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Research

Time-series analyses of air pollution and 
various health end points, including daily 
mortality, using flexible generalized linear 
models (GLMs) or generalized additive models 
(GAMs), have become commonplace in the 
last decade. The National Morbidity, Mortality 
and Air Pollution Study (NMMAPS) was an 
ambitious effort undertaken by scientists at 
Johns Hopkins University (Baltimore, MD, 
USA) and Harvard University (Cambridge, 
MA, USA) to investigate the association 
between particulate pollution (i.e., particu
late matter with an aerodynamic diameter 
≤ 10 µm; PM10) and morbidity and mortal-
ity in the 90 largest metropolitan areas in the 
United States over the period 1987–1994 
using time-series methods (Dominici et al. 
2003; Samet et al., 2000a, 2000b, 2000c). For 
the mortality analyses, the investigators used 
a common approach for analyses of the time-
series data on daily PM10 levels and deaths for 
each city. Specifically, a national mean esti-
mate for the association between PM10 and 
mortality was obtained by combining the indi-
vidual city-specific estimates using a hierarchi-
cal Bayes procedure, which assumed that the 
city-specific effects were normally distributed. 

Since then the analyses have been extended to 
include more cities, more years of data, and a 
second pollutant, ozone (O3) (Bell et al. 2004; 
Smith et al. 2009). In this article, we propose 
an approach to analyzing multicity time-series 
data that is complementary to the hierarchical 
Bayes approach.

Arguably, for standard setting, one might 
want to estimate not a national mean effect, 
but a common pollutant effect across the coun-
try. The most direct way to estimate a common 
pollutant effect on mortality across multiple 
cities would be to analyze all cities simultane-
ously using a GLM or GAM model postulat-
ing a common pollutant effect estimate across 
cities, but with control of confounders specific 
to each city. A statistical test for the hypoth-
esis that there is a common pollutant effect 
across cities could then be based on standard 
likelihood-based procedures or on the Akaike 
or Bayes information criterion (AIC or BIC). 
Alternatively, a computational approach to 
investigating the distribution of a common 
estimator of a pollutant effect is to use the 
bootstrap or the jackknife procedure on the full 
complement of cities (Efron and Tibshirani 
1993). However, with a large number of cities 

this conceptually simple approach presents for-
midable computational problems. One way 
around the computational problems is to use 
either the “delete-k jackknife” followed by the 
bootstrap procedure (Efron and Tibshirani 
1993) or the subsampling procedure (Politis 
et al. 1999). In this study, we used the subsam-
pling procedure to analyze the time-series data 
on all the criteria pollutants, with the excep-
tion of lead, and mortality in 108 metropolitan 
areas in the United States over the 14-year 
period 1987–2000.

Methods
We downloaded the mortality and air pollu-
tion time-series data from the NMMAPS web 
site maintained by the Johns Hopkins inves-
tigators (http://www.ihapss.jhsph.edu/data/
data.htm). Using the same database allowed 
direct comparisons to be made to the previous 
work of the Johns Hopkins team and others 
using these data. Daily data on the number of 
deaths are available for 108 metropolitan areas 
over the 14-year period 1987–2000. Daily 
concentrations of the criteria pollutants—
PM10, O3, carbon monoxide (CO), nitrogen 
dioxide (NO2), and sulfur dioxide (SO2)—are 
also available; although for each of the pollu
tants, information is available only for a sub-
set of the days. A limitation, shared with all 
epidemiologic analyses of air pollution data, 
is that the data were collected from stationary 
monitors to determine compliance with air 
quality regulation. Thus, the data collected are 
not necessarily ideal for epidemiologic studies. 
We recognize also that ambient concentrations 
are imperfect surrogates for personal exposure.

