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Introduction

Apoptosis is a conserved process that removes unwanted cells, 
and its proper regulation is essential for normal development and 
tissue homeostasis. Not only is the execution of cell killing tightly 
controlled, the removal of apoptotic corpses is also highly regu-
lated, and defects in apoptotic cell corpse clearance contribute to 
inflammation and autoimmunity.1,2 Upon cell death execution, 
apoptotic cells display markers, so-called “eat-me” signals, that 
signal neighboring cells or specialized phagocytes to internalize 
and degrade the dead cell corpses. The best-studied “eat-me” sig-
nal is the exposure of phosphatidylserine (PS) on the outer leaflet 
of the apoptotic cell membrane,3 although other cell death mark-
ers such as altered sugar moieties and other phospholipids are also 
important in labeling corpses for engulfment.4

The engulfment of apoptotic cell corpses is controlled by two 
evolutionarily conserved, partially redundant pathways that were 
discovered primarily through genetic studies in the nematode 
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worm Caenorhabditis elegans.5,6 The first pathway, composed of 
CED-1, CED-6, CED-7 and DYN-1 proteins, is important for 
promoting membrane expansion of pseudopods during engulf-
ment and for the degradation of apoptotic cells inside phago-
somes.7,8 The second pathway includes the CED-2, CED-5 and 
CED-12 proteins that are important for cytoskeletal reorganiza-
tion during apoptotic corpse removal, and that function upstream 
of the Rho family GTPase CED-10 (RAC1).5,9 CED-10 may also 
mediate certain activities of the CED-1 pathway.7,9 Phagosomes 
containing engulfed cell corpses mature by sequentially recruit-
ing proteins including PtdIns3-kinases, Rab GTPases, and the 
homotypic fusion and vacuole protein sorting (HOPS) complex, 
leading to the formation of phagolysosomes wherein the engulfed 
cell corpses are degraded.10-12

Macroautophagy (hereafter referred to as autophagy) is a 
lysosome-mediated “self-eating” process which is highly con-
served from yeast to human (for a review, see refs. 13 and 14). 
More than 30 autophagy genes regulate the multistep autophagy 
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with mutations in autophagy genes that act at different stages in 
the autophagy pathway. Together, our results suggest that auto-
phagy genes are important for efficient apoptotic corpse clear-
ance during C. elegans embryonic development by a mechanism 
that is genetically distinct from the ced-1, ced-6, ced-7, dyn-1 and 
the ced-2, ced-5, ced-12 engulfment pathways.

Results

Increased numbers of apoptotic cell corpses are detected in 
C. elegans embryos with mutations in autophagy genes. In  
C. elegans, 113 apoptotic cell corpses are generated during 
embryogenesis.33 These cell corpses show a distinct highly refrac-
tile, “button-like” appearance under Nomarski differential inter-
ference contrast (DIC) microscopy. To investigate whether other 
autophagy genes play roles in apoptosis similar to that previously 
described for bec-1,31 we used DIC microscopy to determine the 
numbers of apoptotic cell corpses detected during C. elegans 
embryogenesis in eight strains with loss-of-function mutations in 
autophagy. We focused on three morphologically distinct embry-
onic developmental stages including bean, comma and 1.5-fold 
stages, that correspond to ~320 min, ~380 min and ~420 min 
after the first cleavage, respectively.34 We included analyses of the 
wild-type (N2) strain, and a well-studied engulfment mutant, 
ced-1(e1735),5,7,35 as controls. The eight autophagy-deficient 
strains included nematodes with mutations in two genes, atg-13 
and unc-51, that are part of the serine/threonine kinase induc-
tion complex;36 two genes, bec-1 and epg-8 (which shares low 
similarity with mammalian ATG14),37 that are part of the class 
III PtdIns3-kinase complex involved in vesicle nucleation;36 two 
genes, atg-3 and atg-7, that are part of the protein conjugation 
system involved in ATG8/LC3 lipidation and vesicle expan-
sion and completion;36 and two genes, atg-2 and atg-18, that are 
important for the recycling of autophagy machinery from mature 
autophagosomes.36

We found that, compared with wild-type embryos, all auto-
phagy mutant strains examined had significantly more cell 
corpses at the 1.5-fold stage (Fig. 1A and B). Some strains also 
had increased numbers of cell corpses detected at the bean [bec-
1(ok691), atg-7(bp412), unc-51(e369)] or comma [bec-1(ok691), 
atg-2(bp576 ), atg-3(bp412), atg-7(bp422), atg-13(bp414), atg-
18(gk378), unc-51(e369)] stages. As these genes function in 
different steps of the autophagy pathway, these results suggest 
that the autophagy pathway, rather than potential autophagy-
independent functions of individual autophagy genes, regulates 
apoptotic cell corpse number during C. elegans embryogenesis.

