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Abstract
This paper presents marginal structural models (MSMs) with inverse propensity weighting (IPW)
for assessing mediation. Generally, individuals are not randomly assigned to levels of the
mediator. Therefore, confounders of the mediator and outcome may exist that limit causal
inferences, a goal of mediation analysis. Either regression adjustment or IPW can be used to take
confounding into account, but IPW has several advantages. Regression adjustment of even one
confounder of the mediator and outcome that has been influenced by treatment results in biased
estimates of the direct effect (i.e., the effect of treatment on the outcome that does not go through
the mediator). One advantage of IPW is that it can properly adjust for this type of confounding,
assuming there are no unmeasured confounders. Further, we illustrate that IPW estimation
provides unbiased estimates of all effects when there is a baseline moderator variable that interacts
with the treatment, when there is a baseline moderator variable that interacts with the mediator,
and when the treatment interacts with the mediator. IPW estimation also provides unbiased
estimates of all effects in the presence of non-randomized treatments. In addition, for testing
mediation we propose a test of the null hypothesis of no mediation. Finally, we illustrate this
approach with an empirical data set in which the mediator is continuous, as is often the case in
psychological research.

Conceptually, mediation occurs as part of a hypothesized causal chain of events: the
independent variable (e.g., job search intervention) has an effect on a mediator (e.g., job-
search self-efficacy), which then affects the dependent variable (e.g., depressive symptoms).
For example, knowledge of health consequences, attitudes, social norms, availability, and
refusal skills have been hypothesized to mediate the effect of prevention interventions on
adolescent smoking (MacKinnon, Taborga, & Morgan-Lopez, 2002). Sometimes individuals
are randomly assigned to the treatment intervention and other times, they are not.
Regardless, individuals are typically not randomized to levels of the mediator.

A simple mediation model is one in which an intervention, denoted T for treatment, causes a
change in the mediator, denoted M, which in turn causes a change in the dependent variable,
denoted Y. Because T is hypothesized to cause a change in M, we assume throughout this
manuscript that T occurs before M. Similarly, because M is hypothesized to cause a change
in Y, we assume throughout that M occurs before Y. Mediation analysis is, by definition, a
question about causal pathways and causal inference (MacKinnon, 2008). If individuals are
randomly assigned to levels of T, then a causal inference regarding the effect of T on M is
straightforward to assess because proper randomization reduces the likelihood that there are
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confounders that influence both T and M. Intuitively, confounders of the effect of T on M
are variables that directly affect both the hypothesized cause, in this case T, and the
outcome, in this case M, potentially biasing the estimate of a causal effect. Regardless of
randomization to T, individuals cannot typically be randomized to levels of M because M is
an outcome of T. Thus, causal inference regarding the effect of M on Y is not
straightforward to assess because there may be other variables in addition to T (i.e.,
confounders) that influence both M, the hypothesized cause in this case, and Y, the outcome
in this case.

Throughout this manuscript, we use the term confounder to refer to extraneous variables that
are common causes of the hypothesized causal variable and the outcome. If these variables
are not taken into account, either through randomization or by statistical means, then they
may result in a spurious relationship between the hypothesized cause and the outcome. That
is, the researcher may erroneously conclude that there is a causal relationship between the
hypothesized causal variable and the outcome. Note that if a variable is related only to an
outcome and not the hypothesized cause, it will not bias the estimated causal effect but it
may introduce noise into the estimate. We do not consider these variables to be confounders.
Throughout the manuscript, we will assume that these confounders are measured and can, by
some means, be adjusted for (as will be described in greater detail below). If this is not the
case, then other assumptions may be needed in order to estimate causal effects or causal
inference may not be possible. Throughout the manuscript, we will refer to a confounder of
M and Y that has itself been influenced by T as a post-treatment confounder and denote it
X1. We will refer to a confounder that occurs prior to T (and therefore, could not itself have
been influenced by T) as a pre-treatment confounder and denote it X0.

We begin with a review of direct and indirect effects that have been defined using the
potential outcomes framework in the statistical and epidemiology literature and the
assumptions needed for identifying these effects. As VanderWeele and Vansteelandt (2009)
pointed out, it is not possible to identify a causal estimand of the indirect effect itself in the
presence of both a treatment-mediator interaction and a post-treatment confounder. Our
proposed approach will be based on the potential outcomes framework (Holland, 1986;
Rubin, 1974, 2005) and marginal structural models (MSMs; Robins, Hernan, & Brumback,
2000). It should be noted that we are not the first to propose using MSMs in the context of
mediation (see VanderWeele, 2009) nor are we the first to propose the potential outcomes
framework more generally for assessing mediation (see, e.g., Albert, 2007; Emsley, Dunn, &
White, 2010; Imai, Keele, & Tingley, 2010; Jo, 2008; Pearl, 2001; Robins & Greenland,
1992; Rubin, 2004; Sobel, 2008). However, MSMs have been used much less in the social
sciences than they have been in epidemiology. Thus, below we will review the potential
outcomes framework and MSMs.

With this background, we will proceed to argue that although the indirect effect can not be
identified in the presence of both an interaction and post-treatment confounders, the
individual effects involved in the mediation process are scientifically interesting, important,
and are identified. We will define the causal effect of T on M and refer to this as Effect 1
and we will define the causal effect of M on Y, given treatment history (i.e., T) and refer to
this as Effect 2 throughout. We will refer to the effect of T on Y, conditional on M as the
direct effect. Next, in the presence of an interaction between T and M; a post-treatment
confounder; a baseline (i.e., pre-treatment) moderator, denoted Z; and non-randomized T,
we will describe an approach for assessing mediation using MSMs and inverse propensity
weighting (IPW; Robins, Rotnitzky, & Zhao, 1995) to estimate Effects 1, 2, and the direct
effect. We will then test the null hypothesis that either or both of Effects 1 and 2 are zero
and examine the power of this test using a simulation study. Finally, we will illustrate
through an empirical example how the proposed approach can be implemented. The
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proposed approach is not that different from the approach currently taken by social/
behavioral scientists, although it does have several advantages and disadvantages which will
be presented after the approach has been described.

The Potential Outcomes Framework
Non-mediation context

Since the potential outcomes framework has only recently been introduced in the social
science methodology literature, we will briefly review the potential outcomes framework for
the simplest case: for estimating the causal effect of a binary T on Y. In the next section, we
will introduce a mediating variable.

In the potential outcomes framework (Rubin, 1974, 2005), also known as the counterfactual
framework (Morgan & Winship, 2007) or Rubin’s causal model (Holland, 1986), each
individual has a potential outcome for each possible treatment condition. In the simplest
case, one treatment group and one control group, there are two potential outcomes for each
participant: the outcome that would be obtained under the treatment condition and the
outcome that would be obtained under the control condition. Let Ti denote the treatment
received by participant i, i = 1, …, N. Those with Ti = 1 are said to be treated, and those
with Ti = 0 are said to be untreated. Let Yi(0) be the outcome if Ti = 0, and Yi(1) be the
outcome if Ti = 1. The individual causal effect is defined as the difference between these
two potential outcomes for participant i, Yi(1) – Yi(0). Because each participant can be
observed in only one of these conditions, in every case one of the potential outcomes is
missing (e.g., Yi(1) is missing when Ti = 0). Therefore, the individual causal effect can not
be computed directly. However, various strategies have been proposed to estimate the
average causal effect (ACE), the causal effect averaged over participants in the study
defined as E(Yi(1) – Yi(0)). More detailed introductions to the potential outcomes
framework outside of the context of mediation are provided by Little and Rubin (2000);
Schafer and Kang (2008); West, Biesanz, and Pitts (2000); and Winship and Morgan (1999).

Mediation context
When a mediator is involved, the process of applying the potential outcomes framework
becomes more complicated. There are now potential outcomes for both the mediator and the
dependent variable, Y, because the mediator itself is an outcome of the treatment. Hence,
there are missing values for both the mediator and the dependent variable because the
mediator is re-expressed as a set of potential outcomes Mi(1), Mi(0) corresponding to Ti = 1,
Ti = 0. The dependent variable then becomes a function of both the treatment received and
the mediator (i.e., Yi(1, M(1)), Yi(0, M(0)). Thus, for individuals in the control condition,
the potential outcomes for the mediator, Mi(1), and the dependent variable, Yi(1, M(1)),
under treatment are missing. Likewise, for individuals who receive the treatment, the
potential outcomes for the mediator, Mi(0), and the dependent variable, Yi(0, M(0)), are
missing.

The above notation for the potential outcomes framework assumes that there is no
interference among individuals because the potential outcomes are written as a function of
Ti and not Tj, where i and j denote two different individuals. That is, one individual’s
outcome does not depend on another individual’s treatment assignment. Thus, a nested or
multilevel data structure may violate this assumption. Methods have recently appeared in the
statistics literature for violations of this assumption (see, e.g., Hong & Raudenbush, 2005,
2006; Hudgens & Halloran, 2008; Sobel, 2006; VanderWeele, 2008, 2010) but we make this
no-interference assumption throughout this article.
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The notation as defined above also assumes treatment-variation irrelevance (VanderWeele
& Vansteelandt, 2009). It means that the potential outcomes, Mi(t), for individual i when
exposed to treatment Ti = t will be the same no matter what mechanism is used to assign
treatment t to individual i. Similarly, the potential outcomes, Yi(t, m), for individual i when
exposed to treatment Ti = t and mediator level Mi = m will be the same no matter what
mechanism is used to assign t and m to individual i.