For the usual bootstrap approach, for each 
bootstrap cycle, 108 cities would be chosen 
with replacement from the original set of 
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108 cities, and the maximum likelihood esti-
mate (MLE) of the pollutant effect computed 
using Poisson regression methods. This proce-
dure would be repeated many times to obtain 
an estimate of the distribution of the common 
pollutant effect. However, with the large num-
ber of cities considered in these analyses, it is 
computationally infeasible to derive an MLE 
using this approach. Therefore, an alterna-
tive procedure, such as the delete-k jackknife 
(Efron and Tibshirani 1993) or the closely 
related subsampling procedure (Politis et al. 
1999) must be implemented. For the delete-k 
jackknife followed by the bootstrap proce-
dure, first the set of all possible subsets of size 
d = 108 – k is constructed from the 108 cities. 
Each bootstrap cycle then randomly selects a 
city from this set, and the common pollutant 
effect is estimated for the specific chosen set 
of d cities.

We used a closely related method, the 
subsampling procedure described by Politis 
et al. (1999). In this procedure, for each boot-
strap cycle, we randomly chose d cities without 
replacement out of the 108 cities with available 
data, and estimated the common pollutant 
effect for each sample of d cities. Politis et al. 
(1999) recommend that d be much smaller 
than 108, and we chose d = 4. The choice of d 
is arbitrary; however, the confidence intervals 
(CIs) for the parameter estimates have to be 
adjusted for this choice as discussed below. 
The distribution of the estimator of the com-
mon pollutant effect was based on 5,000 boot-
strap cycles.

Let X1, X2, …, Xn be a sequence of inde-
pendent observations (i.e., a sequence of reali
zations of independent random variables). In 
our case, each observation in the sequence 
represents the data on daily deaths, pollutant 
concentrations, and weather variables over the 
period 1987–2000 in each of the n cities con-
sidered in the analyses. The total number of 
cities, n, depends on the pollutant or combi-
nation of pollutants considered. For example, 
n = 102 for analyses that involve PM10 alone, 
and n = 56 for analyses that involve all pollu
tants. Let Θ be the parameter representing the 
common effect of a pollutant, and let Θn be 
the MLE for Θ based on n observations and 
Θd the MLE for Θ based on d<<n observa-
tions (i.e., based on a subset of d cities), then, 
by general maximum likelihood theory, Θn 
and Θd converge to Θ with rates √

–n and √
–d, 

respectively.
Under standard likelihood-based proce-

dures, inferences would be based on the dis-
tribution of Θn. However, computation of 
Θn and its distribution is infeasible with large 
n. Therefore, we based our inferences on Θd, 
where in our case, d = 4, and based our CIs 
on the subsampling distribution as described 
by Politis et al. (1999). The properties of the 
subsampling procedure hold under rather 

weak conditions. The sequence of observations 
is required to satisfy the α-mixing condition 
(Politis et al. 1999, p. 315). This condition 
is seen to be trivially satisfied by a sequence 
of independent observations. An anonymous 
referee suggested that sampling units other 
than entire cities might be more appropriate. 
We agree that other sampling schemes need to 
be explored.

CIs were computed after adjusting for the 
size of the subsample as follows. If Fd* repre-
sents the empirical distribution function of √

–d 
(Θd – Θ), then for any significance level α,

Fd
*–1(α/2) < √

–n (Θn – Θ) < Fd
*–1(1 – α/2),	[1]

with probability close to 1 – α. It then fol-
lows that Θn  –  (1/√

–n)Fd
*–1(1 – α/2) < Θ 

< Θn – (1/√
–n)Fd

*–1(α/2) is a 1 – α CI for Θ. 
In our case, we were unable to estimate Θn 
because of computational issues. We there-
fore approximated Θn by (ΣΘd)/N, where 
N = 5,000, the total number of subsamples 
drawn. That is, we approximated Θn as the 
mean of the Θd.

