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postovulatory aging-induced abortive spontaneous egg
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Abstract
Purpose The present study was aimed to find out whether
postovulatory aging-induced abortive spontaneous egg acti-
vation (SEA) is due to insufficient increase of cytosolic free
Ca2+ level.
Methods Immature female rats (22–24 days old) were sub-
jected to superovulation induction protocol. Eggs were collect-
ed 14, 17 and 19 h post-hCG surge to induce in vivo egg aging.
The eggs were collected 14 h post-hCG surge and cultured in
vitro for 3, 5 and 7 h to induce in vitro egg aging. The
morphological changes, rate of abortive SEA, chromosomal
status and cytosolic free Ca2+ levels were analyzed.
Results Postovulatory aging induced morphological features
characteristics of abortive SEA in a time-dependent manner in
vivo as well as in vitro. The extracellular Ca2+ increased rate
of abortive SEA during initial period of culture, while co-
addition of a nifedipine (L-type Ca2+ channel blocker) pro-
tected against postovulatory aging-induced abortive SEA.
However, CI induced morphological features characteristics
of egg activation (EA) in a dose-dependent manner. As com-
pare to control, an increase of cytosolic free Ca2+ level (1.42
times) induced abortive SEA, while further increase of cyto-
solic free Ca2+ level (2.55 times) induced EA.
Conclusion Our results show that an insufficient cytosolic
free Ca2+ level is associated with postovulatory aging -
induced abortive SEA, while furthermore increase is re-
quired to induce EA in rat.
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Introduction

In most of the mammalian species, ovulated eggs are arrested
at metaphase-II (M-II) stage of meiotic cell cycle until fertil-
ization. The fertilizing spermatozoa increases cytosolic free
calcium (Ca2+) level and induces egg activation (EA), which
is morphologically characterized by an exit from M-II arrest,
extrusion of second polar body (PB-II), cortical granules exo-
cytosis and pronuclei formation [1, 2]. The inositol 1,4,5-
triphosphate-sensitive stores are the primary source for an
increase of cytosolic free Ca2+ level during EA [3–5]. Calcium
ionophore A23187 (CI) increases cytosolic free Ca2+ level and
induces EA in vitro [6–9].

In the absence of fertilization, postovulatory aging results
in abortive spontaneous egg activation (SEA) in several
mammalian species including human [2, 10–16]. However,
the possible factor(s) that drive postovulatory aging-induced
abortive SEA is not yet known. An increase of cytosolic free
Ca2+ level is one of the important factors that triggers EA
under in vivo as well as in vitro conditions, a possibility
exists that, similar to EA, an increase of cytosolic free Ca2+

level may also trigger postovulatory aging-induced abortive
SEA. However, there is no evidence to support this possi-
bility. Postovulatory aging-induced abortive SEA deterio-
rates the egg quality and limits assisted reproductive
technologies (ART) such as in vitro fertilization (IVF),
intra-cytoplasmic sperm injection (ICSI) and somatic cell
nuclear transfer (SCNT) during animal cloning [14, 17–19].
Several drugs such as proteasome inhibitor, MG-135 [20,
21], melatonin [22], verapamil [16] and pyruvate [23] have
been used to prevent postovulatory aging-induced abortive
SEA in vitro [16, 24].

Capsule Postovulatory aging induces insufficient increase of cytosolic
free Ca2+ level leading to abortive spontaneous egg activation, while
further increase of Ca2+ level is required to induce egg activation.
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Rat is an interesting animal model for the study of SEA [14,
16, 25–28], since this process is rapid [29] and abortive [30].
After extrusions of PB-II, rat egg neither form pronuclei and nor
proceed to interphase, instead gets arrested at metaphase-III (M-
III) like stage [14, 24, 27, 28]. Postovulatory aging is one of the
important factors that induce abortive SEA in rat. For example,
freshly ovulated eggs recovered after 14 h post human chorionic
gonadotropin (hCG) surge are less likely to undergo abortive
SEA, while postovulatory aging induces abortive SEA [16,
31–33]. However, factor(s) that drives postovulatory aging-
induced abortive SEA are not fully understood. We hypothesize
that an insufficient increase of cytosolic free Ca2+ level could be
one of the factors associated with postovulatory aging-induced
abortive SEA. Hence, present study was designed to investigate
the involvement of cytosolic free Ca2+ level during postovula-
tory aging-induced abortive SEA in rat. For this purpose, post-
ovulatory egg aging was induced in vivo as well as in vitro and
morphological changes such as extrusion of PB-II, meiotic
status and cytosolic free Ca2+ level were analyzed.