Finally, it is assumed that the observed mediator value for individual i, Mi, is Mi(t), when Ti
= t. Likewise, it is assumed the observed outcome for individual i, Yi, is Yi(t, m) when Ti = t
and Mi = m. This assumption is usually referred to as consistency and is described in greater
detail in, for example, VanderWeele and Vansteelandt (2009). For the remainder of this
article, we will drop the i subscript for simplicity.

Definitions of Mediation
Traditional social science approach

The literature on statistical mediation analysis (MacKinnon, 2008) often denotes the effect
of T on M as a, the effect of M on Y holding constant (i.e., conditional on) T as b, and the
effect of T on Y holding constant M as c′. This latter effect is referred to as the direct effect.
It is the effect of T on Y that does not go through M. In the social science literature, the
indirect or mediated effect of T on Y is often defined as ab, the product of a and b, and the
total effect of T on Y is defined as ab + c′. Thus, the indirect effect could also be defined as
the total effect minus the direct effect. Note that these definitions are entangled with
particular model assumptions such as linearity and additivity (i.e., no interactions) that are
often not clearly stated. Mediation analysis is then performed by fitting two regression
models separately or simultaneously using structural equation modeling (SEM) software.
We will refer to this approach whether fitting the regression models separately or
simultaneously as the traditional social science approach.

Potential outcomes framework
Using the potential outcomes framework, direct and indirect effects can be defined without
particular model assumptions. However, within the potential outcomes framework, there are
different definitions of direct and indirect effects. For example, some researchers (e.g., Jo,
2008; Sobel, 2008; Albert, 2007) have defined mediation within the potential outcomes
framework using principal stratification (Frangakis & Rubin, 2002; Frangakis, 2004) and
instrumental variables (Angrist, Imbens, & Rubin, 1996). Jo (2008) has shown that under
fairly stringent assumptions (e.g., no interactions between T and M, no direct effect of T on
Y, and no iatrogenic effects of T on M), principal strata effects coincide with the traditional
social science indirect effect. We will not pursue the principal strata definition but interested
readers may consult Rubin (2004), Gallop et al. (2009), Jo (2008), Elliott, Raghunathan, and
Li (2010), VanderWeele (2008), and Ghosh, Elliott, and Taylor (2010) for details on using
principal stratification to assess mediation.

Other attempts to define mediation within the potential outcomes framework have resulted
in definitions termed pure effects (Holland, 1988; Robins & Greenland, 1992) and
controlled effects (Robins & Greenland, 1992). Pure effects were later referred to as natural
effects by Pearl (2001); this term has often been used by others (e.g., Imai, Keele, &
Tingley, 2010; VanderWeele, 2009) and we will use it as well. VanderWeele (2009) gives
definitions of these effects and the conditions under which they are generally identified.
Here, we provide a summary of this work for those readers not familiar with it. Table 1
presents each of the types of effects in expectation notation. We begin by discussing direct
effects (i.e., the effect of T on Y that does not go through M).
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Controlled direct effect
The controlled direct effect sets M to some specific value, m, for the entire population and
expresses the causal effect on Y of changing from the treatment to control group for M = m.
As shown in Table 1, controlled direct effects are defined as E[Y(t, m) – Y(t′, m)] where
Y(t, m) is the potential outcome when T = t and M = m. For the moment, consider the case
where T and M are both binary and take on values of 1 or 0. Then the controlled direct effect
of t = 1 versus t′ = 0 would be E[Y(1, m) – Y(0, m)] where m = 1 and E[Y(1, m′) – Y(0, m
′)] where m′ = 0. Thus, there are two controlled direct effects: one for each level of m.
There are as many controlled direct effects as there are levels of M. It is important to note
that we have imposed no particular model and, therefore, no model assumptions on this
definition. The direct effect as defined in the traditional social science literature, c′, imposes
a “no-interactionis” assumption such that c′ does not differ across levels of M. That is,
E[Y(1, m) – Y(0, m)] = E[Y(1, m′) – Y(0, m′)] for all m and m′. For a linear model, this
equality holds if there is not an effect of a T × M product term. When we use the phrase no-
interaction, we will mean the broader definition that all controlled direct effects are equal.

Natural direct effect
Next, consider the natural direct effect. As shown in Table 1, the natural direct effect is
E[Y(t, M(t′)) – Y(t′, M(t′))]. Now, M is not set to some specific value, m, for the entire
population; rather, it takes on whatever value it would have had under T = t′. In contrast to
the controlled direct effect, the natural direct effect allows for natural variability in M among
individuals. Hence, it is important to note the difference in notation. Lowercase m refers to a
specific value of M but M(1) and M(0) refer to potential values (under treatment and
control, respectively) and these values may differ across individuals. If T is binary, then
there are two of these natural direct effects, E[Y(1, M(0)) – Y(0, M(0))] and E[Y(1, M(1)) –
Y(0, M(1))]. The former addresses the causal effect of T on Y setting the level of the
mediator to the value it would have had in the control condition. The latter addresses the
causal effect of T on Y setting the level of the mediator to the value it would have had in the
treatment condition. Again, these values for the mediator are not necessarily the same across
individuals: for one individual, M(1) may equal m and for another M(1) may equal m′.

Natural indirect effect
Next, consider the natural indirect effect, defined as E[Y(t, M(t)) – Y(t, M(t′))], which is the
causal effect of the difference in the level of the mediator that would be obtained under
treatment versus the level of the mediator that would be obtained under the control for T = t.
Note that if T is binary, again there are two of these, one for T = t and one for T = t′. Natural
direct and indirect effects are appealing because the total effect, defined as E[Y(t, M(t)) –
Y(t′, M(t′))], can be decomposed into the natural direct and indirect effects (see, e.g., Imai,
Keele, & Yamamoto, 2010; Pearl, 2010a, 2010b; VanderWeele, 2009) just as the traditional
social science total effect, denoted c, can be decomposed into ab + c′. In contrast, for
controlled effects, the total effect cannot necessarily be decomposed in this manner. There is
not a controlled indirect effect that is comparable to the natural indirect effect without
further assumptions.

Assumptions Needed to Identify Effects
Recall that the causal effects are defined for individuals but we do not observe all the
potential outcomes for an individual. Therefore, the estimands defined above cannot be
estimated from the observed data without identifying assumptions. VanderWeele (2009);
Imai, Keele, and Tingley (2010); and Imai, Keele, and Yamamoto (2010) give assumptions
generally needed to identify the natural effects defined above. By identify, we mean that the
effects can be consistently estimated from the observed data. These assumptions are
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summarized in Table 2. Assumption A is that there are no unmeasured confounders of T and
Y. That is, T ⊥ Y(t, m)|X0. Assumption B is that there are no unmeasured confounders of M
and Y. That is, M ⊥ Y(t, m)|T, X0, X1. Assumption C is that there are no unmeasured
confounders of T and M. That is, T ⊥ M(t)|X0. Finally, one of two assumptions needs to be
made. We will discuss the first one (D1) here and the second one (D2) below. Assumption
D1 is that there are no confounders of M and Y that may have been influenced by T (i.e.,
post-treatment confounders; see, e.g., Avin, Shipster, & Pearl, 2005; Imai, Keele, & Tingley,
2010; Imai, Keele, & Yamamoto, 2010; VanderWeele, 2009). That is, M(t) ⊥ Y(t′, m)|X0.
This assumption is unrealistic in many applied contexts. For example, this assumption is
violated when there are multiple mediators, because these other mediators are variables that
are related to both the dependent variable and the original mediator of interest and have been
influenced by the treatment. In fact, post-treatment confounders are mediators themselves,
although the researcher may not be substantively interested in them (see, e.g., Greenland &
Morgenstern, 2001; MacKinnon, Krull, & Lockwood, 2000); this is why we refer to them as
confounders rather than mediators. The recent methods proposed by Imai, Keele, and
Tingley (2010) do not allow for post-treatment confounders whether measured or not.
Together, these four assumptions (A-D1) identify the natural direct and indirect effects.
Other alternative identifying assumptions are also possible (Hafeman & VanderWeele,
2010) but generally Assumptions A-D1 are used.

Assumptions A-D1 are needed to identify natural effects but only Assumptions A and B are
needed for identifying controlled direct effects. However, identifying the controlled direct
effect does not identify the indirect effect, in which social scientists are most interested,
unless we assume (D2) that there are no interactions between T and M (i.e., the controlled
direct effects are equal across all levels of the mediator). If there is no interaction, then the
controlled direct effect equals the natural direct effect. Then, using the decomposition of
natural effects, the indirect effect can be obtained by subtracting the controlled direct effect
from the total effect (VanderWeele, 2009). However, many substantive questions involve
interactions, often referred to as moderated mediation and mediated moderation (see, e.g.,
Edwards & Lambert, 2007; MacKinnon, 2008; Muller, Judd, & Yzerbyt, 2005; Preacher,
Rucker, & Hayes, 2007). Even if researchers have not asked substantive questions about
interactions, they nevertheless may exist. Therefore, researchers may not want to make
Assumption D2.