Thus, for our analyses, for each bootstrap 
cycle, we drew a random sample of four cit-
ies without replacement from among the 
108 cities with available data. We then fit an 
over-dispersed Poisson model to the randomly 
chosen 4 cities to obtain the MLE of the com-
mon pollutant effects on mortality in the 4 cit-
ies, but with confounders, such as temperature 
and relative humidity, being separately con-
trolled in each of the 4 cities. Because a num-
ber of previous analyses (e.g., Bell et al. 2004; 
Dominici et al. 2003) have considered the 
effect of the pollutants with a 1-day lag, we 
have done the same in these analyses. Likewise, 
the number of degrees of freedom (df) for 
time trends and weather are also consistent 
with those used in previous analyses (Bell 
et al. 2004; Dominici et al. 2003; Moolgavkar 
2003). Specifically, for each bootstrap cycle we 
modeled the number of deaths from all causes 
(with accidents and suicides removed) in a city 
on a specific day as a function of the 24-hr 
average pollutant concentration on the previ-
ous day, temporal trends (50 or 100 df natural 
spline), day of the week (categorical variable), 
mean temperature on the previous day (6 df 
natural spline), and mean dew-point tempera-
ture on the previous day (6 df natural spline). 
Note that this model controlled for confound-
ers, day of week effects, and time trends in a 
city-specific fashion.

To investigate the shape of the ambient 
concentration–response relationship, we used 
the same models with the pollutant effects rep-
resented by natural splines with 6 df. Multiple 
pollutants that have been concurrently mea-
sured can be easily added as covariates in these 
analyses. Because of missing data, the size of 
the data set from which samples of cities were 

drawn for analyses depended on the number 
of pollutants considered.

Clearly, the choice of lags for specific 
pollutants and for the weather variables—tem-
perature, and relative humidity—should be 
based on biological considerations whenever 
possible. Unfortunately, there is little informa-
tion to guide these choices. In previous publi-
cations, a 1-day lag has often been used. For 
example, in the revised NMMAPS analyses, 
Dominici et al. (2003) used the same lag for 
each of the pollutants in their multipollutant 
analyses. Their results indicate that a 1-day 
lag yields close to the maximum impact on 
daily mortality. It would be possible also to 
consider other lag structures, such as distrib-
uted lag models. However, the purpose of this 
study was not to be a comprehensive reanaly
sis of the NMMAPS data, but to provide an 
approach to the analysis of national data that 
complements the Bayesian approach. Similarly 
for the weather covariates, we used a 1-day lag 
because there is little biological information to 
suggest that any specific lag structure is better 
than any other.

The model was fit to the data using the 
R software package (http://www.r-project.org). 
The means of the 5,000 maximum likelihood 
estimates of the common pollutant effects 
were approximately unbiased and consistent 
estimators of the common national effects of 
the pollutants.

We conducted simulations to investigate 
the coverage properties of the CIs constructed 
as described above. Specifically, we generated 
100 observations based on a Poisson variate 
with an intercept and a slope. From these 100 
observations, we drew 5,000 subsamples of 
size 4 without replacement and computed 
90% and 95% CIs as described above in addi-
tion to computing the usual likelihood-based 
CIs. We repeated this entire procedure 1,000 
times to investigate the coverage properties of 
the CIs. We found that the mean of the 5,000 
subsample estimates was an excellent approxi-
mation to the MLE (data not shown). While 
the usual likelihood-based CIs covered the 
true values of the parameters with the nominal 
coverage probabilities, the subsampling CIs 
were conservative, that is, their coverage prob-
abilities were larger than the nominal cover-
age probabilities. The 95% CIs covered the 
true values of the parameters approximately 
98% of the time and the 90% CIs covered the 
true values of the parameters approximately 
95% of the time (data not shown). Therefore, 
because the estimated CIs were highly conser-
vative (i.e., too wide), we present both 95% 
and 90% CIs in our tables in the present study 
and note that our tests of significance (i.e., 
whether the CIs contain 0) are also conser-
vative (i.e., the actual level of significance is 
smaller than the nominal alpha). The cover-
age properties of both of the CIs constructed 
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using the subsampling approach and the cred-
ible intervals constructed in the hierarchical 
Bayes approach need to be explored in realistic 
simulation scenarios.

