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Abstract
Re-parameterized regression models may enable tests of crucial theoretical predictions involving
interactive effects of predictors that cannot be tested directly using standard approaches. First, we
present a re-parameterized regression model for the linear X linear interaction of two quantitative
predictors that yields point and interval estimates of one key parameter – the cross-over point of
predicted values – and leaves certain other parameters unchanged. We explain how resulting
parameter estimates provide direct evidence for distinguishing ordinal from disordinal
interactions. We generalize the re-parameterized model to linear X qualitative interactions, where
the qualitative variable may have two or three categories, and then describe how to modify the re-
parameterized model to test moderating effects. To illustrate our new approach, we fit alternate
models to social skills data on 438 participants in the NICHD Study of Early Child Care. The re-
parameterized regression model had point and interval estimates of the cross-over point that fell
near the mean on the continuous environment measure. The disordinal form of the interaction
supported one theoretical model – differential susceptibility – over a competing model that
predicted an ordinal interaction.
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Methods for testing interactive effects of predictors using multiple regression analysis are
widely known and used. Several excellent texts (e.g., Aiken & West, 1991; Cohen, Cohen,
West, & Aiken, 2003) discuss how to test quantitative X quantitative, quantitative X
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qualitative, or qualitative X qualitative interactions. If a significant interaction is detected,
follow-up analyses are typically required to characterize the nature of the interaction, such
as whether the interaction is ordinal or disordinal. A re-parameterized regression model that
distinguishes clearly between ordinal and disordinal interactions and obviates the need for
involved follow-up calculations to determine point and interval estimates of key parameters
would be a useful adjunct to standard approaches. Here we propose such an approach and
illustrate it using data for gene by environment (GXE) interactions. Although we selected
GXE data for the demonstration, the approach advocated herein is general in nature and thus
is applicable to a wide range of research domains in which statistical interactions are
evaluated using regression analysis.

After discussing briefly why our new approach may be of use, we show how a linear
regression model with a linear X linear interaction of two predictors can be re-parameterized
to estimate parameters that characterize the ordinal or disordinal nature of the interaction
and then adapt this approach to qualitative X quantitative interactions. We also apply our
approach to a set of relevant data to demonstrate the unique outcomes obtained using our
modeling approach.

Statistical Interactions in Substantive Research
Our efforts here were motivated by the fact that researchers often formulate interaction
hypotheses imprecisely. If interaction hypotheses are phrased non-specifically, misfit
between theoretical formulations and trends in data may go unrecognized. If methods for
testing specific interaction hypotheses were developed, researchers could be challenged to
provide more detail regarding the expected form of interactions. Without clear predictions,
no definitive evidence regarding confirmation or disconfirmation of theoretical predictions
is generated, aside from statistical significance of the interaction effect. Indeed, researchers
often present disordinal interaction plots that appear inconsistent with their theories, but
theory-data mismatch is rarely, if ever, noted. Armed with clearer predictions, misfit
between predictions and results might be more readily recognized, leading to the need to
revise theories to accord better with data.

One limitation of most research investigating interaction effects is lack of detail regarding
the predicted form of the interaction. Researchers could specify whether an ordinal or
disordinal interaction is predicted. For example, educational researchers might want to
estimate the age at which one early intervention treatment becomes more effective than
another, so policy makers can tailor interventions to children of appropriate ages. Or, Lynn
(1999) offered a controversial maturational theory of intellectual development that holds that
earlier maturation in females will lead to higher performance relative to males on
intelligence tests at early ages. But, by mid to late adolescence, males will begin to
outperform females due to their later maturation and larger brain size. Research contexts
such as these suggest that interactions should be disordinal, with a cross-over point at some
point on age.