Among the autophagy mutant alleles tested, only bec-1(ok691) 
animals are maintained as heterozygotes due to developmental 
and fertility defects in homozygous animals. Therefore, bec-
1(ok691) homozygous embryos from heterozygous adults are 
expected to carry a maternal supply of the bec-1 gene product. 
To further deplete the maternal bec-1 gene product, a strain was 
constructed in which the homozygous bec-1(ok691) animals were 
kept alive and fertile by an extrachromosomal array expressing a 
functional BEC-1::mRFP transgene.38 Since the expression of the 
repetitive extrachromosomal array is repressed in the C. elegans 

process, and the deregulation of autophagy has been linked to a 
variety of diseases including cancer and neurodegenerative dis-
eases.13 The initiation of autophagy involves the formation of 
autophagosomes, double-membraned vacuoles surrounding the 
intracellular materials targeted for degradation, including dam-
aged organelles, protein aggregates and intracellular pathogens. 
Autophagosomes eventually fuse with lysosomes, resulting in the 
acidification and degradation of their contents. The process of 
autophagy produces ATP and metabolic precursors such as amino 
acids and fatty acids, which allows cells to maintain nutrient and 
energy homeostasis, and thereby enhances survival during stress. 
Besides autophagy, components of the autophagy machinery 
may participate in other membrane-trafficking events, including 
endocytosis and endocytic trafficking, phagocytosis, secretion 
and the recruitment of GTPases and other signaling molecules to 
intracellular membranes.15-23

There are several lines of evidence indicating that the auto-
phagy pathway, or at least certain autophagy proteins, contribute 
to efficient apoptotic corpse clearance, either by generating “eat-
me” signals in dying cells or through a role in the phagocytosis of 
apoptotic corpses. Qu et al.24 demonstrated defective PS exposure 
on dying cells and defective apoptotic corpse clearance in mam-
malian embryoid bodies lacking either Becn1 or Atg5. Mellen et 
al.25,26 demonstrated defective PS exposure on dying cells and 
defective apoptotic corpse clearance in chick embryo retinas 
treated with the autophagy inhibitor, 3-methyladenine. Martinez 
et al.27 showed that the autophagy genes, BECN1, ATG5 and 
ATG7, but not ULK1, are required for the phagocytosis of apop-
totic cells by macrophages, whereas Konishi et al.28 found that 
only BECN1, and neither ATG5 nor ULK1, are required for mac-
rophage engulfment of apoptotic cells. In C. elegans, Ruck et al.29 
demonstrated a role for the C. elegans orthologs of VPS30/ATG6/
BECN1, ATG18 and ULK1 (bec-1, atg-18, unc-51, respectively) in 
germ cell corpse clearance in the adult gonad, and Li et al.30 dem-
onstrated a role for the C. elegans autophagy genes, lgg-1 (ortholog 
of ATG8/MAP1LC3A/LC3), atg-18 and epg-5, but not unc-51, in 
Q cell neuroblast corpse clearance in the L1 larval stage.

These studies suggest that autophagy proteins may be crucial 
for apoptotic corpse clearance during programmed cell death. 
However, no previous studies have directly examined whether 
autophagy proteins are essential for apoptotic corpse clear-
ance during embryonic development. Of note, Takacs-Vellai 
et al.31 reported that a null mutation in the autophagy gene,  
bec-1, increased the number of apoptotic cell corpses in C. elegans 
embryos. These results were hypothesized to reflect increased cas-
pase-dependent apoptosis in the setting of BEC-1 deficiency. An 
open question is whether defects in apoptotic corpse engulfment 
may also contribute to increased apoptotic corpse numbers in bec-
1-null C. elegans embryos. In addition, it is unknown whether the 
phenotype of increased corpses in C. elegans is specific to muta-
tion of bec-1, a gene that has multiple functions in membrane 
trafficking16,17 and that encodes a protein which interacts with 
the antiapoptotic protein, CED-9/BCL2,32 or whether this phe-
notype is also observed in other autophagy mutant nematodes.