Results
Bootstrap means and 90% and 95% CIs after 
small-sample corrections for common nation-
wide estimates of effects of pollutants repre-
sent associations with incremental changes in 
the 24-hr average concentration on the previ-
ous day of 10 μg/m3 for PM10; 10 ppb for O3, 
SO2, and NO2; and 1 ppm for CO. The unit 
measures for the individual pollutants were 
chosen to facilitate comparisons with previ-
ous estimates rather than typical day-to-day 
variations in ambient concentrations, which 
vary among cities. With time trends smoothed 
using 100 df natural splines, all pollutants were 
significantly (at the 0.05 level) associated with 
mortality in single-pollutant models (Table 1). 
With 50 df natural splines for time trends, 
the estimated coefficient for O3 was greatly 
attenuated and statistically insignificant.

The magnitudes of associations with incre-
mental increases in CO, NO2, and SO2 were 
greater than for associations with PM10 and 
O3. When CO, NO2, and SO2 were included 
in the same model with 100 df splines for time 
trends, all three associations were attenuated 
and the association of CO with mortality was 
no longer statistically significant (Table 2).

Two-pollutant analyses of PM10 and each 
of the gases with 100 df splines for time trends 
indicated significant associations for PM10 in 
all four models, although estimated effects 
were attenuated except in the model adjusted 
for O3 (Table 3). Effect estimates for CO, 
NO2, and SO2 were significant and consis-
tent with estimates that were not adjusted for 
PM10, but the estimated effect of O3 on mor-
tality was attenuated and was not statistically 
significant based on the 95% CI or even the 
90% CI (Table 3).

Bootstrap means for flexible ambient 
concentration–response relationships, using 
6  df natural splines, between pollutant 

concentrations and deaths on the following 
day estimated from single-pollutant models 
suggest nonlinearity and threshold-like 
behavior for NO2, PM10, and O3 (Figure 1). 
However, the CIs for NO2 and PM10 are wide 
and the concentration–response relationships 
are consistent with linearity.

Our approach assumes a common national 
pollutant effect. However, if there is a com-
mon national pollutant effect, then for a ran-
domly chosen set of four cities, one would 
expect a common shared-effects model to have 
a lower AIC than a model postulating separate 
effects. Therefore, for each bootstrap cycle, we 
computed the AIC for the common pollutant 
effect model and for the individual models 
of each sample of four cities selected for each 
cycle. For all pollutants, the AIC was lower for 
the separate four-city fits than for the model 
postulating common pollutant effects for more 
than half the cycles (data not shown).

Discussion
In this study, we used a subsampling bootstrap 
approach to estimating maximum likelihood 
estimates for common national effects for asso-
ciations of individual pollutants with mortality. 
Previous analyses of NMMAPS data have used 
a hierarchical Bayes approach (e.g., Bell et al. 
2004; Samet et al. 2000a, 2000b, 2000c; Smith 
et al. 2009) to estimate a national mean effect.

The procedure described in this study is 
one approach to estimating common pollu
tant effects, if they exist; however, in a vast 
geographically and climatically diverse coun-
try such as the United States, it is not unrea-
sonable to expect heterogeneity of pollutant 
effects across the country. First, PM is a com-
plex mixture whose composition varies by 
region and season. O3 could also be consid-
ered a mixture because it is generally present 
with other oxidants. Second, for all pollu
tants, any effects on human health would be 
expected to be modified by weather and by the 
circumstances of exposure, which clearly vary 
by region and season. A comparison of AIC 
statistics for sample-specific (four city) models 

and for common estimate models suggests that 
the four-city models fit the data better than the 
common model in most cases, which is consis-
tent with heterogeneous effects among cities. 
This finding is consistent with the results of 
the hierarchical Bayes multicity analyses (Bell 
and Dominici 2008; Dominici et al. 2003; 
Smith et al. 2009). The heterogeneity of pollu
tant effects suggests that any single national 
estimate may not provide a reliable measure of 
the health benefits that would accrue from a 
reduction in pollutant concentrations.