One domain in which specific forms of interaction differentiate theoretical positions is the
study of GXE interactions. Many GXE studies(e.g., Caspi et al., 2002, 2003) are based on a
diathesis-stress model of environmental action (Belsky et al., 2009). Under diathesis-stress
(Zuckerman, 1999), individuals with a “ risk or vulnerability” gene are affected negatively
by poor environments, whereas individuals with a different version of the same gene are
relatively unaffected by environments. In the best environments, persons with differing
polymorphisms may exhibit similar levels of behavior, but behavior of the groups diverges
with worsening environmental conditions. Diathesis-stress therefore leads to prediction of a
GXE interaction with the ordinal form shown in Figure 1A.
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Recently, two research teams advanced a different theoretical model, differential-
susceptibility (Belsky, 1997, 2005; Boyce & Ellis, 2005; Ellis, Boyce, Belsky, Bakermans-
Kranenburg & Van IJzendoorn, 2011). Differential-susceptibility also leads to prediction of
a GXE interaction, but one disordinal in form. Under differential-susceptibility, persons
carrying a so-called risk allele may simply be more malleable. From this perspective (and in
accord with diathesis stress), persons with a putative high-risk allele should exhibit poorer
outcomes in poor environments and similar outcomes to persons with a low-risk allele in
average environments. However, the model suggests that, in very good environments,
persons with a putative high-risk allele will show outcomes that are superior to persons with
the low-risk allele. This theoretical conceptualization leads to prediction of the disordinal, or
cross-over, interaction in Figure 1B. Thus, diathesis-stress and differential susceptibility
theories make identical predictions about the differing slopes for the two gene allele groups;
what distinguishes predictions under the two models is the location of the cross-over point
(cf.Figure 1).

Methods for testing interactions reflecting differential susceptibility have been proposed
(e.g., Belsky et al., 2007; Belsky & Pluess, 2009; Ellis et al., 2011) and applied to GXE data
(e.g., Bakermans-Kranenburg, Van IJzendoorn, Pijlman, Mesman, & Juffer, 2008). Our goal
is to develop a more direct test of competing predictions regarding the ordinal vs. disordinal
nature of an interaction that is widely applicable across research domains, including GXE
studies.

Regression Equations with a Linear X Linear Interaction
Standard Parameterizations

A linear regression model with a linear X linear interaction can be written as:

(1)

where Yi is the score of person i (i = 1, … , N) on the dependent variable, B0 is the intercept,
the Bj (j = 1, 2, 3) are regression weights for the three predictors, X1i and X2i are scores of
person i on predictors X1 and X2, respectively, and, Ei is a stochastic error score. The third
predictor in Equation 1 is the product of X1i and X2i and carries the interactive effects of X1i
and X2i if the two lower-order effects (i. e., X1i and X2i) are included in the equation
(cf.Cohen, 1978).1

Equation 1 can be fit using raw scores on X1 and X2, but regression coefficients and
standard errors for X1 and X2 can be rather volatile if the product term is in the equation. To
reduce these problems, many experts (e.g., Cohen et al., 2003), recommend centering X1
and X2 at their respective means, leading to:

(2)

where  are sample-mean-centered versions of X1 and X2, respectively, asterisks on

 through  indicate weights for mean-centered predictors, and other symbols were
defined above. Sample-mean-centering often reduces correlations among predictors and
leads to many interpretive advantages (see, e.g., Aiken & West, 1991; Cleary & Kessler
1982).

1We used the i subscript for persons in Equation 1 for precision. In the remainder of the paper, we typically drop the i subscript to
simplify our notation and presentation, but retain the subscript if context demands.
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A linear X linear interaction effect of X1 and X2 on a quantitative outcome variable Y can
assume various forms. But, one feature of all linear X linear interactions is that predicted
values from the fitted equation for different values of X2 converge to a single cross-over
point at some point on X1, if predicted values are projected onto the (Y, X1) plane. Of
course, predicted values for X1 converge to a single cross-over point at some value of X2 if
predicted values are projected onto the(Y, X2) plane.

Placement of the cross-over point has led researchers to distinguish between ordinal and
disordinal interactions. In brief, an ordinal interaction has the cross-over of predicted values
at the boundary (e.g., Figure 1A) or outside the range of observed values on X1 in the study
(e.g., Figure 2A), whereas a disordinal interaction contains a cross-over of predicted values
within the observed range of values on X1 as in Figures 1B and 2B. Therefore, the location
of the cross-over point is central to differentiating the two forms of linear interaction.

Consistent with Aiken and West (1991), we derived a point estimator for the cross-over
point as follows: Select two values for X2 (e.g., 0 and 1), insert one value for X2 into the
right side of Equation 1, insert the other value for X2 into the right side of Equation 1, set
the two equations to equality, and solve for X1:

(3)

which, after a little algebra, yields:

(4)

where C is a symbol for the cross-over point, and other symbols were defined above. An
analog of Equation 4 can be obtained using mean-centered predictors. This solution is:

(5)

which yields the cross-over point C* in a mean-centered metric. To calculate the cross-over
point in the raw metric of X1, one must add X̄1 to each side of Equation 5, leading to:

(6)

where symbols in Equations 3–6 were defined previously (see Aiken & West, 1991, for
details).