To address these questions, we analyzed cell corpse numbers 
and the kinetics of cell corpse clearance in C. elegans embryos 
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product; z, zygotic gene product) embryos had a more striking 
increase in the number of cell corpses detected than bec-1(ok691)
(m+z-) embryos as compared with wild-type animals [Fig. S1A;  

germline,39,40 and the arrays are randomly lost during meiosis,41 
the mRFP(-) embryos therefore lack both maternal and zygotic 
bec-1. We found that bec-1(ok691) (m-z-) (m, maternal gene 

Figure 1. Detection of increased numbers of cell corpses in autophagy-mutant strains during C. elegans embryogenesis. (A) Representative DIc  
images and (B) quantification of numbers of apoptotic corpses in indicated C. elegans genotype, as detected by DIc microscopic analysis of the head 
region during bean, comma and 1.5-fold stages of embryogenesis. Wild-type (N2) and the engulfment mutant ced-1(e1735) strains were included for 
comparison. Arrowheads denote representative apoptotic corpses. scale bar: 10 μm. Bar graph shows mean ± s.e.m. from at least 20 embryos for each 
genotype at each stage. *p < 0.05, **p < 0.01, ***p < 0.001 vs. wild-type embryos at the same stage of development; t-test.
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another study, autophagy inhibition did not block PS exposure 
in dying cells in the chick optic nerve or in later stages of retinal 
development.26 To determine whether autophagy is required for 
PS exposure on apoptotic corpses in live C. elegans embryos, we 
expressed GFP-labeled human Annexin V under the control of the 
dyn-1 promoter, which drives ubiquitous expression in embryos.7 
Annexin V is a protein which binds to PS and is commonly 
used to detect PS exposure on the surface of apoptotic cells. The 
SEL-1 signal peptide domain was added to the N-terminus of 
GFP::Annexin V to promote the secretion of the fusion protein.42 
Since bec-1(ok691) mutants showed the most severe cell corpse 
clearance defect (Figs. 1 and 2), we compared GFP::Annexin 
V fluorescence in the embryos of wild-type N2, ced-1(e1735), 
bec-1(ok691) animals and ced-1(e1735); bec-1(ok691) animals  
(Fig. 4). In the wild-type and the engulfment mutant ced-1(e1735) 
animals, GFP::Annexin V was highly enriched around apoptotic 
cell corpses with the GFP::Annexin V signal forming a ring-like 
structure decorated with aggregated puncta (Fig. 4E and F). The 
localization of GFP::Annexin V in vivo was better visualized 
after deconvolution of the epifluorescence images removing the 
optic distortion using a point spread function (Fig. 4I and J). 
Similar GFP::Annexin V rings were also detected around apop-
totic cell corpses in bec-1(ok1691) and ced-1(e1735); bec-1(ok691) 
embryos (Fig. 4G, H, K and L). Thus, these results demonstrate 
that bec-1 is not required for PS exposure in dying cells during  
C. elegans development.

Partial rescue of the persistent cell corpse phenotype in 
bec-1(ok691) embryos by expression of bec-1 under the con-
trol of the ced-1 promoter but not the egl-1 promoter. The lack 
of a defect in PS exposure in apoptotic corpses in bec-1(ok691) 
embryos suggested that autophagy in the dying cell may not 
be essential to generate engulfment signals, and rather, that the 
requirement for autophagy genes in the timely degradation of 
apoptotic corpses in C. elegans embryogenesis may instead reflect 
the recently described function of components of the autophagy 
machinery in the removal of apoptotic corpses by phagocytic 
cells. To evaluate this hypothesis, we determined whether the 
corpse clearance defect of bec-1(ok691) animals could be rescued 
by expressing bec-1 full-length cDNA under the control of the 
egl-1 promoter, which is active in apoptotic corpses,35,43 and/or by 
expressing bec-1 full-length cDNA under the control of the ced-1 
promoter, which is active in healthy cells capable of engulfment.35 
In both cases, we monitored the expression constructs by fusing 
an mCherry moiety to the N-terminus of BEC-1 (Fig. 5A and B).

We confirmed that P
egl-1

mcherry::bec-1 led to the expression 
of mCherry::BEC-1 exclusively in dying cells (Fig. 5A). This is 
predicted as EGL-1 is a BH3 domain protein that functions as 
an upstream activator of apoptosis, and its expression is detected 
only in cells undergoing apoptosis.35,43 Consistent with the lack of 
a defect in PS exposure in bec-1 (ok691) embryos, we found that 
the expression of bec-1 driven by the egl-1 promoter in apoptotic 
cells failed to reduce the number of cell corpses in bec-1(ok691) 
embryos (Fig. 5C). Together, these results suggest that bec-1 
expression does not play a significant role in the dying cell to 
mediate apoptotic corpse clearance during C. elegans embryonic 
development.