An advantage of the Bayesian approach 
is that it allows for heterogeneity of city-
specific coefficients, albeit with the simplify-
ing assumptions that these are independent 
and identically distributed. That said, the 
hierarchical Bayes approach and the subsam-
pling approach described in this study are 
complementary approaches to estimating a 
single national pollutant effect. Under both 
approaches, however, further investigation of 
heterogeneity requires that regional analyses 
be performed.

The use of Bayesian methods in multicity 
analyses was pioneered by the first investi-
gators of NMMAPS (Dominici et al. 2000; 
Samet et  al. 2000a, 2000b, 2000c). Their 
approach to the analyses of multicity data 
used a two-stage procedure, with analyses of 

Table 1. Estimated mean percent change in daily mortality associated with a unit increase in pollutant 
concentration on the previous day, single-pollutant model analyses.

Pollutant dfa Mean 90% CI 95% CI No. of cities
PM10 50 0.40 0.33, 0.51 0.30, 0.53 102

100 0.39 0.30, 0.48 0.28, 0.49
O3 50 0.08 –0.11, 0.34 –0.16, 0.38 98

100 0.40 0.29, 0.53 0.27, 0.56
SO2 50 1.60 1.14, 1.91 0.93, 1.94 85

100 1.46 1.17, 1.70 1.07, 1.74
NO2 50 1.01 0.91, 1.13 0.89, 1.16 72

100 1.03 0.92, 1.14 0.91, 1.18
CO 50 1.47 1.18, 1.71 1.15, 1.75 95

100 1.30 1.09, 1.53 1.05, 1.58

Units are 10 µg/m3 for PM10; 10 ppb for NO2, O3, and SO2; and 1 ppm for CO. Temperature and relative humidity on the 
previous day are controlled using 6 df natural splines. Time trends are controlled using either 50 df or 100 df natural 
splines. Day of week is controlled as a categorical variable. The last column shows the number of cities available for 
analyses.
aDegrees of freedom for natural splines of time trends.

Table 2. Estimated mean percent change in daily 
mortality associated with a unit increase in pollu
tant concentration on the previous day, three-
pollutant model.

Pollutant Mean 90% CI 95% CI
SO2 0.82 0.57, 1.08 0.48, 1.15
NO2 0.62 0.43, 0.92 0.40, 0.98
CO 0.64 –0.10, 1.06 –0.20, 1.09

Units are 10 ppb for NO2 and SO2 and 1 ppm for CO. 
Temperature and relative humidity on the previous day 
are controlled using 6 df natural splines; time trends are 
controlled using 100 df natural splines and day of week is 
controlled as a categorical variable. These joint-pollutant 
analyses are based on data from 58 cities.

Table 3. Estimated mean percent change in daily 
mortality associated with a unit increase in pollu
tant concentration on the previous day, two-
pollutant model.

Pollutant Mean 90% CI 95% CI
PM10 0.29 0.16, 0.42 0.13, 0.45
CO 1.23 0.68, 1.64 0.55, 1.70
PM10 0.20 0.07, 0.33 0.03, 0.36
NO2 0.94 0.66, 1.20 0.60, 1.26
PM10 0.33 0.23, 0.45 0.19, 0.46
SO2 1.33 0.66, 1.85 0.38, 1.97
PM10 0.39 0.29, 0.49 0.25, 0.51
O3 0.22 –0.0008, 0.43 –0.05, 0.48

Units are 10 µg/m3 for PM10; 10 ppb for NO2, O3, and SO2; 
and 1 ppm for CO. Temperature and relative humidity on 
the previous day are controlled using 6 df natural splines. 
Time trends are controlled using 100 df natural splines, 
and day of week is controlled as a categorical variable. 
These two-pollutant analyses are based on 92 cities for 
PM10 and CO, 72 cities for PM10 and NO2, 83 cities for 
PM10 and SO2, 95 cities for PM10 and O3.
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single cities at the first stage, followed by a 
hierarchical Bayes analysis of the first-stage 
results to arrive at a single estimate of a 
national mean for the pollutant effect. Once 
the first-stage analyses were completed, the 
estimated pollutant effects were considered 
in isolation from the other covariates and 
combined in a second stage, resulting in a 
procedure that is operationally similar to a 
meta-analysis. This procedure assumes that 
the asymptotic distribution of the pollutant 
effect estimate has been achieved, and that a 
simple approximation to a full Bayesian anal-
ysis yields valid results in the second stage. 
The first assumption regarding the asymptotic 
distribution of parameter estimates is widely 
made in statistical procedures; in fact, one 
study (Dominici et al. 2000) reports that the 
asymptotic properties of the MLE are well 
approximated in the first-stage analyses. Our 
procedure also relied on asymptotic results.