Re-parameterized Equation
Derivation of re-parameterized model—Centering a predictor at its sample mean is a
choice, with many advantages (Aiken & West, 1991; Cleary & Kessler, 1982), but not the
only choice. We decided to center X1 at C, the cross-over point on X1. This involved
substituting (X1 − C) in place of X1 in Equation 1. To determine the expected value of Y (or
Ŷ) when X1 is at the cross-over point, we solved the following equation:

(7)

where E( ) is the expected value operator, θ is any random value of X2, and other symbols
were defined above. Substituting Equation 4 into Equation 7 yields:
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(8)

which simplifies to

(9)

where A0 represents the expected value of Y for X1 = C, and other symbols were defined
above.

Predicted values for varying values of X2 are identical when X1 = C, because predicted
values fall at a single point for any value of X2. We altered Equation 1 by replacing X1 with
(X1 − C) and placing the new intercept (Equation 9) in the equation. In this model, B2
becomes inestimable, because X2 has no relation to Y at the cross-over point on X1. The re-
parameterized equation thus becomes:

(10)

where all symbols were defined previously. Equation 10 is a four-parameter equation
because C is now a parameter to be estimated, with the same number of free parameters as
Equations 1 and 2. Symbols for B1 and B3 remain the same as in Equation 1 because these
coefficients are unchanged by re-centering X1 at C. Equation 10 is a re-parameterization of
Equation 1 (as shown in supplemental material2) and thus leads to identical predicted values
when plotting interactions. We also note that, because of its form, Equation 10 must be
estimated using a non-linear regression program, rather than a standard linear regression
program.2

As shown above, a point estimate of the cross-over point C is simple to compute using
Equations 1 and 4 or Equations 2 and 6, but an interval estimate is more difficult to
compute. Using Equation 10, the SE of Ĉ can be used to calculate an interval estimate (e.g.,
a 95% CI); estimation of SEs of parameters in Equations 1, 2, and 10 is discussed in
supplemental material.3

Regression Equations with Linear X Qualitative Interaction
The foregoing results hold for a linear X linear interaction of two quantitative predictors, but
must be modified if one of the predictors is qualitative in nature. Here, we consider
parameterizations with two-group and three-group qualitative variables.

Standard Parameterizations
Dichotomous grouping—If only two groups are used (e.g., low-risk vs. high-risk), the
regression model is similar to Equation 1. Let X1 represent the quantitative predictor, and D2
a dummy variable (0 = group 1, and 1 = group 2). The standard regression model is:

2Technical details demonstrating the equivalence of the standard and re-parameterized regression models are contained in
supplemental material available from XXX. The supplemental material also includes syntax for carrying out these analyses in non-
linear regression programs in SAS, R, and SPSS.
3Given constraints of space, examples of fitting Equations 1, 2, and 10 to data with linear X linear interaction of two quantitative
predictors – both ordinal and disordinal interactions shown in Figures 2A and 2B, respectively – could not be included in the present
manuscript. The supplemental material available from XXX demonstrates the fitting of models and interpretation of results for data
with ordinal and disordinal interactions. . The supplemental material also provides details regarding estimation of SEs of parameter
estimates in the alternative models considered in this paper.
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(11)

where D2i is the score of person i on dummy variable D2, the subscript 2 on D2i is a
reminder that group 2 has the unit value on the dummy variable, and other symbols were
defined above.

A mean-centered version of Equation 11 can also be formulated as:

(12)

where asterisks on regression weights indicate they are for mean-centered predictors, and
other symbols were defined above. Only the quantitative predictor X1 was mean-centered;
centering the dummy variable D2 would lead to a less interpretable set of regression weights.

Ternary grouping—The standard parameterization of a regression model with a linear X
qualitative interaction involving three groups on the latter variable is:

(13)

where D2 and D3 are dummy variables with unit values for persons in groups 2 and 3,
respectively, and other symbols were defined above. In Equation 13, group 1 is the reference
group, and D2 and D3 allow one to determine whether groups 2 and 3 differ from group 1 in
mean level (or intercept) or in moderation with X1. A mean-centered version of Equation 13
is:

(14)

where all symbols were defined above. Again, only the quantitative predictor was mean-
centered, to retain interpretive advantages of regression coefficients for the dummy
variables.