Materials and methods

Unless otherwise stated, all reagents were purchased from
Sigma Chemical Co., St. Louis, MO, USA.

Preparation of CI and Fluo-3 AM working solutions

CI was initially dissolved in 100 μL of dimethyl sulfoxide
(DMSO) and then in distilled water to get a final concentration
of 1 mg/ml (stock solution). The stock solution was further
diluted in Ca2+-freemedium (Medium-199, AL043A,HiMedia
Laboratories, Mumbai, India) to get working concentrations of
CI (0.2, 0.3, 0.4 and 0.5 μM). The freshly prepared working
concentrations were pre-warmed at 37 °C for 5 min before use.
Addition of CI did not alter the osmolarity (290±5 m Osmol)
and pH (7.2±0.2) of culture medium. Fluo-3 AM was initially
dissolved in 100 μL of DMSO and then in media to get a final
concentration of 1 mg/ml (stock solution). The stock solution
was further diluted using Ca2+ -free medium to get working
concentration (50 μM) of Fluo-3 AM. Since DMSO was used
as a solvent for the preparation of CI and Fluo-3 AM stock
solutions, an equivalent volume of the highest concentration
(0.1 % DMSO) was used in the control group.

Experimental animals

Immature female rats (22–24 days old) of Charles-Faster
strain were housed in light-controlled room, with food and
water available ad libitum. In order to collect maximum
number of ovulated eggs, rats were subjected to superovu-
lation protocol by priming with subcutaneous injection of
15 IU pregnant mare’s serum gonadotropin (PMSG) for 48 h

followed by 15 IU hCG for various times depending on the
experiments (i.e. 14 h for in vitro studies and 14, 17, and
19 h for in vivo studies). All procedures confirmed to the
stipulations of the Institutional Animal Ethical Committee
of Banaras Hindu University, Varanasi, UP, India.

Collection and culture of eggs

Ovulated cumulus-enclosed eggs were collected from oviduct
using a 26-gauge needle and transferred in pre-warmed Ca2+-
free medium. All ovulated cumulus-enclosed eggs were pick-
ed up using micropipette (Clay Adams; B&D and Co., NJ)
and transferred to fresh culture medium containing 0.01 %
hyaluronidase at 37 °C for 3 min for the removal of cumulus
cells. The denuded eggs were washed three times with fresh
culture medium and then 15–20 denuded eggs were trans-
ferred 200 μl of culture medium for in vitro studies. The eggs
used for all in vitro experiments were arrested at theM-II stage
showing first polar body (PB-I).

Effect of postovulatory aging on morphological changes
in egg in vivo

Ovulation occurs in immature rats (22–24 days old) sub-
jected to superovulation induction protocol after 14 h post-
hCG surge. In order to induce postovulatory aging, eggs
were collected 14, 17 and 19 h post-hCG surge. These eggs
were quickly denuded as described above and then observed
for their morphological changes using phase-contrast micro-
scope (Nikon, Eclipse; E200, Japan) at 400x magnification.

Effect of extracellular Ca2+ on morphological changes
in eggs in vitro

A group of 15–20 eggs (collected 14 h post-hCG surge) was
cultured either in Ca2+ -free medium-199 or Ca2+ (1.80 mM)
supplemented medium (Medium-199, Cat. no. AL014A;
HiMedia Laboratories,Mumbai, India) containingwith or with-
out 200 μMnifedipine (a known L-type Ca2+ channel blocker).
This concentration of nifedipine has been reported to inhibit
SEA in rat eggs cultured in vitro [29]. All cultures were main-
tained at 37 °C for 3, 5 and 7 h in humidified chamber. At the
end of the incubation period, eggs were examined for abortive
SEA using a phase-contrast microscope at 400x magnification.