The assumptions underlying the second-
stage procedure may be more problematic. A 
fully Bayesian analysis would put prior distri-
butions on all the parameters of the model, not 
just the pollutant coefficients, and allow the 
parameter estimates along with their covari-
ance structure from the first stage to be carried 
forward to the second-stage analyses. Although 
this procedure may be possible in theory, it 
would be much more computationally 

intensive and may not be practical. Although it 
is not clear that a fully Bayesian analysis would 
make a substantial difference to the results, 
these issues do not arise with the approach 
proposed in this study, and common national 
pollutant–mortality coefficients and their CIs 
can be estimated in a single-stage analysis even 
when multiple pollutants are modeled using 
splines. However, the simple simulation that 
we performed indicated that the CIs generated 
using our approach were conservative. The cov-
erage properties of CIs and credible intervals 
generated, respectively, by the subsampling 
and the hierarchical Bayes procedures need to 
be investigated using realistic and comprehen-
sive simulation scenarios.

Smith et  al. (2009) observed that the 
national mean from the hierarchical Bayes 
analysis approximates the mean (not the 
inverse variance weighted mean) of the indi-
vidual city-specific estimates as the variance of 
assumed distribution of the city-specific coeffi-
cients goes to infinity. They cautioned against 
any use of a national statistic, but advocated 
the use of a population-weighted mean if a 
national statistic is computed. The mean of 
the distribution of the bootstrap samples we 
generated implicitly has a population weight 
built in because the common estimate for each 
bootstrap cycle is influenced by the sizes of the 
populations of the cities in that cycle.

Our CIs for the estimated common 
national effects of the pollutants are wider 
than the credible intervals reported in earlier 
studies using the hierarchical Bayes approach. 
This could be a consequence of hierarchical 
Bayes credible intervals that may be too nar-
row (because the fully Bayesian procedure is 
replaced by an approximation that ignores 
estimates of weather and time-trend param-
eters in the second-stage analyses), in addition 
to subsampling CIs that are too wide (conser-
vative), as suggested by our simulations.

Previous multicity analyses have focused on 
PM10 or O3 (Bell et al. 2004, 2006; Dominici 
et al. 2003; Katsouyanni and Samet 2009; 
Smith et al. 2009). Analyses that addressed 
regional heterogeneity (Bell and Dominici 
2008; Dominici et  al. 2003; Smith et  al. 
2009) reported considerable heterogeneity of 
estimated coefficients for both PM and O3. 
Dominici et al. (2003) reported the largest 
PM10 coefficients were in the Northeast region 
among the seven regions they considered, fol-
lowed by Southern California. The smallest 
PM10 coefficients were reported in the Upper 
Midwest. The estimated coefficients in the 
Northeast were twice as high as those reported 
for the Upper Midwest. Smith et al. (2009) 
estimated the highest O3 coefficients for the 
Northeast and the Industrial Midwest but did 
not estimate significant effects for Southern 

Figure 1. Flexible ambient concentration–response relationship between pollutants and deaths on the following day. Pointwise means and 95% CIs adjusted for 
size of the bootstrap sample (d = 4) as described in the text; RR, relative risk. (A) PM10, (B) O3, (C) CO, (D) NO2, (E) SO2.
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California, where levels of O3 have always 
been high. A similar gradient of O3 coeffi-
cients, with no associations in Los Angeles, 
intermediate effect estimates for Chicago, and 
larger effect estimates for New York have been 
reported in other studies (Moolgavkar 2003).

