in MLL-ENL leukemia
stem cells (Yeung et al. 2010). These data collec-
tively indicate that propagation of acute mye-
loid leukemia requires intact activity of b-cate-
nin for leukemia stem cell self-renewal and
resistance to GSK3 inhibitors and suggests that
directly targeting b-catenin could impact mul-
tiple aspects of leukemia pathogenesis. It is
important to note that in leukemia driven by
MLL-AF4 and MLL-AF5 translocations, GSK3
inhibition paradoxically inhibits leukemia clo-
nogenic potential through regulation of the cell-
cycle inhibitor p27kip1 (Wang et al. 2008). These
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data suggest that specific MLL translocations
may differentially use Wnt signaling, and that
the context set up by the different oncogenic
alleles governs leukemia stem cell behavior in
distinct ways.

Wnt Signaling in T-Cell Leukemia
and Lymphoma

To study whether activation of b-catenin can
lead to T-cell leukemia, transgenic mice in which
activated b-catenin is driven by Lck (LckCre-
CtnnbDex3) or CD4 (CD4Cre-CtnnbDex3) have
been generated (Guo et al. 2007). These mice
display CD4þCD8þ thymic lymphoma within
60 days. In other studies in which b-catenin
was driven with the Lck promoter, tumors only
arose in the absence of p53 (Xu et al. 2008). The
fact that PTEN mutant fetal liver stem cells drive
a combination of acute myeloid leukemia and
CD4þCD8þ T-acute lymphoblastic leukemia
(T-ALL) also suggests an oncogenic role for b-
catenin in c-KitmidCD3þlineage2 T-ALL (Guo
et al. 2008). Consistent with a role for b-catenin
in mediating self-renewal of the leukemia stem
cell population,b-catenin heterozygous T-ALLs
show premature exhaustion and lose tumor-ini-
tiating ability. Although most studies have fo-
cused on aspects of b-catenin and its role in
leukemia, the noncanonical b-catenin-inde-
pendent Wnt pathway may also modulate leu-
kemia propagation and survival. A synthetic le-
thal screen for short hairpin RNAs (shRNAs)
that cooperate with imatinib mesylate to induce
apoptosis identified the Wnt/Caþ/NFAT (nu-
clear factor associated with T cells) signaling
pathway as required for CML survival in vitro
(Gregory et al. 2010) Interestingly, the require-
ment for NFAT signaling was also shown in B-
cell acute lymphoblastic leukemia survival in
vivo (Gregory et al. 2010).

SUMMARY

The activation of Wnt signaling from develop-
ment to oncogenesis in the hematopoietic sys-
tem is indicative of a crucial role for the path-
way. In many ways, this is an exciting time, with
opportunities to pursue a deeper understand-

ing of the mechanisms Wnt signaling controls
and its interactions with other key develop-
mental signals. Importantly, this understanding
should provide a strong foundation for initiat-
ing concerted efforts to identify therapeutics in
the Wnt cascade that could prove broadly effec-
tive in enhancing stem-cell based therapies and
targeting leukemia.
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