Effect of CI on morphological changes in eggs in vitro

We used CI as a positive control in the present study to compare
morphological changes characteristics of EA with postovula-
tory aging-induced abortive SEA. For this purpose, 15–20 eggs
collected after 14 h post-hCG surge were cultured in Ca2+-free
medium with or without various concentrations of CI (0.2, 0.3,
0.4 and 0.5 μM) for 3 h in humidified chamber at 37 °C. At the
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end of the incubation period, eggs were removed, washed with
fresh medium and then examined for morphological changes
using phase-contrast microscope at 400x magnification.

Analysis of meiotic status of eggs

To analyze the meiotic status, 14–15 eggs (eggs at various
stages of meiotic cell cycle) were incubated in medium
containing Hoechst stain (0.5 μg/ml of distilled water) for
10 min at 37 °C. At the end of the incubation period, eggs
were removed and washed three times with phosphate buffer
saline and then examined for chromosomal status under Epi-
fluroscence Microscope (Nikon, Eclipse; E-80i, Japan) us-
ing Ex350 nm and Em460 nm at 400x magnifications.

Analysis of cytosolic free Ca2+ level using Fluo-3

The cytosolic free Ca2+ level was analyzed in eggs at various
stages of meiotic cell cycle following published protocol with
some modifications [3, 34, 35]. In brief, eggs (14–15 eggs in
each group) were cultured in Ca2+-free medium with or with-
out CI (0.5 μM) and 50 μM Fluo-3 AM for 1 h at 37 °C in

humidified chamber. At the end of the incubation period,
eggs were removed and washed three times with Ca2+-free
medium and observed under Epi-fluroscence Microscope
(Nikon, Eclipse; E-80i, Japan) using Ex488 nm and Em525
nm. The corrected total cell fluorescence (CTCF) was
calculated following the method published earlier [34]
using Image J Software (version 1.44 from National Insti-
tute of Health, USA).

Statistical analysis

Data are expressed as mean±standard error of mean (SEM) of
triplicate samples. All percentage data were subjected to arc-
sine square-root transformation before statistical analysis. Da-
ta are analyzed either by Student’s t-test or by one-way
ANOVA followed by post hoc (Bonferroni) analysis using
SPSS software, Version 13 (SPSS, Inc. Chicago, IL). A prob-
ability of P<0.05 was considered as statistically significant.

Fig. 1 Representative
photographs showing
postovulatory aging-induced
abortive SEA in vivo. a Egg
collected 14 h post-hCG surge
showing extruded PB-I. b Eggs
collected 19 h post-hCG surge
showing PB-I (red arrow head)
and incomplete extrusion of
PB-II (yellow arrow head).
Bar 020 μm

Fig. 2 Postovulatory aging-induced abortive SEA in vivo. Eggs were
collected 17 and 19 h post-hCG surge and morphological features of
abortive SEA were analyzed. Data are mean (%)±SEM of three repli-
cates and data were analyzed by one-way ANOVA

Fig. 3 Postovulatory aging-induced abortive SEA in vitro. Eggs collect-
ed 14 h post-hCG surge were cultured in Ca2+-free medium or Ca2+-
supplemented medium with or without nifedipine (200 μM) for various
times (3, 5 and 7 h). Data are mean (%)±SEM of three replicates. Data
were analyzed by one-way ANOVA followed by post hoc test
(Bonferroni). “*” Denotes significant (P<0.05) increase as compare to
Ca2+-free medium
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Results

Postovulatory aging induces abortive SEA in vivo

As shown in Fig. 1, newly ovulated eggs collected after 14 h
post-hCG surge were arrested at M-II stage of meiotic cell
cycle and extruded PB-I (Fig. 1a). Postovulatory aging
induced exit from M-II arrest and incomplete extrusion of
PB-II, a morphological feature of abortive SEA (Fig. 1b).
The rate of abortive SEAwas increased in a time-dependent
manner if the egg were collected after 17 and 19 h post-hCG
surge (One-way ANOVA; F01863.4, P<0.001; Fig. 2). All
eggs underwent abortive SEA if collected after 19 h of post-
hCG surge.