Model comparisons to test lower-level and interactive effects using Equations 13 or 14 are
well known (cf. Cohen et al., 2003, pp. 308–316), so are not detailed here. But, Equations
11–14 are only as informative about the ordinal or disordinal nature of the interaction as was
true of Equations 1 and 2. Modified versions of Equations 4 and 6 could be developed to
estimate cross-over points for different groups, but SEs or CIs would still be unavailable for
these estimates.

Re-parameterized Equation
Dichotomous grouping—A more directly informative understanding of a linear X
qualitative interaction is obtained using the re-parameterized equation:

(15)

where all symbols were defined above. The following equation is an equivalent formulation:

(16)

where B1 and B2 are slopes on X1 for groups 1 and 2, respectively, and other symbols were
defined above. Equations 15 and 16 lead to exactly the same R2 as Equations 11 and 12.
Thus, Equations 11, 12, 15, and 16 are equivalent regression models, with the same number
of free parameters and the same R2. But, Equations 15 and 16 have a unique advantage over
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Equations 11 or 12: the direct estimate for the cross-over point C and its SE. The difference
between Equations 15 and 16 is the way in which the slope on X1 for group 2 is represented.
In Equation 15, B3 is the difference between slopes on X1 for groups 1 and 2, so the slope
for group 2 must be calculated as B1 + B3; in Equation 16, B2 is a direct estimate of the
slope on X1 for group 2.

Ternary grouping—If the qualitative variable represents the presence of three groups, one
modified version of Equation 13 can be written as:

(17)

where B1 through B3 are regression slopes on X1 for groups 1 through 3, respectively, and
other terms were defined above. Equation 17 contains a single cross-over or convergence
point C, so is a restricted re-parameterization of Equation 13. That is, Equation 17 has 5 free
parameters, whereas Equation 13 has 6 free parameters. Several alterations could be made to
Equation 17 to introduce an additional parameter; for example, one could fit the following
model:

(18)

where C12 (labeled simply C in Equation 17) and are the points at which regression lines for
groups 2 and 3, respectively, cross the line for group 1, and other symbols were defined
above. With the additional parameter, Equation 18 has the same number of free parameters
and R2 as Equation 13. Thus, a nested-model test of the difference in R2 for Equations 17
and 18 provides a 1 df test of the hypothesis that a single cross-over point holds for groups
1, 2, and 3.

Considerations Regarding Re-Parameterized Models
Assumptions Underlying Estimation of the Cross-Over Point

Using re-parameterized models to obtain interpretable point and interval estimates of C rests
on standard assumptions for linear regression. Three important assumptions are (a) linearity
of relations among variables, (b) equal measurement precision and equal intervals across the
range of each variable, and (c) the observed range of X1 corresponding closely to its
population range. First, regarding linearity, the cross-over point might be estimated in biased
fashion if a linear model were fit to data with a quadratic relation between X1 and Y.
Screening for nonlinearities in relations among variables would allow a researcher to
evaluate the seriousness of this issue for data under consideration.

Second, the assumption about measurement precision and intervals at all points on a
dimension is also of key importance. If this assumption were incorrect, point and interval
estimates of the cross-over point could be biased. This concern is difficult to evaluate
empirically, but must be borne in mind. Third, drawing firm conclusions about the ordinal or
disordinal nature of the interaction presumes that the full population range on X1 is observed
in a study or at least considered. If range restriction on a predictor occurs, the range of
values observed in a study is narrower than in the population. A cross-over point that falls
outside the range of X1 values observed in a study, but still falls within the population range
of X1 values, may require special care when characterizing the interaction as ordinal or
disordinal.
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Finally, we note that none of the three assumptions is unique to our re-parameterized
equations, but all apply with equal force to the standard parameterizations of regression
models when they are used to obtain point estimates of C.

Strengths and Weaknesses of Re-parameterized Equations
Some strengths and weaknesses of our re-parameterized models deserve mention. One
strength, already noted, is the ready calculation of an interval estimate for the cross-over
point. The SE that accompanies the point estimate of Ĉ allows one to calculate an interval
estimate of Ĉ, enabling a more nuanced evaluation of the form of the interaction.