p < 0.001; 2-way ANOVA analysis for comparison of magnitude 
of increase in bec-1(ok691)(m-z-) embryos vs. in bec-1(ok691)
(m+z-) embryos for both bean and comma stages]. Thus, the 
analysis of bec-1(ok691)(m+z-) animals may underestimate the 
physiological consequences of complete loss of bec-1 gene func-
tion. However, bec-1(ok691)(m-z-) animals displayed a more 
severe developmental defect than those of bec-1(ok691)(m+z-) 
animals; many bec-1(ok691)(m-z-) embryos were developmen-
tally arrested prior to the bean stage, making it difficult to 
perform more detailed analyses in this strain. Therefore, subse-
quent experiments using bec-1(ok691) were performed with bec-
1(ok691)(m+z-) embryos.

Delayed clearance of apoptotic cell corpses in autophagy 
mutant embryos. The observation of increased numbers of cell 
corpses during development may be due to increased cell death 
events, delayed cell corpse removal or both. To investigate 
whether the removal of cell corpses was delayed in autophagy 
mutant animals, we performed time-lapse DIC microscopy to 
analyze the duration of apoptotic cell corpse persistence. We 
analyzed at least one representative mutant strain for each 
group of autophagy genes (i.e., induction, vesicle nucleation, 
vesicle expansion/completion and recycling). In wild-type 
embryos, apoptotic cell corpses persisted an average of 21.3 ± 
1.4 min, with less than 6% of the cell corpses persisting more 
than 40 min and no corpses persisting for more than 50 min 
(Fig. 2). The autophagy mutant embryos, bec-1(ok691), atg-
2(bp576 ), atg-7(bp422), atg-18(gk378) and unc-51(e369) all 
showed notable delays in apoptotic cell corpse clearance, with 
corpses that persist for more than 60 min (Fig. 2). The mag-
nitude of delay varied in different mutants; the most severe 
defect was observed in bec-1(ok691) embryos, with nearly 
75% of corpses persisting more than 60 min. These kinetic 
analyses demonstrate that several different autophagy genes are 
required for efficient apoptotic corpse clearance during embry-
onic development.

To determine whether the delay in cell corpse clearance is due 
to a defect in engulfment or in the degradation of engulfed cell 
corpses, we monitored the localization of the reporter P

ced-1
ced-

1::gfp. CED-1 is a key cell surface receptor important for engulf-
ment, and cell corpse engulfment can be detected by observing 
CED-1::GFP surrounding cell corpses in engulfing cells that 
express CED-1::GFP.35 Similar percentages of cell corpses were 
engulfed in bec-1(ok691) embryos as compared with wild-type 
controls during the bean, comma and 1.5-fold stages (Fig. 3). 
Thus, in bec-1(ok691)(m+z-) animals, delayed corpse clear-
ance appears to be due to defects in the degradation of engulfed 
cell corpses, rather than defects in phagocytosis. However, bec-
1(ok691)(m-z-) embryos showed a significant defect in corpse 
engulfment (Fig. S1B). Therefore, bec-1 may play roles in both 
cell corpse engulfment and in the degradation of engulfed cell 
corpses.

The autophagy gene bec-1 is not required for the exposure of 
PS in C. elegans embryos. In previous reports, autophagy gene 
mutation or pharmacological inhibition of autophagy resulted in 
PS exposure defects and persistent apoptotic cell corpses in devel-
oping mouse embryoid bodies24 and chick retina.25 However, in 
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Figure 2. For figure legend, see page 129.
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Figure 3. engulfment of cell 
corpses in bec-1(ok691) mutant 
embryos. (A) Representative 
micrographs showing the 
expression of ceD-1::GFP epi-
fluorescence (middle) with the 
corresponding DIc (left) and 
merged (right) images in wild-
type (upper panel) and bec-
1(ok691) (lower panel) embryos 
at the bean stage. Pced-1 was 
used to drive the expression of 
ceD-1::GFP. solid arrowheads 
denote engulfed cell corpses 
detected by the presence of 
ceD-1::GFP surrounding the 
corpse and ceD-1::GFP-ex-
pression in the engulfing cell. 
Open arrowheads denote cell 
corpses that are not surround-
ed by ceD-1::GFP. (B) Quantifi-
cation of apoptotic cell corpses 
engulfed detected using the 
ceD-1::GFP marker during bean 
and comma stages of em-
bryogenesis. Bar graph shows 
mean ± s.e.m. for at least 10 
embryos for each genotype at 
each stage. Ns, not significant; 
t-test. scale bars: 10 μm.