Extracellular Ca2+ has a role during abortive SEA in vitro

As shown in Fig. 3, postovulatory aging in vitro induced
abortive SEA a time-dependent manner in eggs cultured either

in Ca2+-deficient medium (one-way ANOVA; F04578.5, P<
0.001) or Ca2+ supplemented medium (one-way ANOVA; F0
3154, P<0.001). Presence of extracellular Ca2+ induced sig-
nificantly higher rate of abortive SEA during 3 and 5 h of in
vitro culture. Almost all eggs underwent abortive SEA after
7 h of in vitro culture in either media suggesting the role of
extracellular Ca2+ during postovulatory aging-induced abor-
tive SEA in vitro. However, nifedipine (200 μM) protected
extracellular Ca2+ -induced abortive SEA in eggs cultured in
Ca2+ supplemented medium (Fig. 3).

CI inducesmorphological features characteristics of EA in vitro

To confirm the role of Ca2+ in inducing morphological
features characteristics of EA, we used CI, a known drug
that releases Ca2+ from internal stores. As shown in Fig. 4,
CI induced morphological features characteristics of EA in a
dose-dependent manner (one-way ANOVA; F0247.23, P<
0.001). Egg collected 14 h post-hCG surge were arrested at
M-II stage exhibiting PB-I (Fig. 5a). However, an exit from
M-II arrest, complete extrusion of PB-II and pronuclei for-
mation were the morphological features associated with CI-
induced EA (Fig. 5b).

Postovulatory aging induces M-III like arrest

The meiotic status was confirmed during abortive SEA and
CI-induced EA using Hoechst stain. As shown in Fig. 6a,
control eggs were arrested at M-II stage as evidenced by
condensed haploid set of chromosomes in egg cytoplasm as
well as in PB-I. Eggs that underwent postovulatory aging–
induced abortive SEA showed scattered chromosome in the
egg cytoplasm suggesting M-III like arrest and condensed
haploid set of chromosomes in PB-II (Fig. 6b). However,
eggs underwent CI-induced EA showed pronuclei forma-
tion, condensed chromosomes in PB-I and PB-II suggesting
the completion of meiosis (Fig. 6c).

Fig. 4 CI-induced morphological changes characteristics of EA in
vitro. Eggs collected 14 h post-hCG surge were cultured in Ca2+ -
free medium containing various concentrations of CI for 3 h in vitro.
Data are mean (%)±SEM of three replicates and analyzed by one-way
ANOVA

Fig. 5 Representative
photographs showing CI-
induced morphological changes
characteristics of EA in vitro. a
Control egg showing PB-I. b
CI-induced EA as evidenced by
degenerating PB-I (red arrow
head), complete extrusion of
PB-II (yellow arrow head) and
formation of pronuclei (green
arrow head). Bar 020 μm
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Postovulatory aging increases cytosolic free Ca2+ level

To confirm the role of cytosolic free Ca2+ during postovu-
latory aging-induced abortive SEA and CI-induced EA,
fluorescence intensity of Fluo-3 was analyzed. As shown
in Fig. 7, a rise in fluorescence intensity of Fluo-3 was
observed in eggs underwent postovulatory aging-induced
abortive SEA (Fig. 7b) as compare to control eggs
(Fig. 7a). However, further increase of fluorescence intensi-
ty was noticed in eggs that underwent CI-induced EA
(Fig. 7c). The CTCF analysis using Image J software (Ver-
sion 1.3) of three independent experiments further confirm
that the postovulatory aging significantly (P<0.001) in-
creased cytosolic free Ca2+ level (1.42 times) and induced
abortive SEA, while further increase (2.55 times) was asso-
ciated with CI-induced EA (Fig. 8).

Discussion

Postovulatory aging -induced SEA has been reported in
several mammalian species [14, 16, 25, 27, 30]. However,
rat is an interesting model because the process of SEA is
abortive [30] and aged eggs are arrested at M-III like stage
[24]. The freshly ovulated eggs (14 h post-hCG surge) are
less likely to undergo abortive SEA as compare to aged eggs
in vivo [28, 31, 33]. In the present study, freshly ovulated
eggs (collected 14 h post-hCG surge) were arrested at M-II
stage and showed extrusion of PB-I. However, postovula-
tory aging in vivo (egg collected after 17 and 19 h post-hCG
surge) as well as in vitro (freshly ovulated eggs collected
after 14 h post-hCG surge and their culture under in vitro
conditions for 5 and 7 h) induced abortive SEA in a time-
dependent manner. These data further support previous