This strength leads, however, to a potential complication when interpreting results. Four
outcomes of point and interval estimates might be considered: (a) disordinal interaction (i.e.,
Ĉ falling within the range of X1), with the entire CI for Ĉ falling within the observed (or
potential) range of X1; (b) disordinal interaction, but with the CI for Ĉ falling partly outside
the range of X1; (c) ordinal interaction (i.e., Ĉ falling outside the range of X1), but with the
CI for Ĉ falling partly within the range of X1; and (d) ordinal interaction, with the CI for Ĉ
falling completely outside the range of X1. Scenarios (a) and (d) allow clear interpretation:
under (a), both point and interval estimates of Ĉ are consistent with the interaction being
characterized as disordinal; under (d), both point and interval estimates of Ĉ are consistent
with the interaction being characterized as ordinal. Scenarios (b) and (c) are more
problematic for interpretation. Under (b), one might conclude that the interaction is
disordinal in the sample, but an ordinal interaction in the population cannot be rejected. In
turn, (c) might be rendered as an ordinal interaction in the sample, but a disordinal
interaction in the population cannot be rejected. Note that these complications arise only
with consideration of the CI of Ĉ. If a researcher used Equation 1 or 2 and calculated only
the point estimate of Ĉ, the result would be an overly simplified interpretation of the ordinal
or disordinal nature of the interaction.

A second strength of the re-parameterized equation is the potential for modifying an
equation to test additional, specific hypotheses regarding parameters describing the
interaction. For example, consider a dichotomous variable S (i.e., a dummy variable for Sex,
coded 1 = male, 0 = female). Equation 10 could be modified in the following fashion:

(19)

where A0 is the intercept for females, A0s the intercept difference for males, B1 is the slope
of X1 for females, B1s the difference in X1 slope for males, C is the cross-over point for
females, Cs the difference in cross-over points for males, B3 is the slope coefficient for the
product term for females, and B3s the difference in product term slope for males. One could
test lower-order and interactive effects of Sex by altering Equations 1 or 2 (see Cohen et al.,
2003, for details). The resulting equation would have 8 free parameters, just as Equation 19
does, and sex differences in the interaction would be embodied in coefficients. But, point
estimates of the cross-over points for males and females still would not have SEs. In
contrast, Equation 19 allows one to test specific hypotheses about sex differences in
particular parameters, providing point and interval estimates of group differences on
parameters that characterize the form of the interaction.

One possible weakness of re-parameterized models is the empirical identification of
parameters for interactions with nil or small effect sizes. In the limit, if the interaction were
completely absent, iterative fitting of model estimates would not converge and the estimate
of the cross-over point Ĉ would be empirically unidentified and inestimable; if the
interaction coefficient were a very small positive or negative value, the cross-over point Ĉ
would be difficult to estimate and might tend to ±∞ with extremely large SE. Although
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some might view lack of convergence as a problem, it might be seen as a strength of the
procedure, indicating that the interaction effect may be small or non-existent. Or, if a test of
an interaction were significant using a standard model, lack of convergence of a re-
parameterized model may not be due to an extremely small interaction effect (e.g., one or
more outliers may lead to non-convergence), and the researcher should explore the data
more fully to isolate the problem.

Empirical Example Using Data from the NICHD Child Care Study
To demonstrate the utility of the re-parameterized equation, we analyzed data from the
NICHD Study of Early Child Care (NICHD-SECC). The NICHD-SECC was a 10-site
study, with research sites across the United States (NICHD Early Child Care Research
Network, 2005). A minimum of 100 participants was to be obtained at each site, and
participating children and their mothers were enrolled in the study when children were one
month of age.

Variables
We utilized data on child gene polymorphism, child sex, the quantitative variable of
childcare quality, and the child outcome variable of social skills. The two-group gene
categorization for this analysis was based onexon-3 VNTR in the dopamine D4 receptor
gene (DRD4). Prior research (e.g., Bakermans-Kranenburg & van IJzendoorn, 2006; Belsky
& Pluess, 2009) suggests that presence of a 7-repeat on DRD4 is a risk factor for many
developmental outcomes. The dummy variable for DRD4 was coded as D2 = 0 or 1 for
absence or presence, respectively, of a 7-repeat. Of 438 participants with genotype data, 95
(22%) had the 7-repeat on DRD4, so constituted the high-risk/malleability group. The
remaining 343 participants (78%) did not have the 7-repeat, so constituted the low-risk/
malleability group. Child sex was coded as 0 = female, 1 = male; the sample was almost
equally divided on sex (51.8% female).