In contrast, the expression of mCherry::BEC-1 under the con-
trol of the ced-1 promoter (which is widely used to drive transgene 
expression in engulfing cells35) resulted in nearly complete rescue 
of the corpse clearance defect in bec-1(ok691) embryos (Fig. 4C). 
The incomplete rescue may be due to different strength of expres-
sion from the transgene compared with the endogenous promoter 
and/or to the mosaic inheritance of the transgene. Although we 

occasionally detected the expression of P
ced-1

mcherry::bec-1 in apop-
totic cell corpses, the number of mCherry-positive corpses was too 
small to account for the magnitude of the rescue by the transgene. 
Taken together with our findings of a lack of corpse clearance 
defect rescue in embryos with egl-1 promoter-driven expression 
of mCherry::BEC-1, these data indicate that BEC-1 expression in 
engulfing cells is essential for efficient apoptotic corpse clearance.

Figure 2 (See opposite page). Defective clearance of cell corpses in C. elegans autophagy-mutant strains. histogram distributions of the duration of 
cell corpse persistence as observed by time-lapse DIc microscopy. The y-axis represents the percentages of cell corpses that persist within the speci-
fied duration range indicated on the x-axis. The numbers on top of each histogram indicate the mean duration (± s.e.m.). More than 22 corpses from 
more than five embryos were randomly chosen and followed for each genotype. DIc micrographs show apoptotic corpses (indicated by the arrow-
heads) in 10 min intervals from the appearance of a corpse (0 min) to 40 min. scale bar: 10 μm.
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engulfment genes that are not on the same chromosome, includ-
ing ced-1, ced-6 and ced-12.35,44,45

We found that the number of cell corpses detected in ced-
1(e1735), ced-6(n1813) or ced-12(n3261) single mutants  
(Fig. 6A–C) was greater than that observed in bec-1 single 
mutants (see Fig. 1). Of note, double mutants of bec-1(ok691) 
with ced-1(e1735), ced-6(n1813) or ced-12(n3261), all showed 
further increases in the numbers of cell corpses detected at 
bean, comma, and 1.5-fold stages compared with the single ced-
1(e1735), ced-6(n1813) or ced-12(n3261) mutant (Fig. 6A–C). 
These results suggest that bec-1 does not function through the 

Enhancement of corpse clearance defects in engulfment 
mutants, ced-1(e1735), ced-6(n1813) and ced-12(n3261) by 
bec-1(ok691). Our results above indicate that bec-1 functions 
in apoptotic corpse clearance during C. elegans embryogenesis. 
Therefore, we investigated whether bec-1 functions with or in 
parallel to two pathways that have been previously shown to be 
required for apoptotic corpse removal in C. elegans, the ced-1, 
ced-6, ced-7, dyn-1 pathway and the ced-2, ced-5, ced-12 pathway. 
Because the bec-1 gene is located on chromosome IV, we per-
formed genetic epistasis analysis by generating double mutants 
of bec-1(ok691) with strong loss-of-function alleles of known 

Figure 4. Lack of requirement for bec-1 in the exposure of phosphatidylserine in C. elegans corpses. Representative DIc images (A–D), the correspond-
ing epifluorescence images (E–H), and the corresponding deconvolution images (I–L) showing cell corpses labeled with GFP::Annexin V in vivo in 
the indicated C. elegans genotype. GFP::Annexin V expression was driven by the dyn-1 promoter as an integrated transgene. Arrows denote corpses 
labeled with GFP::Annexin V rings. scale bar: 10 μm.

Figure 5 (See opposite page). Partial rescue of corpse clearance defect of bec-1(ok691) mutant animals by ced-1 promoter-driven expression of bec-1, 
but not egl-1 promoter-driven expression of bec-1. (A) Representative immunofluorescence micrographs showing the expression of Pegl-1 mcherry::bec-1 
(left) with the corresponding DIc (middle) and merged (right) images in a bec-1(ok691). The embryo was stained with anti-dsRed antibodies. (B) Repre-
sentative micrographs of Pced-1 mcherry::bec-1 expression in a bec-1(ok691) embryo. mcherry fluorescence is shown in the left panel, with the corre-
sponding DIc image in the middle, and merged image in the right panel. For (A and B), arrowheads denote representative cells with McheRRY::Bec-1 
expression. (C) Quantification of apoptotic corpse numbers detected by DIc microscopy in the head region during bean, comma and 1.5-fold stages 
of embryogenesis. Bar graph shows mean ± s.e.m. for at least 20 embryos for each genotype at each stage. Pced-1 was used to drive the expression of N’ 
mcherry-fused bec-1 full-length cDNA in cells capable of engulfment. Pegl-1 was used to drive the expression of mcherry::bec-1 in cells undergoing apop-
tosis. *p < 0.05, **p < 0.01, ***p < 0.001 represent statistical comparison vs. wild-type embryos and #p < 0.05, ##p < 0.01, ###p < 0.001 represent statistical 
comparison vs. bec-1(ok691) embryos; t-test. scale bars: 10 μm.
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Figure 5. For figure legend, see page 130.
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vitro model for mammalian embryonic development, we did 
not find that autophagy genes were necessary for PS exposure 
in dying cells. Rather, our results are consistent with the emerg-
ing evidence that the autophagy machinery has a crucial func-
tion in mediating the efficient clearance of apoptotic corpses by 
phagocytes.27-30