To estimate the indirect effect via the estimation of controlled direct effects, identifying
Assumptions A, B, and D2 from Table 2 are needed. If individuals are randomly assigned to
T then Assumption A is satisfied. Assumption A is also satisfied even if individuals are not
randomly assigned to T as long as all potential confounders of T and Y have been measured
and properly adjusted for. Random assignment is often considered the gold standard because
Assumption A is a strong assumption that cannot be verified in any given study. Assumption
B is satisfied if individuals are randomly assigned to levels of M. However, this is usually
not possible, although Assumption B is also satisfied if all potential confounders of M and Y
are measured and properly adjusted for. Again, this is a strong assumption that cannot be
verified in any given study. Assumption D2 is satisfied if the controlled direct effect does
not vary across levels of M. In this case, the decomposition, total effect = direct effect +
indirect effect, holds. Without Assumption D2, there is not a single direct effect to subtract
from the total effect because the direct effect depends on the level of M.

To obtain an estimate of the indirect effect via the estimation of natural effects, identifying
Assumptions A-D1 from Table 2 are needed. The conditions under which Assumptions A,
B, and D1 would hold were discussed previously. Assumption C is satisfied if individuals
are randomly assigned to levels of T. Assumption C is also satisfied, in the absence of
randomization, if all potential confounders of T and M are measured and properly adjusted
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for. Again, randomization is considered the gold standard because, like Assumptions A and
B, Assumption C is a strong assumption that cannot be verified in practice. We note that the
traditional social science approach also makes Assumptions A–C, although they are usually
not clearly stated. Also, it is important to note that careful consideration should be given to
selecting the covariates that may be potential confounders and in particular, it is necessary to
adjust for more than basic demographic variables, such as gender and race (Steiner, Cook,
Shadish, & Clark, 2010). On the other hand, covariates that are strongly related to the
hypothesized cause and weakly associated with the outcome can amplify bias of the causal
effect estimate (Pearl, 2011).

In summary, researchers need to be aware that there are different definitions of mediation
effects and that different assumptions are required for identifying these effects. Assumptions
A–C are needed for natural effects and Assumptions A and B are needed for controlled
effects. In addition, one of the following two assumptions is needed: either there are no
unmeasured or measured confounders of M and Y that have been influenced by T (D1) for
natural effects, or there is not an interaction between T and M (D2) for controlled effects.
Given that many scientific questions involve hypotheses about interactions and/or there are
likely to be post-treatment confounders, the task of identifying, and therefore estimating,
indirect effects seems daunting.

Our proposed method and how it fits in
In our proposed method, we do not assume either D1 or D2. We do make Assumptions A–C,
which are plausible if the researcher has measured all potential confounders of T, M, and Y
or has successfully randomized individuals to T and measured all potential confounders of
M and Y. Because we do not assume either D1 or D2, we cannot obtain an estimate of the
indirect effect itself. However, we can obtain estimates of each of the component effects
(i.e., Effects 1 and 2) involved in the indirect effect. Even though the indirect effect itself is
not identified, we can still test the null hypothesis of no mediation. Estimates of these effects
and the test may suffice for some research purposes. For example, MacKinnon, Taborga,
and Morgan-Lopez (2002) and MacKinnon (2008) describe the importance of examining
Effects 1 and 2. They argue that if T does not causally affect M, then this suggests that the
treatment should be modified so that it does causally affect M. MacKinnon, Taborga, and
Morgan-Lopez (2002) and MacKinnon (2008) refer to this as action theory. They also argue
that if M does not causally affect Y then no matter how well T causes a change in M, M will
not cause a corresponding change in Y. In this case, they argue that the intervention should
be modified to influence a different mediator, one that is more likely to be causally related to
Y. MacKinnon, Taborga, and Morgan-Lopez (2002) and MacKinnon (2008) refer to this as
conceptual theory. Thus, the researcher does not need an estimate of the indirect effect itself
in order to test action and conceptual theories. In fact, from an indirect effect estimate that is
not statistically significant, a researcher cannot determine whether there was a problem with
the action theory or the conceptual theory.

With Assumptions A and B, we can identify the controlled direct effect. We will use MSMs
to define the causal effects of interest in terms of the potential outcomes framework. We will
then use IPW estimation to estimate the causal effects. Finally, we will describe how to test
the null hypothesis that either or both of Effects 1 and 2 are zero. First, we review MSMs
and IPW estimation.

Marginal Structural Models
MSMs, in the non-mediation context, have been used to define causal effects primarily in
epidemiology (e.g., Bodnar, Davidian, Siega-Riz, & Tsiatis, 2004; Cole, Hernan, Anastos,
Jamieson, & Robins, 2007; Ko, Hogan, & Mayer, 2003; Mortimer, Heugebauer, van der
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Laan, & Tager, 2005) although there are a few applications in drug prevention research
(Bray, Almirall, Zimmerman, Lynam, & Murphy, 2006; L. Li, Evans, & Hser, 2010),
sociology (Barber, Murphy, & Verbitsky, 2004; Wimer, Sampson, & Laub, 2008), and
psychology (VanderWeele, Hawkley, Thisted, & Cacioppo, 2011). An MSM can be
specified for continuous, binary, or survival outcomes. MSMs have been used primarily to
define the causal effect of treatment sequences. Here we specify MSMs for mediation by
treating the intervention-mediator sequence as a treatment sequence.

MSMs differ from, for example, linear regression models because they are models for
potential outcomes. In contrast, a linear regression model is a model for the observed
outcomes. An advantage of MSMs is that they may be used to define the causal effects of
interest. To illustrate, we will use MSMs to define several causal effects that may be of
interest to researchers assessing mediation. Specifically, consider defining the effect of a
binary T on a continuous M (denoted a in the traditional social science approach) and the
effect of a continuous M on a continuous Y for each level of T (denoted b in the traditional
social science approach). To define these effects, two MSMs are needed

(1)

and

(2)

Using the model given in Equation 1,

(3)

defines the effect of a binary T on a continuous M. Using the model given in Equation 2,

(4)

defines the causal effect of M on a continuous Y for t = 1 and

(5)

defines the causal effect of M on a continuous Y for t = 0. A reference should be chosen for
m′. The causal effect of a one-unit increase in M from the reference m′ on Y for t = 1 is (β2
+ β4) and the causal effect of a one-unit increase in M from the reference m′ on Y for t = 0
is β2.

If the researcher wishes to assess mediated moderation or moderated mediation, conditional
causal effects may be similarly defined. For example, consider the interaction between a
moderator variable (e.g., gender), denoted Z, and T, and consider defining the causal effect
of T on a continuous M conditional on Z and the causal effect of M on a continuous Y at
each level of T. To define these effects, two MSMs are needed

(6)

and

(7)

Using the model given in Equation 6,
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(8)

defines the causal effect of T on M conditional on Z. Using the model given in Equation 7,

(9)

defines the causal effect of M on Y for t = 1 and

(10)

defines the causal effect of M on Y for t = 0. Other causal estimands may be similarly
defined.

Thus, MSMs allow the researcher to clarify the causal question of interest and define the
causal effects in terms of potential outcomes. Note that MSMs are not necessarily linear
regression models. We used linear regression models to show that, other than modeling
potential outcomes, specifying MSMs is not that different from the traditional social science
approach that many readers are familiar with. The advantage is that the causal effects of
interest are more clearly defined using MSMs. Recall, the causal effects are defined for an
individual as a contrast between two potential outcomes. The reason these models are called
marginal is because they model the marginal distribution of the potential outcomes (Robins
et al., 2000). Thus, they do not model the correlation between the counterfactuals. This
correlation is not observed for any individual.

Estimation
Causal effects defined by MSMs are typically estimated using IPW, although other
estimators are available (see, e.g., van der Wal, Prins, Lumbreras, & Geskus, 2009). IPW
uses propensity scores; therefore, we will describe propensity scores and then the creation of
the weights. Finally, we will discuss issues that arise when implementing IPW.

Propensity scores
Let X0 denote a vector of measured pre-treatment variables or potential confounders that
may influence the probabilities of T = 1 and T = 0 in any setting other than a completely
randomized experiment. Rosenbaum and Rubin (1983) defined the propensity score,
denoted π, as the probability that an individual receives the treatment given these measured
confounders, π = P(T = 1|X0). Propensity scores balance confounders in the following
sense: in any subset of the population in which the propensity scores are constant, treated
and untreated participants have identical distributions for X0. The balancing property of the
propensity score has led to many propensity-based techniques for estimating causal effects,
including matching (Rosenbaum & Rubin, 1985), subclassification (Rosenbaum & Rubin,
1984) and IPW (Robins et al., 1995). We will focus on estimating the causal effects using
IPW. As in any method involving propensity scores, use of IPW assumes that all
confounders are measured and included in the model for estimating π. Estimates of π are
denoted π̂. They are obtained, for example, as the predicted probabilities from a logistic or
probit regression of T on X0, but more flexible alternatives, including generalized boosted
regression (McCaffrey, Ridgeway, & Morral, 2004), or classification trees (Luellen,
Shadish, & Clark, 2005) have also been used.

Ideally, the distribution of the propensity scores in the treated and control conditions should
overlap. With less overlap, estimates of the causal effect will have a larger variance. When
there is no overlap, it means that there are essentially no individuals in the two conditions
that are comparable on the potential confounders and causal inferences may not be
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warranted. Next, we describe how weights are created for a non-randomized binary T and
then we describe how weights are created for a continuous M.

Creating the weights for a non-randomized binary treatment
The IPW estimator is similar to the Horvitz-Thompson survey sampling weighted estimator
(Horvitz & Thompson, 1952), in which the weights are the inverse probability of being
sampled.Robins et al. (2000) extended the idea to non-randomized time-varying treatments.
Here, participants in the treatment group are given a weight of 1/P[T = 1|X0] and
participants in the control group are given a weight of 1/(1 − P[T = 1|X0]). In other words,
the weights correspond to the inverse of the probability of receiving the level of the
treatment that the individual actually received conditional on the past potential confounders
included in the propensity model. Just as survey weights adjust the sample to represent a
population, inverse propensity weights adjust the sample to represent a randomized trial.
IPW requires that the probabilities in the denominator of the weights are greater than zero.
In other words, that each individual has some chance of receiving each treatment condition.