Previous time-series analyses of air pollu-
tion and mortality have focused on PM10 or 
O3, with other pollutants addressed as con-
founders, if at all (Dominici et al. 2003). Our 
findings suggest that the emphasis on PM 
and O3 may deserve reconsideration because 
estimated associations were strongest for CO, 
NO2, and SO2. In addition, coefficients for all 
three gases remained highly significant in joint 
pollutant analyses with PM10, and coefficients 
for NO2, and SO2 remained significant in a 
model that included all three gases.

PM10. The NMMAPS analyses estimated a 
national mean increase of 0.27% in mortality 
for a 10-μg/m3 increase in PM10 on the previ-
ous day using GAMs, and a 0.22% increase 
using a GLM. Our estimate of the mean with 
50 df natural splines for time trends is 0.4% 
(95% CI: 0.30, 0.53). This estimate is not 
directly comparable to the estimates from the 
hierarchical Bayes analyses because we used 
somewhat different city-specific models and 
had many more cities with more years of 
data, although it is of interest to note that our 
estimate is virtually identical to the estimate 
reported for the Northeast (0.41; 95% pos-
terior interval: 0.04, 0.78) in the NMMAPS 
reanalyses (Dominici et al. 2003).

In two-pollutant analyses of PM10 with 
CO, NO2, or SO2, the PM10 coefficients were 
somewhat attenuated but continued to be sig-
nificantly associated with mortality. The asso-
ciation with PM10 was attenuated most in 
joint pollutant analyses with NO2. With the 
exception of the two-pollutant model of PM10 
and O3, which produced a highly insignifi-
cant coefficient for O3 when a 50 df smoother 
was used, results were robust to the degree of 
smoothing of time trends (data not shown). 
Therefore, we report only 100-df time-trend 
smoothers for joint pollutant analyses in 
this study.

O3. There are several fairly recent meta-
analyses (Bell et al. 2005; Ito et al. 2005; Levy 
et al. 2005) and multicity analyses (Bell et al. 
2004; Katsouyanni and Samet 2009; Smith 
et al. 2009) of the association between O3 
and daily deaths. As Smith et al. (2009) point 
out, there are two kinds of potential biases 
in meta-analyses: publication bias and model 
selection bias (in which the investigators test 
many models and report the results of only 
those models that show positive and signifi-
cant associations). Therefore, multicity analy
ses are preferable to meta-analyses.

The first multicity analyses were conducted 
by Dominici et al. (2003). These analyses were 
based on 8 years of data in 90 cities in the 

United States. For a 10-ppb increase in daily 
O3, Dominici et al. (2003) reported a national 
mean increase of approximately 0.25% in 
deaths on the following day, and this estimate 
was statistically significant. In an update of 
these analyses in 95 cities and with 14 years of 
data, Bell et al. (2004) reported a statistically 
significant national mean of approximately 
0.2% (approximate 95% posterior interval: 
0.1, 0.3%) for a 1-day lag O3 effect on mortal-
ity. In a reanalysis of data from the NMMAPS 
(Katsouyanni and Samet 2009), the O3 mor-
tality estimates were highly sensitive to the 
degree and type of smoothing used for season-
ality control, and inclusion of PM10 markedly 
reduced the O3 mortality estimates. Our esti-
mated mean with 100 df smoothers for time 
trends is 0.40% (95% CI: 0.27, 0.56). With 
50 df smoothers for time trends, the estimated 
mean for O3 is 0.08% (95% CI: –0.16, 0.38). 
Thus, the estimated O3 effect is sensitive to 
the degree of smoothing of temporal trends, 
in agreement with the results reported by 
Katsouyanni and Samet (2009). Because O3 
is a highly seasonal pollutant, adequate con-
trol of seasonality is important, and using only 
50 df for time trends may not be sufficient. To 
investigate this issue more thoroughly, further 
analyses of the data stratified by season should 
be undertaken.