The quantitative predictor was childcare quality, assessing more attentive, stimulating, and
affectionate care and was derived from observational coding do neat five times between
child ages of 6 and 54 months. Sample statistics on childcare quality were: M = 2.83, SD =
0.24, Mdn = 2.82, and range 2.10 – 3.38. Children with a DRD4 7-repeat (M = 2.87, SD =
0.24) did not differ significantly on childcare quality from children without a 7-repeat (M =
2.82, SD = 0.24), in either mean level, t (439) = 1.74, p = .08, or variability, F (345, 94) =
1.03, p = .87.

The outcome variable was teacher-reported social skills of children in grade 1, assessed with
the Social Skills Rating System (Gresham & Elliott, 1990). Standardized scores revealed
sample mean and standard deviation (M = 104.30, SD = 13.19) that were near population
values, indicating that children in the sample were fairly representative of the population.
Greater detail on all measures is available in NICHD Early Child Care Research Network
(2005).

GXE Results
As discussed earlier, a nonlinear relation between X1 and Y can lead to bias in estimating
the cross-over point. As a preliminary analysis, we regressed Y on the linear, quadratic, and
cubic trends of X1 for each of the two groups. Using hierarchical testing, the quadratic and
cubic trends had F-ratios of 0.13 and 0.02, respectively, for the DRD4 low-risk group, and
F-ratios of 0.83 and 0.01, respectively, for the DRD4 high-risk group. These results suggest
the absence of nonlinearities that might bias estimation of the cross-over point under a linear
specification.
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Standard equations—First, we fit Equation 11 with raw-scored predictors (see left part
of Table 1). The X1-by-group interaction was significant, B̂3 = 17.51 (SE = 6.23), p < .006.
The cross-over point was estimated as Ĉ = −(−47.95)/17.51=2.74, using Equation 4.

Then, we fit the mean-centered version of this equation, Equation 12, to the data (see middle
section Table 1). The mean-centered equation gave the same estimate of the interaction
effect and an identical estimate of cross-over point, Ĉ = (−(1.56)/17.51)+2.83 = 2.74, using
Equation 6, as with raw-scored predictors. Thus, both raw-scored and mean-centered
equations provided evidence that the interaction was disordinal, with a point estimate of C
close to the sample mean on X1, although lack of a SE for the cross-over point hinders full
interpretation.

Re-parameterized equation—Next, we fit the re-parameterized Equation 16 to the data.
Parameter estimates and their SEs and CIs are shown in the right side of Table 1. The point
estimate of the cross-over point Ĉ, (SE = 0.09), 95% CI [2.55, 2.92], fell just below the
sample mean on X1 (M = 2.83). The lower limit of the CI for Ĉ fell 1.17 SD units below the
sample mean of childcare quality and the upper limit fell 0.38 SD units above the sample
mean, so the CI covers values in the middle of the range of X1 in the sample. Thus, both
point and interval estimates of the cross-over point support a conclusion that the interaction
was disordinal, providing stronger support for differential-susceptibility model than for
diathesis-stress.

A plot of predicted values of social skills for the two groups of children is shown in Figure
3. As predicted, childcare quality was non-significantly related to social skills for the low-
malleability group, B̂1 = 3.41 (SE = 2.87). In contrast, childcare quality was relatively
strongly and significantly related to social skills for the high-malleability group, B̂2 = 20.92
(SE = 5.53). Thus, at high levels of childcare quality, the high-malleability group had
predicted levels of social skills that were higher than those for the low-malleability group;
but, at low levels of childcare quality, the high-malleability group had lower predicted levels
of social skills.

In supplementary analyses, we also tested whether child sex moderated results shown in
Table 1. That is, we modified Equation 16 to include the effect of Sex in a fashion analogous
to that for Equation 19. Relative to females, males had a slightly lower estimated cross-over
point, Ĉs = −0.12 (SE = 0.24), and a somewhat lower level of social skills at the cross-over
point, Â0s = −1.17 (SE = 1.84). Also, males were slightly less affected than females by child
care in both the low-malleability, B̂1s = −2.37 (SE = 5.77), and high-malleability groups, B̂1s
= −13.27 (SE = 11.10). But, none of these effects was statistically significant, as t-values
ranged between |0.41| and |1.20| (all ps > .20). Although accepting the null hypothesis can be
a risky gambit, the present data provide no evidence that results differed significantly by
child sex.