If there is a baseline moderator, Z, weights are usually stabilized, which helps to reduce the
variability of the weights. For those in the treatment group, the model for the numerator of
the weights is P[T = 1|Z] and the model for the denominator of the weights is P[T = 1|Z,
X0]. Thus, the weights are P[T = 1|Z]/P[T = 1|Z, X0]. For those in the control group, the
numerator and denominator of the weights are 1 − P[T = 1|Z] and 1 − P[T = 1|Z, X0],
respectively. When using stabilized weights, the mean of the weights should be
approximately one. For further details about creating weights and the numerator and
denominator models for the weights, see Cole and Hernan (2008).

Creating the weights for a mediator
Even if assignment to levels of T is randomized, we still need to use weights to adjust for
possible confounding of M and Y. We will consider the construction of weights for the
following situations: binary M and no Z, continuous M and no Z, binary M and moderator Z,
and continuous M and moderator Z. In all situations, the weights for M include T in both the
numerator and denominator models for the weights. This is analogous to the time-varying
treatment setting in which treatment history is included in both the numerator and
denominator models (Robins et al., 2000). If there is no moderator Z and M is binary, then
the weights for those with m = 1 are P[M = 1|T]/P[M = 1|T, X0, X1]. For those with m = 0,
the weights are (1 − P[M = 1|T])/(1 − P[M = 1|T, X0, X1]). If M is continuous, as is often the
case in psychological research, then the propensity score can be defined as the probability
density function (p.d.f.) of the conditional distribution of the mediator given the measured
confounders (Robins et al., 2000). For continuous M, the denominator model is given by a
linear regression of M on X0, X1, and T and the numerator model is given by a linear
regression of M on T. A denominator probability is then obtained by inserting the fitted
values, m̂, in the normal p.d.f. (denoted ϕ()),

(11)

where σ̂ is the residual standard error from the linear regression of M on X0, X1, and T. The
numerator probability is given by the p.d.f. of the conditional distribution of M on T, ϕ(M|
T). The weights are then given by a ratio of the probabilities from the p.d.f.s (i.e., ϕ(M|T)/
ϕ(M|T, X0, X1) as described in Robins et al. (2000).

If a moderator is of scientific interest, it would be included in both the numerator and
denominator propensity models. If M is binary, then the weights for those with m = 1 are
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P[M = 1|T, Z]/P[M = 1|T, Z, X0, X1] and the weights for those with m = 0 are (1 − P[M = 1|
T, Z])/(1 − P[M = 1|T, Z, X0, X1]). If M is continuous, then the weights are given by a ratio
of the probabilities from the p.d.f.s, ϕ(M|T, Z)/ϕ(M|T, Z, X0, X1).

Implementation
Assuming no-interference, treatment-variation irrelevance, consistency, and Assumptions
A–C, then the MSM for the causal effect of T on M can be written in terms of the observed
data,

(12)

Likewise, the MSM for the causal effect on Y can be written in terms of the observed data,

(13)

When fitting these models to the observed data, the weights are incorporated into the models
in the same manner as survey weights by using, for example, the survey package for R
(Lumley, 2010). Weighting adjusts for confounding; therefore, the model needs to include
only the treatment indicator variable, the mediator variable, the moderator variable (if there
is one), and any interactions. If individuals are randomized to T, then the weights for M
(described above) are included in the model given in Equation 13. Weights would not be
needed for the model given in Equation 12 because of randomization. However, if
individuals are not randomly assigned to levels of T, then weights must be included to adjust
for possible confounders of T and M and/or T and Y. In this case, the weights for T
(described above) are used in the model given in Equation 12. The weights used for
estimating the model in Equation 13 are the product of the weights for T and M just as
product weights are used in the time-varying treatment context (see Robins et al., 2000).

Testing the Mediation Effects
We will test the null hypothesis that Effect 1 or Effect 2 is zero or both are zero. To test this
null hypothesis, we will test whether the product of these two effects is zero; in the
traditional social science approach, the product of these two effects has been used as a
definition of the indirect effect and the product of the estimates of these two effects has been
used as an estimate of the indirect effect. However, here we are simply using the product as
a tool for testing the null hypothesis and not as a definition of mediation. If either one of the
effects or both are zero then the product will be zero. Thus, if we reject the null hypothesis,
then we can conclude that both of the effects are statistically different from zero. The details
of this test are given in the Appendix.

Conceptually, this null hypothesis test is similar to the Sobel (1982) test, with which readers
are probably familiar. There are two important differences, though. First, the Sobel test uses
the asymptotic standard error based on the normal theory covariance matrix of the estimates.
Instead, we obtain an estimate of the standard error based on a covariance matrix of
estimates obtained via a non-parametric bootstrap procedure. Second, because we estimate
propensity scores for use in computing the weights and there is some uncertainty in this
estimation, the bootstrap procedure resamples the original data prior to estimating the
propensity scores. To summarize the bootstrap procedure, we resample from the original
data 1000 times. For each bootstrap sample, we fit the propensity models to estimate the
propensity scores, compute the weights, and estimate the causal effect using IPW. The
estimate of the covariance matrix, Σ, is the variance and covariance of the estimates across
the 1000 bootstrap replications. We then use this as an estimate of Σ (see Appendix). Thus,

Coffman and Zhong Page 11

Psychol Methods. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



the usual Sobel test would not account for uncertainty in estimating the propensity scores. In
the next section (Simulation Study: Method), we specify the null hypotheses for each
interaction condition that we consider in the simulation study because the tested effects
differ depending on whether there are interactions.

Summary and Rationale of the Simulation Study
We will define and estimate Effects 1 and 2, and the direct effect. To define these effects,
we will use MSMs that correspond to the two regression equations currently used for
assessing mediation in the traditional social science approach, but we will use IPW, rather
than ordinary least squares (OLS), to estimate these effects. Our approach, unlike that of
Imai, Keele, and Yamamoto (2010) and Imai, Keele, and Tingley (2010), does not require
the assumption that there are no post-treatment confounders of M and Y that have been
influenced by T. Our approach also allows the scientist to test action theory and conceptual
theory as described by MacKinnon (2008) and MacKinnon, Taborga, and Morgan-Lopez
(2002). Even though we do not identify the indirect effect itself, we do provide a test based
on the two component effects (i.e., Effects 1 & 2) of mediation. In addition, if there are no
interactions, then our approach allows estimation of the indirect effect by estimating the
controlled direct effect and subtracting it from the total effect of T on Y. The assumption
regarding no interactions can be tested.

Next, using a simulation study, we will compare bias in the estimates obtained from IPW, an
OLS regression adjustment for confounding, and an OLS unadjusted regression estimate.
We include the unadjusted estimate for two reasons: first, it provides a baseline; second, this
is, unfortunately, the model that applied researchers often use when assessing mediation. We
also assess the power of the test for mediation.

The purpose of the simulation study is twofold. The primary purpose is to assess the power
of the test. The secondary purpose is to illustrate the analytical result that conditioning on
even one post-treatment confounder results in bias of the direct effect. Yet, not including the
post-treatment confounder in the regression results in bias of Effect 2. However, IPW
provides unbiased estimates of both Effect 2 and the direct effect. This result was proven
analytically byRobins et al. (2000) and is well-known in the epidemiology literature but is
much less well-known in the social and behavioral sciences.

Simulation Study: Method
The Monte Carlo simulation study will focus on three different confounding scenarios
illustrated in Figure 1: a baseline (i.e., time-invariant) confounder, X0, of M and Y (Panel
1A); a confounder, X1, of M and Y that has been influenced by the treatment (i.e., a post-
treatment confounder; Panel 1B); and both a post-treatment confounder, X1, of M and Y and
a baseline confounder, X0, of T, M, and Y (i.e., T is not randomized in this condition; Panel
1C). These three confounding scenarios are crossed with four interaction conditions: no
interactions (see Figure 1); an interaction between a baseline moderator, Z, and T (see
Figure 2); an interaction between Z and M (see Figure 3); and an interaction between T and
M (see Figure 4), resulting in 12 conditions. The sample size is 500 in all conditions, and the
mediator is a continuous variable. In this section, we will first describe the data generation in
detail, then we will define the causal effects of interest for each condition using MSMs.
Finally, we will present the models fitted to the data using each estimation method.

Data Generation
In all data generating models, population parameter values for the effect of T on M and for
the effect of M on Y conditional on T were chosen to correspond to medium effects (i.e., .
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39). A small effect (i.e., .14) was chosen for the direct effect for all data-generating models.
See Cohen (1988) and MacKinnon, Lockwood, Hoffman, West, and Sheets (2002) for effect
size definitions. The moderated effects of an interaction between Z and T (i.e., β6) and
between Z and M (i.e., β10) are also .39. All of these effects can be read directly from
Figures 1 – 4. Unless otherwise marked, all paths in Figures 1 – 4 are .2. Both confounders,
X0 and X1, and M and Y were generated as continuous variables with a standard normal
random error. T and Z were generated as binary variables. Note that Figures 1 – 4 are time-
ordered from left to right.