Fig. 6 Representative photographs showing meiotic status of eggs. a
Control egg showing condensed chromosome (white arrow heads) in
egg cytoplasm as well as in PB-I (red arrow head) characteristics of M-
II arrest. b Egg showing scattered chromosomes (white arrow heads) in
the cytoplasm suggesting M-III like arrest, extrusion of PB-II (yellow

arrow head) and degenerating PB-I (red arrow head). c Egg showing
pronuclei formation (green arrow head), complete extrusion of PB-II
(yellow arrow head), condensed chromosome (white arrow heads) in
PB-I (red arrow head) and PB-II suggesting the completion of meiosis.
Bar 020 μm

Fig. 7 Representative photographs showing fluorescence intensity of
Fluo-3 in eggs. a Control egg arrested at M-II stage. b An increase of
fluorescence intensity in postovulatory aging-induced abortive SEA. c

The fluorescence intensity was further increased in eggs that under-
went CI-induced EA. PB-I (red arrow head), PB-II (yellow arrow
head). Bar 020 μm
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observations that the residence of ovulated eggs in the
oviduct or culture of freshly ovulated eggs under in vitro
conditions induced morphological features associated with
abortive SEA [4, 14, 25–27].

Ca2+ plays a major role in the modulation of egg physiol-
ogy [36]. Data of the present study suggest that the extracel-
lular Ca2+ increased rate of abortive SEA during initial period
(3 and 5 h) of in vitro culture, while all eggs underwent
abortive SEA if cultured for 7 h either in Ca2+-deficient or
Ca2+-supplemented medium. Further, L-type Ca2+ channel
blocker such as nifedipine (200 μM) protected against extra-
cellular Ca2+-induced abortive SEA. These data suggest that
the L-type Ca2+ channels are still operated in ovulated eggs
[37] and nifedipine blocks L-type Ca2+ channels and inhibits
abortive SEA in rat eggs [29]. These data together with
previous findings suggest that postovulatory aging induces
abortive SEA probably by increasing cytosolic free Ca2+ level.
The inhibitory effect of nifedipine suggests that it can be used
to delay egg aging in vitro during various ART programs.

Intracellular Ca2+ homeostasis is very important in main-
taining the physiology of an ovulated egg. An increase of
cytosolic free Ca2+ (due to burst from internal stores) indu-
ces EA during fertilization [5, 38, 39]. Further, CI increases
cytosolic free Ca2+ level [35] and induces EA in several
mammalian species [11, 14, 16, 32, 40–42]. In the present
study, we used CI as a positive control and data suggest that
CI induced morphological features characteristics of EA in a
dose-dependent manner. The complete extrusion of PB-II
and formation of pronuclei were clearly observed in eggs
that underwent CI-induced EA. However, postovulatory
aging-induced abortive SEA showed incomplete extrusion
of PB-II and did not show pronuclei formation. The chro-
mosomes were scattered in the egg cytoplasm suggesting
M-III like arrest in eggs that underwent postovulatory aging-
induced abortive SEA. These results together with previous
findings suggest that CI induced EA possibly by increasing

cytosolic free Ca2+ level in rat egg cultured in vitro. A
possibility exists that postovulatory aging-induced abortive
SEA might be due to an increase of cytosolic free Ca2+

level. To test this possibility, we analyzed cytosolic free
Ca2+ levels and results suggest that the postovulatory aging
increased insufficient cytosolic free Ca2+ level (1.42 times
as compared to control eggs arrested at M-II stage) and
induced abortive SEA, while more increase of cytosolic free
Ca2+ level (2.55 times) induced EA. Although the cytosolic
free Ca2+ level during postovulatory aging-induced abortive
SEA has not been reported in rat eggs so far, an increase of
cytosolic free Ca2+ induces EA in mouse eggs [6].

Conclusions

Present study suggests that the postovulatory aging induces
insufficient increase of cytosolic free Ca2+ (1.42 times) level
leading to abortive SEA, while further increase in its level
(2.55 times) induced EA. Further studies are requried to find
out the cause(s) for postovulatory aging induced insufficient
increase of cytosolic free Ca2+ level in order to protect
abortive SEA and to improve ART outcome.
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