The precise mechanism(s) by which autophagy genes mediate 
efficient apoptotic corpse clearance remain unclear. Other stud-
ies in autophagy-deficient mammalian macrophages27 and post-
embryonic corpse clearance in C. elegans30 point to a defect in 
apoptotic corpse degradation, rather than uptake. For example, 
in C. elegans Q cell corpse clearance, the recruitment of phago-
some/lysosome markers RAB5A, RAB7A and CTNS are delayed 
in two autophagy mutants, atg-18(gk378) and epg-5(tm3425),30 
suggesting that autophagy plays a role in the degradation of 
engulfed cell corpses by regulating the process of phagosome 
maturation. This is consistent with studies that have demon-
strated a role for certain autophagy proteins in phagolysosomal 
maturation in other biological contexts, including macrophage 
or dendritic cell engulfment of toll-like receptor ligands.15,27,46 
Our study further supports the concept that the autophagy gene, 
bec-1, may function in the degradation of engulfed apoptotic 
corpses. Moreover, complete loss of both maternal and zygotic 
bec-1 also results in a defect in apoptotic corpse engulfment. 
Thus, autophagy genes may play roles in both apoptotic corpse 
engulfment and apoptotic corpse degradation during C. elegans 
embryogenesis.

The PIK3C3/VPS34-BECN1-containing class III PtdIns3P 
kinase complex plays a conserved role in apoptotic corpse removal 
in both mammalian cells27 and in C. elegans.29 This complex has 
autophagy-independent membrane trafficking functions, includ-
ing a role in endocytosis,16,17 endocytic retrograde transport29 and 
LC3 recruitment to phagosomes;15 such functions may explain 
the more severe corpse clearance defect observed in our study 
in bec-1 vs. other autophagy gene mutant animals. In addition, 
BECN1 has been shown to interact with the mammalian ortho-
log of CED-10, the Rho GTPase, RAC1, and proposed to work 
in concert with RAC1 to coordinate actin dynamics and pro-
mote efficient apoptotic cell engulfment.28 It will be interesting 
to examine whether C. elegans BEC-1 interacts with CED-10 and 
is required for its function in C. elegans corpse removal; this pos-
sibility may also explain the more severe corpse clearance defect 
in bec-1 vs. other autophagy gene mutant nematodes.

Although the bec-1(ok691) corpse clearance delay phenotype 
was the most severe, we also observed corpse clearance defects 
in nematodes with mutations in other autophagy genes that 
are not part of the class III PtdIns 3-kinase complex, includ-
ing atg-2, atg-7, atg-18 and unc-51. The differences in severity of 
corpse clearance defects may reflect differences in the underlying 
molecular basis of each mutant allele used (bec-1(ok691),29 atg-
2(bp576 ) (Dr. Hong Zhang, personal communication), and atg-
18(gk378)47 are predicted null alleles; unc-51(e369) is a strong 
loss-of-function allele;48 whereas atg-7(bp422) has a single amino 
acid change in the encoded protein that is predicted to affect pro-
tein activity);49 partial gene redundancy with homologs that are 
not detected by primary sequence similarities; and/or autophagy 

ced-1, ced-6 and ced-7 pathway nor through the ced-2, ced-5 and 
ced-12 pathway for corpse removal.