For the simulation study, there is only one baseline confounder. However, there could be
(and in practice, likely are) many baseline confounders, in which case X0 would represent a
vector. Likewise, there is only one post-treatment confounder, although there may be more
than one of these, in which case X1 would represent a vector.

Defining the Causal Estimands
In the description of MSMs in the introduction, we defined the causal estimands of interest
when there are interactions between T and M and between T and Z. Here, we use MSMs to
define the causal estimands of interest when there is an interaction between Z and M. When
there is an interaction between Z and M, the MSMs may be given as

(14)

and

(15)

The causal estimands of interest are

(16)

and

(17)

for t = 1, and

(18)

for t = 0.

Estimation of the Causal Effects
We will use three methods for estimating the causal effects: IPW, an OLS regression
adjustment for confounding, and an OLS regression in which there is no adjustment for
confounding.

IPW estimator—Given no-interference, treatment-variation irrelevance, consistency, and
Assumptions A–C, we can write the MSMs in terms of observed outcomes; these are the
models we will fit to the data using IPW estimation. For the conditions with an interaction
between T and Z, the models for the observed data are

(19)

and
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(20)

For the conditions with an interaction between Z and M, the models for the observed
outcomes are

(21)

and

(22)

Equations 12 and 13 give the models for the observed outcomes for the conditions with an
interaction between T and M.

Unadjusted—Note that these models for the observed data are the same ones that are fit to
obtain the unadjusted estimates. However, in this case the estimator is OLS rather than IPW,
so there is no adjustment for the confounding.

Regression adjustment—We will adjust for confounding using a regression adjustment.
That is, the following models will be fit using OLS:

(23)

(24)

for Model A in Figure 1,

(25)

(26)

for Model B in Figure 1, and

(27)

(28)

for Model C in Figure 1 and likewise for the interaction conditions in Figures 2 – 4.

Assessing Bias and Other Outcome Measures
The population values for the effects can be derived from Figure 1. For Model A, the effect
of T on M is .39. Given that X1 is considered a confounder for Models B and C, the total
effect of T on M is .43 (i.e., .39+(.2)(.2)=.43), because the data were generated from a linear
model. For Models A, B, and C, the effect of M on Y, given T is .39. For Model A, the
effect of T on Y, given M is .14. For Models B and C, this effect is .18 (i.e., .14+(.2)(.2)=.
18), again considering X1 to be a confounder that is not of substantive interest.
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By direct effect of T on Y, we mean all effects that do not go through M (i.e., those that
occur through all post-treatment confounders as well as the effect of T on Y). This
distinction is important. If the researcher is interested in parsing the direct effect into the
effect that goes through X1, then X1 is really another mediator and not a confounder. If the
researcher is interested in the question, "What is the effect of T on Y that does not go
through M?” then the correct answer is .18. If, on the other hand, the researcher is interested
in the question, “What is the effect of T on Y that does not go through M or X1?” then the
correct answer is .14. We are presuming that X1 is not of scientific interest, and that the
researcher wishes to answer the former question. Thus, it is important to consider the
research question, and therefore, the causal effect of interest.

Outcomes of interest from the simulation study are the Monte Carlo (MC) mean and
standard deviation (SD), computed as

(29)

and

(30)

where r is the number of replications (i.e., r = 1000) and θ̂ is a vector containing the
estimates. The bias is then given as (θ̅ – θ) where θ contains the true population values.

Testing the Mediated Effect
When there are no interactions (see Figure 1), the test of Effects 1 and 2 is a test of the null
hypothesis that β1 = 0 or β2 = 0 (or both are 0). However, when there is an interaction,
whether between T and M or involving a baseline confounder, Z, the parameters for the null
hypothesis differ. Specifically, if there is an interaction between T and Z (see Figure 2), the
null hypothesis is that β1 + β6 = 0 or β2 = 0 (or both are 0). If there is an interaction between
M and Z (see Figure 3), the null hypothesis is that β1 = 0 or β2 + β10 = 0 (or both are 0).
Finally, when there is an interaction between T and M (see Figure 4), the null hypothesis is
that β1 = 0 or β2 + β4 = 0 (or both are 0). To determine the power of this test, we counted
the number of times that the test rejected the false null hypothesis, divided by r = 1000.

Simulation Study: Results
Presence of a Baseline Confounder, X0, of M and Y (Model A)

For Model A in Figure 5, estimates of the effect of T on M are unbiased for all three
methods in the presence of a baseline confounder, X0, of M and Y. This result is to be
expected because T was randomized. However, for Effect 2 (i.e., β2), and the direct effect
(i.e., β3), only regression adjustment and IPW are unbiased. The unadjusted model results in
biased estimates as expected. Using path analysis rules, we would expect that the bias in the
direct effect, when not adjusting for confounders is .39 * (−.2) * .2 = −.0156. In the no-
interaction condition, the bias was −.02 for the unadjusted model. Unbiased estimates can be
obtained using either IPW or regression adjustment for this confounding condition
regardless of interaction condition (see Figures 6 – 8).
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Presence of a Post-Treatment Confounder, X1, of M and Y that has been Influenced by T
(Model B)

For Model B in Figure 5, estimates of Effect 1 are unbiased for all three methods, which
again is to be expected because T is randomized. However, only IPW provides unbiased
estimates of both Effect 2 and the direct effect. The “naive” regression adjustment provides
biased estimates of the direct effect, and the unadjusted model provides biased estimates of
both the direct effect and Effect 2. Here, we refer to the regression adjustment as “naive”
because although it may seem like the natural thing to do, it is incorrect. In this case, the
only unbiased option for all effects among those considered is IPW and this result held
across all interaction conditions (see Figures 6 – 8). Thus, although there is only one
confounder in this case and it may seem troublesome to set up a propensity model for one
confounder and create weights, it is nevertheless necessary to properly adjust for
confounding.

Presence of Both a Baseline Confounder, X0, of T, M, and Y and a Post-Treatment
Confounder, X1, of M and Y (Model C)

For Model C in Figure 5, estimates of Effect 1 are unbiased only for the regression
adjustment and IPW methods. This result was expected because in this confounding
condition there was no longer randomization to T. Therefore, the unadjusted estimate is
biased. As in the previous confounding condition, only IPW provides unbiased estimates of
both the direct effect and Effect 2. The “naive” regression adjustment provides biased
estimates of the direct effect, and the unadjusted model provides biased estimates of both the
direct effect and Effect 2. This result is due to conditioning on a post-treatment confounder
that has been influenced by T. Again, IPW is the only unbiased option of those considered
for all effects and this result held across interaction conditions (see Figures 6 – 8).

Testing the Mediation Effect
Table 3 presents the empirical power (across the 1000 replications) and confirms that the
test has adequate power well above .80 to reject the false null hypothesis that either (or both)
of the effects involved in mediation are zero. In addition to confirming adequate power of
the mediation test based on IPW estimates, we also tested the accuracy of the IPW estimates
by conducting a multivariate Wald test in which the null hypothesis was that the estimates
were equal to the true population values. Table 4 presents the Type I error (across the 1000
replications). Failing to reject this null hypothesis indicates that the estimates are not
significantly different from the true population estimates (i.e., the estimates are unbiased).

Empirical Data Example
Here, we consider a data set that has often been used in methodological articles about causal
inference and mediation (e.g., Imai, Keele, & Tingley, 2010; Jo, 2008). In the appendix, we
provide the R code for implementing IPW and the test to assess mediation in this example.
The data set is from the Job Search Intervention Study (JOBS II; Vinokur & Schul, 1997)
and is available as part of the R package mediation (Keele, Tingley, Yamamoto, & Imai,
2009). In this study, 1801 unemployed workers were randomly assigned to treatment or
control groups. Those in the treatment group attended job-skills workshops and those in the
control group received a booklet of job-search tips. At follow-up interviews the mediator,
job-search self-efficacy, was measured along with the outcome, a measure of depressive
symptoms based on the Hopkins Symptom Checklist (Derogatis, Lipman, Rickels,
Uhlenhuth, & Covi, 1974). Prior to administration of the treatment numerous baseline
variables were measured that may potentially be confounders of job-search self-efficacy and
depressive symptoms. These included baseline depressive symptoms, education, income,
race, marital status, age, gender, previous occupation, and level of economic hardship. We
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consider a baseline moderator, gender, that may interact with either the intervention or job-
search self-efficacy. Finally, we consider the case in which the intervention interacts with
job-search self-efficacy.

Define Causal Effects
No interaction between the intervention and job-search self-efficacy—First, we
define the causal effects of interest. The causal effect of the intervention on job-search self-
efficacy was previously defined as β1 in Equation 3. The causal effect of job-search self-
efficacy on depressive symptoms, given intervention status is

(31)

for t = 0. Since there is no interaction between intervention status and job-search self-
efficacy, the causal effect for t = 1 is the same,

(32)

.

Interaction between intervention and gender—The causal effects of interest are
given in Equations 8, 9, and 10. Since there is not an interaction between intervention status
and job-search self-efficacy, the causal effect defined by Equation 9 is the same as that
defined by Equation 10. The causal effect defined by Equation 8 is conditional on gender.

Interaction between job-search self-efficacy and gender—The causal effects of
interest are given in Equations 16, 17, and 18. Since there is not an interaction between
intervention status and job-search self-efficacy, the causal effect defined by Equation 17 is
the same as that defined by Equation 18, although it is conditional on gender.