In joint pollutant analyses (100 df smooth-
ers for time trends) with PM10, the O3 coeffi-
cient is substantially attenuated and becomes 
insignificant, as also reported by Smith et al. 
(2009) and Katsouyanni and Samet (2009). 
One possible reason for the widening of CIs 
for O3 effects is the greatly reduced data set 
used in joint pollutant analyses. If this were 
the sole reason, however, one would expect to 
observe the same phenomenon for the PM10 
effect, which was virtually unchanged and 
continued to remain highly significant.

In an update to the Bell et  al. (2004) 
study, Bell et al. (2006) examined the ambient 
concentration–response curve for O3 and mor-
tality, where their O3 metric was the average of 
the 24-hr mean concentrations on the current 
and previous days. Among various approaches 
evaluating ambient concentration–response 
relationships, Bell et al. (2006) used natural 
splines followed by a hierarchical Bayes proce-
dure to obtain a national estimate. The results 
shown in Figure 3 of their article suggest the 
possibility of a threshold at about 15 ppb. 
Smith et  al. (2009) fit a piece-wise linear 
ambient concentration–response relationship 
with breaks at 40 ppb and 60 ppb, and they 
showed that a hockey-stick–shaped curve with 
a break at 40 ppb is consistent with the data. 
Our analysis shows evidence of a threshold at 
a little over 30 ppb (Figure 1B). However, the 
data are too sparse to draw any firm conclu-
sions regarding the shape of the concentration–
response curve at low concentrations. We 

emphasize here that our analyses are based on 
24-hr average concentrations of O3, whereas 
regulation is based on the maximum 8-hr aver-
ages. Pollutant effect estimates cannot easily be 
converted from one averaging time to another. 
Smith et al. (2009) showed that a simple scal-
ing procedure is inadequate. It is, therefore, 
important to repeat these analyses with other 
measures of exposure.

CO, NO2, SO2. The only previous multi
city analyses of these three pollutants were 
conducted during reanalyses of NMMAPS 
(Dominici et al. 2003). For increases of 1 ppm 
for CO and 10 ppb for NO2 and SO2, respec-
tively, the NMMAPS investigators reported 
statistically significant increases in all-cause 
mortality at a 1-day lag of approximately 0.5%, 
0.25%, and 0.6%. Our single-pollutant esti-
mates of the mean are higher for each of these 
pollutants (e.g., 1.3%, 1.0%, and 1.5%, respec-
tively, using 100 df splines for time trends). In 
a multipollutant model including these three 
gases, CO was no longer significantly associ-
ated with mortality (mean 0.64%; 95% CI: 
–0.20, 1.09), but NO2 and SO2 remained so 
(mean 0.62; 95% CI: 0.40, 0.98 and mean 
0.82; 95% CI: 0.48, 1.15, respectively). In 
interpreting this result it should be kept in 
mind that, because of missing data, multipollu
tant analyses are based on a smaller set of cities 
than single-pollutant analyses. Concentration–
response relationships for CO and SO2 are 
consistent with linearity. Although there is the 
suggestion of a threshold at around 20 ppb for 
NO2, as for PM10, the confidence bounds are 
too wide to rule out linearity.

Conclusions
We used the subsampling bootstrap procedure 
to derive maximum likelihood estimators of 
national effects of exposures to criteria pollu
tants on deaths the following day. The AIC 
for the fitted models provided little evidence 
of a common effect estimate across the United 
States, however (data not shown). While the 
focus of much air pollution research for the 
past couple of decades has been on PM and 
O3, we find stronger associations between CO, 
NO2, and SO2 and mortality. The ambient 
concentration–response relationship for O3 
shows evidence of nonlinearity. Regional and 
seasonal analyses using the methods described 
in this study may offer further insight. 
Previous publications have reported that the 
results of time-series analyses of air pollution 
data in individual cities can be highly sensi-
tive to choice of statistical model (e.g., Clyde 
2000; Koop and Tole 2004; Moolgavkar 
2003). While our analyses are based on the 
most recent data available to us (which are not 
identical to the data used in previous analy
ses), our results suggest that different statisti-
cal approaches to multicity analyses can yield 
disparate results.
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