Discussion

Our results demonstrate that several different autophagy gene 
mutant nematodes have increased embryonic corpses and 
delayed apoptotic corpse clearance. To our knowledge, these 
findings represent the first demonstration of a role for autophagy 
genes in apoptotic corpse clearance during embryonic develop-
ment in an intact organism. These findings extend previous 
studies indicating a role for autophagy genes in corpse clear-
ance in the C. elegans adult gonad29 and L1 larval stage Q cells.30 
In contrast to results in mammalian embryoid bodies,24 an in 

Figure 6. enhancement of corpse clearance defects by bec-1(ok691) 
in engulfment mutants, ced-1(e1735) (A), ced-6(n1813) (B), and ced-
12(n3261) (C). Bar graphs show mean ± s.e.m. at bean, comma, and 
1.5-fold stages during embryogenesis. At least 20 embryos for each 
genotype were analyzed at each stage. *p < 0.05, ** p < 0.01, ***p < 
0.001 for comparison of double mutant on right vs. single mutant on 
left; t-test.
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transgene enEx919[P
bec-1

bec-1::mRFP] was introduced to rescued 
bec-1(ok691) to study the maternal effect of bec-1 in bec-1(ok691).

Microscopy and quantification. Live embryos were collected 
onto 3% agarose pads for imaging on a Zeiss Imager M2 micro-
scope equipped with Nomarski differential interference contrast 
(DIC) and epifluorescence optics. Stack images with 0.8 μm 
between each slice were acquired with a CoolSnap HQ2 CCD 
camera using Axiovision software (Zeiss). Apoptotic cell corpses 
were identified by their highly refractile appearance under DIC, 
and the corpses in the head region of embryos were scored at dif-
ferent developmental stages defined on the basis of the morphol-
ogy of the embryos. Embryos that were developmentally arrested 
were excluded from analysis. For time-lapse imaging, embryos 
were mounted onto 3% agarose pads sealed with petroleum jelly. 
Stack DIC images with 0.8 μm between each slice were recorded 
at 2 min intervals for over 2 h to score the duration of apoptotic 
cell corpses. Less than five corpses were randomly chosen per 
embryo and > 22 corpses were analyzed for each genotype. p-val-
ues for pair-wise comparison were calculated using a t-test. For 
GFP::Annexin V and CED-1::GFP detection, deconvolution of 
Z-stack epifluorescence images was performed with AutoQuant 
software (Bitplane) using a blind deconvolution algorithm  
(20 iterations, medium noise). Engulfment of cell corpses in bec-
1(ok691)(m+z-) was analyzed by the detection of CED-1::GFP 
surrounding the cell corpses inside engulfing cells that express 
CED-1::GFP. Engulfment of cell corpses in bec-1(ok691)(m-z-) 
was analyzed using the P

ced-1
ced-1c::gfp reporter, which expresses 

the cytoplasmic fragment of CED-1 fused to GFP. Engulfed cell 
corpses were recognized as dark spheres surrounded by cytoplas-
mic CED-1c::GFP.

Plasmid construction and transgenic strains. For Pced-
1mcherry::bec-1, a full-length bec-1 cDNA fragment with 
N-terminal SalI-BamHI sites and a C-terminal KpnI site was 
cloned into the SalI and KpnI sites of pZZ954, which contains 
a 5.1 kb ced-1 promoter and the unc-54 3'UTR. To visualize 
expression of the construct, a SalI-mcherry-BamHI fragment was 
cloned into the resulting plasmid to create Pced-1mcherry::bec-1. 
Pced-1mcherry::bec-1 was maintained as extrachromosomal 
arrays generated by microinjection into bec-1(ok691)/nT1[qIs51] 
together with the dominant roller marker pRF4 [rol-6(su1006 )]. 
Embryos negative for nT1[qIs51] GFP and positive for mCherry 
were used to quantify the number of apoptotic cell corpses.

For Pegl-1mcherry::bec-1, a full-length bec-1 cDNA frag-
ment was inserted between the BamHI-AgeI sites of pZZ609, 
which contains a 1 kb egl-1 promoter and a 5.6 kb egl-1 3'UTR. 
mCherry was cloned into the BamHI site upstream of bec-1 
to create Pegl-1mcherry::bec-1. The plasmid containing Pegl-
1mcherry::bec-1 was injected into bec-1(ok691)/nT1[qIs51] 
together with the dominant roller injection marker pRF4 [rol-
6(su1006 )] to generate extrachromosomal transgenic lines. The 
extrachromosomal arrays were integrated by irradiation followed 
by five outcrosses. Expression of the transgene was confirmed 
by RT-PCR and immunostaining. For immunofluorescence 
staining, the embryos were fixed with 4% paraformaldehyde, 
freeze-cracked and treated with dimethylformamide (DMF, 
Sigma-Aldrich Corp., D4551). The embryos were stained with 

pathway-independent functions of the encoded autophagy pro-
tein. Nonetheless, the overlapping phenotypes in bec-1, atg-2, 
atg-7, atg-18 and unc-51 mutant animals provide strong genetic 
support that the autophagy pathway, rather than additional func-
tions of autophagy genes, may be required for the proper removal 
of apoptotic cell corpses.