Interaction between intervention and job-search self-efficacy—The causal effects
of interest are given in Equations 3, 4, and 5. Because there is an interaction between
intervention status and job-search self-efficacy, the causal effect of job-search self-efficacy
on depressive symptoms differs depending on whether the individual received the
intervention or not (see Equations 4 and 5).

Estimation
We fit the model using the same three estimation methods as in the simulation study. Since
the intervention was randomized, we did not need to adjust for confounding of the effect of
the intervention on job-search self-efficacy. As a result, the estimate, .067 (.052), is the same
for all three methods (see Table 5) for models with no interaction, an interaction between the
intervention and job-search self-efficacy, and an interaction between job-search self-efficacy
and gender. This estimate was not statistically significant. For the model with an interaction
between the intervention and gender, the estimate was .043 (.078) for all three methods (see
Table 5), which was not statistically significant. Also for this model, the estimate for the
interaction term (labeled β6 in Table 5) is the same across all three methods because the
intervention was randomly assigned.

The effect of job-search self-efficacy on depressive symptoms, given intervention status
(labeled β2 in Table 5), differed depending on whether and how the confounders were
adjusted for. This pattern held across interaction conditions. The general pattern was that the
effect of job-search self-efficacy on depressive symptoms was negative. Thus, higher job-
search self-efficacy resulted in fewer depressive symptoms. The effect was greatest for the
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unadjusted model and least for the regression adjusted model. Finally, the effect of the
intervention on depressive symptoms, given job-search self-efficacy (labeled β3 in Table 5)
differed depending on whether and how the confounders were adjusted for.

Testing the Mediated Effect
We performed the test of the null hypothesis of no mediation only for the IPW estimates.
The test indicated that at least one of the estimates was not significantly different from zero
(i.e., p = .251 for no-interaction model, p = .267 for the model with an interaction between
gender and the intervention, p = .259 for the model with an interaction between gender and
job-search self-efficacy, and p = .287 for the model with an interaction between the
intervention and job-search self-efficacy). Thus, we fail to reject the null hypothesis of no
mediation.

Summary
In comparing these estimates and considering the previous simulation results, we can
conclude that an adjustment for confounding is needed in this example. Even though we do
not know the true population values, we do know that the unadjusted estimates are different
from either the IPW or regression adjustment estimates. The standard errors are slightly
larger for IPW because they take into account the uncertainty in estimating the propensity
scores.

Discussion
We have illustrated how to define the causal effects of interest in mediation using MSMs,
how to estimate these effects using IPW in the presence of both baseline and post-treatment
confounders, and how to test the causal effects involved in mediation. The results of the
simulation study showed that the test had adequate power to detect mediation. Further,
results showed that, in the presence of interactions and non-randomized treatments, the IPW
estimator provided unbiased estimates of the causal effects. Finally, we illustrated this
approach using an empirical data set.

In general, standard regression methods should not be used to adjust for confounders that
have been influenced by T. In the mediation context, IPW can properly control for
confounding in which the confounder of the mediator-to-outcome relationship has been
influenced by the treatment. When all confounders are pre-treatment, then either the
standard regression adjustment or IPW provide unbiased estimates. However, IPW can be
advantageous compared to the standard regression adjustment when X0 is a vector that could
contain many (e.g., 80) confounders. In this case, adding all the potential confounders as
covariates in a regression model would be impractical. IPW also has the advantage that the
confounders are not in the regression model for the outcome and, therefore, the causal
effects of interest are not conditional on particular values of the confounders.

Previous work (e.g., Coffman, 2011; Y. Li, Bienias, & Bennett, 2007) has stressed the
importance of addressing confounding when assessing mediation. In fact, Judd and Kenny
(1981), which predates the often-cited Baron and Kenny (1986) paper on mediation, stressed
the importance of addressing confounding. However, the importance of addressing
confounding has been lost for many years. Because it is generally not possible to randomly
assign individuals to M, in most behavioral studies, there are confounders of M and Y. If
individuals are not randomly assigned to T, then there are likely to be confounders of T, M,
and Y. The simulation study illustrated that it is not only important to address confounding
but it is also important to consider how to properly adjust for confounding when assessing
mediation. Like failing to adjust for confounders, improper adjustment can result in biased
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estimates. IPW provided unbiased estimates of all effects even in the presence of post-
treatment confounders.

It should be noted that mediation and confounding are statistically equivalent (MacKinnon
et al., 2000) and that the difference between a mediator and a confounder is substantive.
This is important because a post-treatment confounder is statistically equivalent to a
mediator of the effect of T on M. Suppose that a researcher is interested in X1 as a mediator
itself and wishes to know the effect of T on Y that occurs through X1 (see Figure 1, Model
B). In this case, it would not make sense to treat X1 as a confounder in the denominator
model for creating the weights. We have assumed that the researcher is not interested in the
effect of T on M that occurs through X1; rather, they are interested in the total effect of T on
M.

It should also be noted that regression adjustment of a post-treatment confounder results in
bias in only the direct effect. Therefore, it may be tempting to conclude that regression
adjustment is fine as long as one is interested primarily in Effect 2. Although the researcher
may not be primarily interested in the direct effect, it is nevertheless important to have an
unbiased estimate of it, for two reasons. First, if there is no interaction between T and M,
then an unbiased estimate of the direct effect can be subtracted from the total effect to obtain
an estimate of the indirect effect. Second, it is possible that the direct effect is large and
iatrogenic; even if one is primarily interested in the indirect effect, it is important to know
that the treatment is not having iatrogenic effects through some other variable(s).

The joint significance test as presented in MacKinnon, Lockwood, et al. (2002) is a possible
alternative to the test proposed here, with several key differences. First, the joint
significance test does not take into account the covariance between β1 and β2. Second, and
more importantly, they test different null hypotheses. The joint significance test tests null
hypotheses of the form H0 : β1 = 0 and H0 : β2 = 0 whereas the test proposed here tests null
hypotheses of the form H0 : β1 = 0 or β2 = 0. In some situations, the two tests may lead to
the same substantive conclusion; nevertheless, they test different null hypotheses and,
therefore, may not reach the same substantive conclusion.

Limitations
The assumptions that we made, if they are not plausible in a given empirical example, may
be considered limitations. As a reminder, we assumed no-interference, treatment-variation
irrelevance, consistency, and that all confounders were measured and included in the
propensity model for the denominator of the weights for both the treatment and mediator. A
practical limitation is that extremely small propensity scores can result in extremely large
weights, which can result in unstable estimates (Kang & Schafer, 2007). Generally,
researchers handle this situation by either trimming the weights or removing individuals
with extremely large or small weights, thereby limiting causal inference to the sub-sample
remaining. For example, to trim the weights, weights less than a particular value such as .05
are set to .05 and weights larger than a particular value such as 15 are set to 15. The choice
of a particular value at which to trim the weights or remove individuals from the sample is
basically arbitrary and, thus, there is not an optimal strategy for handling extreme weights.
The presence of extremely small propensity scores is an indication that the positivity
assumption may be violated (Westreich & Cole, 2010). When this assumption is violated,
Robins has proposed other methods for causal inference, such as g-computation (Robins,
1986) and g-estimation (Robins, 1989), and a solution may be to pursue one of these other
estimators.
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Future Directions
Since MSMs and IPW are typically used to assess the effects of time-varying treatments,
one obvious future direction is extension of these models to time-varying mediators as well
as time-varying treatments in the presence of time-varying confounders. Other possible
future directions are to examine different models for estimating the propensity scores, such
as generalized boosted modeling (GBM), or other methods of estimation besides IPW.

Conclusions
Much has been written, primarily in the statistics and epidemiology literature, about direct
and indirect effects and the potential outcomes framework (Albert, 2007; Emsley et al.,
2010; Gallop et al., 2009; Hafeman & VanderWeele, 2010; Jo, 2008; Lynch, Kerry, Gallop,
& Ten Have, 2008; Pearl, 2001; Robins & Greenland, 1992; Rubin, 2004; Sobel, 2008; Ten
Have et al., 2007; VanderWeele, 2009). Much of this literature (e.g., Emsley et al., 2010;
Sobel, 2008; VanderWeele, 2009) has primarily focused on defining direct and indirect
effects because there are several subtly different definitions of direct and indirect effects
within the potential outcomes framework. We propose an approach in which the causal
effects of T on M, M on Y given T = t, and T on Y given M = m are defined in terms of
potential outcomes using MSMs and these effects are identified using Assumptions A–C in
Table 2. Then, IPW is used to estimate these effects using observed data and finally the null
hypothesis that either or both of Effects 1 and 2 are zero serves as a test for mediation.

We have shown that although causal mediation analysis is critically important, it need not be
that different from currently implemented methods. Specifically, we clearly defined the
causal estimands of interest in terms of potential outcomes using MSMs. Next, we used an
IPW estimator to estimate the causal effects and we tested the null hypothesis that either of
the effects involved in mediation was zero. We did not identify or estimate the indirect
effect itself. However, if Assumption D2 holds, then an estimate of the indirect effect may
be obtained by subtracting the direct effect from the total effect.

Acknowledgments
Preparation of this article was supported by NIDA Center Grant P50 DA100075-15, NIDA R03 DA026543-01, and
NIDDK 521 DK082858-2. The content is solely the responsibility of the authors and does not necessarily represent
the official views of the National Institute on Drug Abuse (NIDA), the National Institute on Diabetes and Digestive
and Kidney Diseases (NIDDK), or the National Institutes of Health (NIH). We would like to thank Daniel Almirall,
Amanda Applegate, Bethany Bray, and Kari Kugler for comments on a previous draft of this manuscript.