Discussion
Our primary aim was to re-parameterize the standard linear regression model to allow
clearer distinctions between ordinal and disordinal interactions. Researchers often
hypothesize interactive effects of predictors in fairly nonspecific terms. In our opinion,
researchers should be challenged to make stronger predictions about the form of an
interaction, such as whether the interaction is ordinal or disordinal. If such a prediction were
warranted, then a re-parameterized regression model that estimates explicitly the cross-over
point of predicted values and its CI would enable stronger tests of the match between
theoretical predictions and trends in data.
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After presenting standard ways of parameterizing regression models with interaction effects,
we derived a re-parameterized regression model for linear X linear interaction of two
quantitative predictors. The most important benefit of a re-parameterized equation is the SE
and associated CI of the estimated cross-over point Ĉ. Further, as stressed throughout, the CI
of Ĉ allows a more informed evaluation of the ordinal vs. disordinal form of the interaction.

Our procedures apply to any theoretically-guided testing of interactions using regression
analysis where the cross-over point is at issue. In the context of GXE interactions, some
have argued that negative emotionality, a quantitative temperament factor, is a diathesis,
whereas others see it as a more general malleability marker (Belsky, 1997, 2005; Belsky &
Pluess, 2009; Boyce & Ellis, 2005; Ellis et al., 2011). Thus, a researcher could use
quantitative measures of both the environment (X1 = childcare quality) and a genetically-
related factor (e.g., X2 = negative emotionality) to test competing trends in linear X linear
GXE interactions.

We extended the re-parameterization of the regression model to scenarios in which one of
the interacting predictors is a categorical, or grouping, variable. If just two groups are
present (e.g., low-risk vs. high-risk), only a single cross-over point is possible. If a ternary,
or three-class, categorization into groups is used, alternate models can test whether a single
cross-over point holds for all three groups or whether such a restriction should be rejected.

When we applied the standard and re-parameterized models to data on interactive effects of
child-care quality and genotype (i.e., DRD4) on social skills, we found a significant GXE
interaction. The disordinal form of the interaction was confirmed more strongly after fitting
the re-parameterized model to the data by showing that both the point and interval estimates
of the cross-over point Ĉ were clearly within the range of values observed on the
environmental variable. Further, the slope for the high-malleability group (i.e., DRD4-7R)
was significant and the slope for the low-malleability group was non-significant, and both of
these results proved consistent with tenets of the differential-susceptibility model.

Our proposed re-parameterized regression approach rests on critical assumptions and has
some potential weaknesses that accompany its clear strengths. The assumptions are not
unique to the new methods we proposed here, but apply equally to use of standard
approaches used to estimate the cross-over point in interactions. Moreover, assumptions
should always be evaluated to the extent possible. Threats to the validity of conclusions
using any statistical procedures, our re-parameterized models included, should always be
investigated, and conclusions should be qualified if assumptions are not fully met. In our
opinion, the benefits of our re-parameterized equations outweigh any potential drawbacks to
their use and supplement in informative ways traditional approaches to testing interactions
using regression methods.

Our major goal was to develop a re-parameterized regression model that captures one
essential aspect of an interaction more informatively than do standard analytic approaches. If
the ordinal vs. disordinal form of an interaction is crucial for distinguishing theoretical
positions, our re-parameterized regression model yield more detailed information for
evaluating the fit of data with theoretical predictions. With more useful tools for asking key
questions, researchers can be challenged to provide more explicit hypotheses regarding
predicted patterns in data. Confirming predicted patterns in data yields inductive support for
the validity of a theory, but disconfirming predicted patterns points to the need to reconsider
theory, measurements, or conditions to ferret out reasons for disconfirmation. Clearer
predictions tested against data using more focused and definitive statistical models will
provide clearer evidence regarding whether theoretical conjectures driving the research were

Widaman et al. Page 11

Psychol Methods. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



confirmed or disconfirmed. We trust our re-parameterized equation will be yet one more
tool for testing theoretical conjectures directly and strongly.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Predicted outcomes of GXE interaction under (A) diathesis-stress, and (B) differential
susceptibility.
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Figure 2.
Plots of linear X linear interaction of two quantitative predictors X1 and X2: (A) ordinal
interaction, and (B) disordinal interaction.
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Figure 3.
Predicted levels of social skills for the low-malleability and high-malleability groups as a
function of childcare quality.
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