The role of unc-51, the C. elegans ortholog of Atg1/ULK1, in 
embryonic corpse clearance is noteworthy, as unc-51 and ULK1 
were found to be dispensable for C. elegans Q cell corpse clear-
ance and mammalian macrophage engulfment of apoptotic 
cells.28,30 However, our results are consistent with the previ-
ous report in C. elegans which found a role for unc-51 in germ 
cell corpse clearance in the adult gonad.29 It is not yet known 
whether unc-51/ULK1 truly functions in a cell-type or devel-
opmental stage-specific manner in apoptotic corpse clearance, 
or whether other factors may explain the contrasting findings 
in different studies. As UNC-51 and ULK1 are reportedly not 
involved in phagosomal maturation,29,30 the requirement for 
UNC-51 in efficient embryonic corpse clearance (the present 
study) and germ cell clearance in the adult gonad29 may be an 
important clue that the autophagy pathway contributes via other 
mechanisms to apoptotic corpse clearance in certain develop-
mental contexts.

Our epistasis analyses indicate that bec-1 likely functions in 
parallel with the two cell corpse clearance pathways, the ced-
1, ced-6, ced-7 and dyn-1 pathway, and ced-2, ced-5 and ced-12 
pathway. It is possible that bec-1 is part of a third pathway that 
converges on ced-10, especially in view of the recently described 
interaction between the mammalian orthologs of BEC-1 and 
CED-10.28 Alternatively, bec-1 and other autophagy genes may 
function in parallel to ced-10 in promoting efficient apoptotic 
corpse clearance. Further genetic studies will be required to 
determine the precise relationships between bec-1 (and other 
autophagy genes) and the major known C. elegans engulfment 
pathways. Such studies should facilitate a deeper understanding 
of the molecular and cellular events that likely play a conserved 
role in apoptotic corpse clearance.

Materials and Methods

Strains and genetics. C. elegans strains were maintained at 23°C 
as described.50 All strains were grown on nematode growth 
media (NGM) plates and fed E. coli bacteria, strain DA837.  
C. elegans var Bristol strain N2 obtained from the Caenorhabditis 
Genetics Center was used as the wild-type reference. The fol-
lowing mutants were used: LGI (linkage group I), ced-1(e1735), 
ced-12(n3261), epg-8(bp251); LGIII (linkage group III),  
atg-13(bp414), ced-6(n2095); LGIV (linkage group IV),  
atg-3(bp412), atg-7(bp422), bec-1(ok691); LGV (linkage 
group V), atg-18(gk378), unc-51(e369), enIs35[P

ced-1
ced-1::gfp,  

P
ced-1

2xFYVE::mRFP, unc-76(+)]; and LGX (linkage group X), 
atg-2(bp576 ). The balancer for LGIV; LGV, nT1[qIs51], was used 
to balance bec-1(ok691) mutants. The mutants atg-2(bp576 ), 
atg-3(bp412), atg-7(bp422), atg-13(bp414) and epg-8(bp251) 
were kindly provided by Dr. Hong Zhang (National Institute 
of Biological Sciences, Beijing, China). The extrachromosomal 
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anti-dsRed antibodies (rabbit, 1:100 in PBS, Clontech 632496) 
and labeled with goat-anti-rabbit AlexaFluor594 (donkey, 1:250 
in PBS, Invitrogen A21207). After five outcrosses, live embryos 
negative for nT1[qIs51] GFP were used to quantify the number 
of apoptotic cell corpses.

For Pdyn-1sel-1sp::gfp::annexinV, a 3.2 kb dyn-1 promoter 
was cloned to drive expression of gfp::annexinV in the L754 vec-
tor. An 85 amino acid sel-1 signal peptide was amplified from 
pSZ8 (gift of Dr. Michael O. Hengartner, University of Zurich, 
Switzerland) and inserted into the N-terminus of gfp::annexinV 
to facilitate secretion of the protein. The plasmid contain-
ing Pdyn-1sel-1sp::gfp::annexinV was injected into ced-1(e1735) 
together with the dominant roller injection marker pRF4 [rol-
6(su1006 )] to generate extrachromosomal transgenic lines. The 
extrachromosomal arrays were integrated by irradiation followed 
by five outcrosses.
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