Appendix
Wald Test with Delta Method for Testing the Hypothesis

The null hypothesis is equivalent to

We denote f(β1, β2) = β1β2, and apply the delta method to it. Asymptotically,
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where Σ is the 2 × 2 covariance matrix. By the delta method (or Taylor’s expansion
approximation),

Then

where

When the sample size is large enough, we can use the estimates of β1 and β2 and the
bootstrapped estimate of Σ to estimate the above τ2, say τ̂2. Now we can construct the Wald
test for the null hypothesis H0 : β1 = 0 or β2 = 0.

and the p-value= 2[1 − Φ(|W|)]. If p < 0.05, then we will reject H0.

R code for empirical data analysis

library(mediation)
library(twang)
data("jobs")
# mean center job_seek => job_seek.c
jobs$job_seek.c <- jobs$job_seek - mean(jobs$job_seek)
attach(jobs)
#Analyze jobs data
###########################################################################
# No interactions
# no adjustment
mod.m1 <- lm(job_seek.c ~ treat)
mod.y1 <- lm(depress2 ~ treat + job_seek.c)
# reg. adjustment
mod.y2 <- lm(depress2 ~ treat + job_seek.c + depress1 + econ_hard + sex + age
+ occp + marital + nonwhite + educ + income)
#propensity models for continuous mediator
num.mod <- lm(job_seek.c ~ treat, data=jobs)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital
+ nonwhite + educ + income, data=jobs)
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sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
jobs$w.m <- num.p/den.p
# MSM - with robust SE
design.ps <- svydesign(ids= ~1, weights= ~jobs$w.m, data=jobs)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c, design=design.ps)
# Bootstrapping to estimate the covariance matrix
mod1.Boot.ab<-function(dat, n) { # n -- the number of bootstrap replications
a<-c()
b<-c()
ab<-c()
samsize<-dim(dat)[1]
for (i in 1:n) {
resam.num <- sample(samsize,replace=T)
dat.new <- dat[resam.num,]
num.mod <- lm(job_seek.c ~ treat, data=dat.new)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital
+ nonwhite + educ + income, data=dat.new)
sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
jobs$w.m <- num.p/den.p
design.ps <- svydesign(ids= ~1, weights= ~jobs$w.m, data=dat.new)
mod.m3 <- lm(job_seek.c ~ treat, data=dat.new)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c, design=design.ps)
a[i]<-summary(mod.m3)$coef[2,1]
b[i]<-summary(mod.y3)$coef[3,1]
ab[i]<-a[i]*b[i]
}
var.a<-var(a)
var .b<-var(b)
cov.ab<-cov(a,b)
cov.mtx<-matrix(c(var.a,cov.ab,cov.ab,var.b),2,2)
list(a.est=a,b.est=b,ab.est=ab,cov=cov.mtx)
}
boot.mod1=mod1.Boot.ab(jobs,1000)
# Wald Test to test the significance of mediation effects
ahat=summary(mod.m3)$coef[2,1]
bhat=summary(mod.y3)$coef[3,1]
var.new <- c(bhat ,ahat)%*%boot.mod1$cov%*%c(bhat,ahat)
W=bhat*ahat/sqrt(var.new)
pval=2*(1-pnorm(abs(W)))
###########################################################################
# ZT Models
#no adjustment
mod.m1 <- lm(job_seek.c ~ treat + sex + sex*treat)
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mod.y1 <- lm(depress2 ~ treat + job_seek.c + sex + sex*treat)
#reg. adjustment
mod.y2 <- lm(depress2 ~ treat + job_seek.c + depress1 + econ_hard + sex + 
age + occp
+ marital + nonwhite + educ + income + sex*treat)
#propensity models for continuous mediator
num.mod <- lm(job_seek.c ~ sex + treat, data=jobs)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital
+ nonwhite + educ + income, data=jobs)
sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
jobs$w.m <- num.p/den.p
#MSM - with robust SE
design.ps <- svydesign(ids= ~1, weights= ~jobs$w.m, data=jobs)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c + sex + sex*treat, 
design=design.ps)
# Bootstrapping to estimate the covariance matrix
ztmod1.Boot.ab<-function(dat, n) { # n -- the number of bootstrap 
replications
a1<-c()
b<-c()
a2<-c()
ab<-c()
samsize<-dim(dat)[1]
for (i in 1:n) {
resam.num <- sample(samsize,replace=T)
dat.new <- dat[resam.num,]
num.mod <- lm(job_seek.c ~ treat + sex, data=dat.new)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital
+ nonwhite + educ + income, data=dat.new)
sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
dat.new$w.m <- num.p/den.p
design.ps <- svydesign(ids= ~1, weights= ~w.m, data=dat.new)
mod.m3 <- lm(job_seek.c ~ treat + sex + sex*treat, data=dat.new)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c + sex + sex*treat, 
design=design.ps)
a1[i]<-summary(mod.m3)$coef[2,1]
b[i]<-summary(mod.y3)$coef[3,1]
a2[i]<-summary(mod.m3)$coef[4,1] ### for ZT model : beta_6 ###
ab[i] = (a1[i]+a2[i])*b[i]
}
a <- a1+a2
var.a<-var(a)
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var .b<-var(b)
cov.ab<-cov(a,b)
cov.mtx<-matrix(c(var.a,cov.ab,cov.ab,var.b),2,2)
list(a1.est=a1,b.est=b,a2.est=a2,ab.est=ab,cov=cov.mtx)
}
boot.ztmod1=ztmod1.Boot.ab(j obs,1000)
# Wald Test to test the significance of mediation effects
ahat=summary(mod.m3)$coef[2,1]+ summary(mod.m3)$coef[4,1]
bhat=summary(mod.y3)$coef[3,1]
var.new <- c(bhat ,ahat)%*%boot .ztmod1$cov%*%c(bhat ,ahat)
W=bhat*ahat/sqrt(var.new)
pval=2*(1-pnorm(abs(W)))
###########################################################################
# ZM Models
#no adjustment
mod.m1 <- lm(job_seek.c ~ treat)
mod.y1 <- lm(depress2 ~ treat + job_seek.c + sex + sex*job_seek.c)
#reg. adjustment
mod.y2 <- lm(depress2 ~ treat + job_seek.c + depress1 + econ_hard + sex + 
age + occp
+ marital + nonwhite + educ + income + sex*job_seek.c)
#propensity models for continuous mediator
num.mod <- lm(job_seek.c ~ treat + sex, data=jobs)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital
+ nonwhite + educ + income, data=jobs)
sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
jobs$w.m <- num.p/den.p
#MSM - with robust SE
design.ps <- svydesign(ids= ~1, weights= ~jobs$w.m, data=jobs)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c + sex + sex*job_seek.c, 
design=design.ps)
# Bootstrapping to estimate the covariance matrix
zmmod1.Boot.ab<-function(dat, n) { # n -- the number of bootstrap 
replications
a<-c()
b1<-c()
b2<-c()
ab<-c()
samsize<-dim(dat)[1]
for (i in 1:n) {
resam.num <- sample(samsize,replace=T)
dat.new <- dat[resam.num,]
num.mod <- lm(job_seek.c ~ treat + sex, data=dat.new)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital
+ nonwhite + educ + income, data=dat.new)
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sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
dat.new$w.m <- num.p/den.p
design.ps <- svydesign(ids= ~1, weights= ~w.m, data=dat.new)
mod.m3 <- lm(job_seek.c ~ treat, data=dat.new)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c + sex + sex*job_seek.c, 
design=design.ps)
a[i]<-summary(mod.m3)$coef[2,1]
b1[i]<-summary(mod.y3)$coef[3,1]
b2[i]<-summary(mod.y3)$coef[5,1]
ab[i]<-a[i]*(b1[i]+b2[i])
}
b <- b1+b2
var.a<-var(a)
var.b<-var(b)
cov.ab<-cov(a,b)
cov.mtx<-matrix(c(var.a,cov.ab,cov.ab,var.b),2,2)
list(a.est=a,b1.est=b1,b2.est=b2,ab.est=ab,cov=cov.mtx)
}
boot.zmmod1=zmmod1.Boot.ab(jobs,1000)
# Wald Test to test the significance of mediation effects
ahat=summary(mod.m3)$coef[2,1]
bhat=summary(mod.y3)$coef[3,1]+summary(mod.y3)$coef[5,1]
var.new <- c(bhat ,ahat)%*%boot .zmmod1$cov%*%c(bhat ,ahat)
W=bhat*ahat/sqrt(var.new)
pval=2*(1-pnorm(abs(W)))
###########################################################################
# TM Models
#no adjustment
mod.m1 <- lm(job_seek.c ~ treat)
mod.y1 <- lm(depress2 ~ treat + job_seek.c + treat*job_seek.c)
#reg. adjustment
mod.y2 <- lm(depress2 ~ treat + job_seek.c + depress1 + treat*job_seek.c + 
econ_hard + sex + age
+ occp + marital + nonwhite + educ + income )
#propensity models for continuous mediator
num.mod <- lm(job_seek.c ~ treat, data=jobs)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital + nonwhite
+ educ + income, data=jobs)
sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
jobs$w.m <- num.p/den.p
#MSM - with robust SE
design.ps <- svydesign(ids= ~1, weights= ~jobs$w.m, data=jobs)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c+ treat*job_seek.c, 
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design=design.ps)
# Bootstrapping to estimate the covariance matrix
tmmod1.Boot.ab<-function(dat, n) { # n -- the number of bootstrap 
replications
a<-c()
b1<-c()
b2<-c()
ab<-c()
samsize<-dim(dat)[1]
for (i in 1:n) {
resam.num <- sample(samsize,replace=T)
dat.new <- dat[resam.num,]
num.mod <- lm(job_seek.c ~ treat, data=dat.new)
den.mod <- lm(job_seek.c ~ treat + depress1 + econ_hard + sex + age + occp + 
marital + nonwhite
+ educ + income, data=dat.new)
sigma.n <- summary(num.mod)$sigma
sigma.d <- summary(den.mod)$sigma
num.p <- dnorm(job_seek.c, mean=num.mod$fitted, sd=sigma.n)
den.p <- dnorm(job_seek.c, mean=den.mod$fitted, sd=sigma.d)
dat$w.m <- num.p/den.p
design.ps <- svydesign(ids= ~1, weights= ~w.m, data=dat.new)
mod.m3 <- lm(job_seek.c ~ treat, dat=dat.new)
mod.y3 <- svyglm(depress2 ~ treat + job_seek.c+ treat*job_seek.c, 
design=design.ps)
a[i]<-summary(mod.m3)$coef[2,1]
b1[i]<-summary(mod.y3)$coef[3,1]
b2[i]<-summary(mod.y3)$coef[4,1]
ab[i]<-a[i]*(b1[i]+b2[i])
}
b <- b1+b2
var.a<-var(a)
var.b<-var(b)
cov.ab<-cov(a,b)
cov.mtx<-matrix(c(var.a,cov.ab,cov.ab,var.b),2,2)
list(a.est=a,b1.est=b1,b2.est=b2,ab.est=ab,cov=cov.mtx)
}
boot.tmmod1=tmmod1.Boot.ab(jobs,1000)
# Wald Test to test the significance of mediation effects
ahat=summary(mod.m3)$coef[2,1]
bhat=summary(mod.y3)$coef[3,1]+summary(mod.y3)$coef[4,1]
var.new <- c(bhat ,ahat)%*%boot .tmmod1$cov%*%c(bhat ,ahat)
W=bhat*ahat/sqrt(var.new)
pval=2*(1-pnorm(abs(W)))
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Figure 1.
Data-generating confounding structures for simulation study with no moderator. Unless
otherwise marked, all paths are .2.
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Figure 2.
Data-generating confounding structures for simulation study with an interaction between T
and Z. Unless otherwise marked, all paths are .2.

Coffman and Zhong Page 32

Psychol Methods. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 3.
Data-generating confounding structures for simulation study with an interaction between M
and Z. Unless otherwise marked, all paths are .2.
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Figure 4.
Data-generating confounding structures for simulation study with an interaction between T
and M. Unless otherwise marked, all paths are .2.
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Figure 5.
Boxplots illustrating bias for the unadjusted (UA), regression-adjusted (RA), and inverse
propensity weighted (IPW) estimates for the no-interaction models.

Coffman and Zhong Page 35

Psychol Methods. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 6.
Boxplots illustrating bias for the unadjusted (UA), regression-adjusted (RA), and inverse
propensity weighted (IPW) estimates for the models with an interaction between T and Z.
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Figure 7.
Boxplots illustrating bias for the unadjusted (UA), regression-adjusted (RA), and inverse
propensity weighted (IPW) estimates for the models with an interaction between M and Z.
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Figure 8.
Boxplots illustrating bias for the unadjusted (UA), regression-adjusted (RA), and inverse
propensity weighted (IPW) estimates for the models with an interaction between T and M.
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Table 1

Summary of Definitions of Direct and Indirect Effects

Effect Mathematical Conceptual

Direct Effects

Controlled E[Y(t, m) − Y(t′, m)] Causal effect on Y of changing from T = t
to T = t′ when M = m.

Natural E[Y(t, M(t′)) − Y(t′, M(t′))] Causal effect on Y of changing from T = t
to T = t′ when M is set to what it would have been under T = t′

E[Y(t, M(t)) − Y(t′, M(t))] Causal effect on Y of changing from T = t
to T = t′ when M is set to what it would have been under T = t

Indirect Effects

Natural E[Y(t′, M(t)) − Y(t′, M(t′))] Causal effect on Y of the difference in the level of the mediator that would be
obtained under T = t versus the level of the mediator that would be obtained
under T = t′ for T = t′

E[Y(t, M(t)) − Y(t, M(t′))] Causal effect on Y of the difference in the level of the mediator that would be
obtained under T = t versus the level of the mediator that would be obtained
under T = t′ for T = t.
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Table 2

Summary of Assumptions for Identifying Direct and Indirect Effects

Assumption Mathematical Conceptual

A. T ⊥ Y(t, m)|X0 No unmeasured confounders of T and Y.

B. M ⊥ Y(t, m)|T, X0, X1 No unmeasured confounders of M and Y.

C. T ⊥ M(t)|X0 No unmeasured confounders of T and M.

D1. M(t) ⊥ Y(t′, m)|X0 No measured or unmeasured confounders of
M and Y that have been influenced by T.

D2. E[Y(1, m) − Y(0, m)] =
E[Y(1, m′) − Y(0, m′)]
for all m and m′

No interaction between T and M.
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Table 3

Empirical Power for Testing the Null Hypothesis of No Mediation (1000 replications)

Test H0 Model Power

No Interaction Model A 0.987

H0 : β1 = 0 or β2 = 0 Model B 0.999

Model C 0.993

T & Z Interaction Model A 1.000

H0 : β1 + β6 = 0 or β2 = 0 Model B 1.000

Model C 0.998

M & Z Interaction Model A 0.986

H0 : β1 = 0 or β2 + β10 = 0 Model B 0.994

Model C 0.992

T & M Interaction Model A 0.987

H0 : β1 = 0 or β2 + β4 = 0 Model B 0.999

Model C 0.995

Note: As a reminder, the marginal structural models are given below.

E[M(t)] = β0M + β1t

E[Y(t, m)] = β0Y + β2m + β3t

E[M(t)] = β0M + β1t + β5z + β6zt

E[Y(t, m)] = β0Y + β2m + β3t + β9z + β10zm

E[Y(t, m)] = β0Y + β2m + β3t + β4tm
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Table 4

Type I Error for Testing the Accuracy of Estimates Using IPW

Interaction Test H0 Model Type I Error

None H0 : β1 = 0.39 & β2 = 0.39 Model A 0.057

H0 : β1 = 0.43 & β2 = 0.39 Model B 0.043

H0 : β1 = 0.43 & β2 = 0.39 Model C 0.043

T & Z H0 : β1 + β6 = 0.78 & β2 = 0.39 Model A 0.047

H0 : β1 + β6 = 0.82 & β2 = 0.39 Model B 0.064

H0 : β1 + β6 = 0.82 & β2 = 0.39 Model C 0.064

M & Z H0 : β1= 0.39 & β2 + β10 = 0.78 Model A 0.060

H0 : β1 = 0.43 & β2 + β10 = 0.78 Model B 0.081

H0 : β1 = 0.43 & β2 + β10 = 0.78 Model C 0.081

T & M H0 : β1 = 0.39 & β2 + β4 = 0.78 Model A 0.059

H0 : β1 = 0.43 & β2 + β4 = 0.78 Model B 0.046

H0 : β1 = 0.43 & β2 + β4 = 0.78 Model C 0.046

Note: Multivariate Wald test to test the joint accuracy of effect estimates (i.e., H0 : effects are true values).

where rejecting H0 means that p-value of multivariate Wald test < 0.05.
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Table 5

Results of Empirical Data Analysis.

Interaction Parameters Unadjusted Reg. Adjust IPW

None β1(SE) 0.067 (0.052) 0.067 (0.052) 0.067 (0.052)

β2(SE) −0.225 (0.029) −0.177 (0.028) −0.194 (0.034)

β3(SE) −0.048 (0.045) −0.037 (0.041) −0.038 (0.049)

T & Z β1(SE) 0.043 (0.078) 0.043 (0.078) 0.043 (0.078)

(Treat & Gender) β2(SE) −0.225 (0.029) −0.177 (0.028) −0.194 (0.033)

β3(SE) −0.059 (0.067) −0.046 (0.061) −0.039 (0.071)

β6(SE) 0.042 (0.104) 0.042 (0.104) 0.042 (0.104)

M & Z β1(SE) 0.067 (0.052) 0.067 (0.052) 0.067 (0.052)

(Job-Seek & Gender) β2(SE) −0.211 (0.045) −0.171 (0.042) −0.190 (0.046)

β3(SE) −0.043 (0.045) −0.037 (0.041) −0.031 (0.049)

β3(SE) −0.024 (0.058) −0.010 (0.054) −0.007 (0.066)

T & M β1(SE) 0.067 (0.052) 0.067 (0.052) 0.067 (0.052)

(Treat & Job_Seek) β2(SE) −0.270 (0.053) −0.240 (0.050) −0.214 (0.064)

β3(SE) −0.047 (0.045) −0.035 (0.041) −0.037 (0.049)

β4(SE) 0.065 (0.063) 0.088 (0.058) 0.029 (0.076)

Note: As a reminder, the marginal structural models are given below.

E[M(t)] = β0M + β1t

E[Y(t, m)] = β0Y + β2m + β3t

E[M(t)] = β0M + β1t + β5z + β6zt

E[Y(t, m)] = β0Y + β2m + β3t + β9z + β10zm

E[Y(t, m)] = β0Y + β2m + β3t + β4tm
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